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Abstract. Real-time performance is critical for many time-sensitive applications
of wireless sensor networks. We present a constrained flooding protocol, called
CFlood that enhances the deadline satisfaction ratio per unit energy consumption
of time-sensitive packets in sensor networks. CFlood improves real-time perfor-
mance by flooding, but effectively constrains energy consumption by controlling
the scale of flooding, i.e., flooding only when necessary. If unicasting meets the
distributed sub-deadline of a hop, CFlood aborts further flooding even after flood-
ing has occurred in the current hop. Our simulation-based experimental studies
show that CFlood achieves higher deadline satisfaction ratio per unit energy con-
sumption than previous multipath forwarding protocols, especially in sparsely
deployed or unreliable sensor network environments.

1 Introduction

Real-time performance is one of the most important QoS (Quality of Service) metrics
for time-sensitive applications of wireless sensor networks (or WSN). For example, a
target tracking system [1] may require sensors to collect and report target information to
sink nodes before the target leaves the surveillance field. For improving real-time per-
formance, we need to ensure that as many time-sensitive packets as possible, arrive at
sink nodes within their deadlines. The delay that a packet may experience during trans-
mission may be caused by many reasons, including those due to network congestion
and node/link failures.

Multipath forwarding is a commonly used approach for enhancing various QoS met-
rics of WSN traffic [2]. With multiple paths, network congestion and node/link failures
can be bypassed, and real-time performance can be improved. However, it is possible
that network congestion or the connection status is not significant enough through-
out the entire path from source to sink to warrant multipath forwarding for each hop.
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Therefore sometimes, the redundant copies of data packets generated by multipath for-
warding protocols, which often consume additional energy and bandwidth, are not nec-
essary. Since sensor nodes are battery-powered and therefore energy must be efficiently
consumed, energy-efficient forwarding protocols are critical toward enhancing the ca-
pability of delivering real-time packets within given end-to-end time constraints, while
reducing the energy consumption.

Many previous research efforts [3, 4, 5, 6, 7, 8] have studied the efficiency of mul-
tipath forwarding protocols toward enhancing real-time performance while consuming
optimized resources (we discuss related work in Section 5). Majority of these efforts
have focused on reducing the number of flooding recipients at each hop so that the
additional resource consumption can be minimized and QoS constraints such as real-
time can also be satisfied. But even though the number of recipients is reduced, this
approach introduces redundancy due to its probability-based recipient selection mech-
anism. In fact, for those hops in which the connection status is good enough so that
unicasting does work, redundant multipath flooding is not necessary. The efficiency of
flooding therefore can be further improved by controlling the redundancy.

In this paper, we present a constrained flooding protocol called CFlood that im-
proves the flooding efficiency in sensor networks. The primary objective of CFlood is
to enhance the deadline satisfaction ratio per unit energy consumption. We adopt the
deadline satisfaction ratio (or DSR) [9] to characterize the real-time performance of a
WSN, which is defined as the ratio of the number of real-time packets that arrive at sink
nodes meeting their deadlines, to the total number of those transmitted.

CFlood uses flooding to enhance the deadline satisfaction ratio, and controls the
scale of flooding to effectively reduce energy consumption. We design CFlood mainly
in four components, including neighborhood table management, real-time guarantee
verification, recipient selection and flooding control. CFlood maintains a neighborhood
table on each node to save the information for routing and neighboring relations, and
uses periodic HELLO message exchanges to estimate the per-hop delays and update
the entries in the table. We also introduce a deadline partition scheme to distribute
the end-to-end deadline to multiple hops. By comparing the estimated per-hop delays
and the distributed sub-deadlines, the real-time guarantee verification component jus-
tifies whether a neighbor node can meet the deadline for a specific packet. Among the
neighbors that can meet the deadline, CFlood selects a primary recipient and several
secondary recipients according to the criteria on flooding-controllability, congestion
avoidance, and computation simplicity. In addition, CFlood aborts further flooding from
secondary recipients if unicasting to the primary recipient can meet the distributed sub-
deadline. CFlood is designed as a hop-by-hop routing protocol with no global network
information needed. Thus, it is scalable for large-scale sensor networks.

We conducted extensive simulation-based experimental studies to evaluate CFlood’s
performance. Our results reveal that CFlood achieves a higher deadline satisfaction ratio
per unit energy consumption than previous multipath data delivery protocols, such as
a multipath routing protocol MCMP [2] and a directional flooding protocol DFP [10],
especially in sparse or unreliable network environments.

The paper makes the following contributions:



– We design a constrained flooding protocol that improves the flooding efficiency by
enhancing the deadline satisfaction ratio per unit energy consumption. A flooding
control mechanism is developed based on the cross-layer design, by adding a plug-
in block to the MAC protocol.

– We compare the performance of CFlood against previous efforts through the simulation-
based experimental studies. To the best of our knowledge, we are not aware of any
other protocols that achieves a higher deadline satisfaction ratio per unit energy
consumption than what CFlood yields.

The rest of the paper is organized as follows. In Section 2, we outline our system
model. The design details of CFlood are presented in Section 3. Section 4 describes our
simulation results. We compare and contrast past and related work against CFlood in
Section 5, and conclude the paper in Section 6.

2 System Model

First we introduce the system model including the network, nodes, communication and
the underlying MAC protocol.

Network. We assume a homogeneous WSN architecture. Thus, there are no cluster
heads or relay nodes with different communication capabilities than that of other sensor
nodes. We only consider many-to-one data transmission, i.e., each sensor node sends
packets to only a single sink node.

Nodes. We assume that sensor nodes are static and are equipped with omni-directional
antennas. Both the transmission range within which nodes can communicate, denoted
as R, and the sensing range within which nodes can detect events, denoted as r, are
fixed.

Communication. We adopt the protocol model in [11] for communication, where
both transmission and interference depend only on the Euclidean distance between
nodes.

MAC protocol. We assume that the underlying MAC protocol supports collision
avoidance with the RTS/CTS (Request To Send and Clear To Send) exchange mecha-
nism [12]. This mechanism is commonly used for handling the hidden terminal prob-
lem [13], which is a major cause of channel contention in wireless networks.

For convenience in discussion, we then summarize all the notations that we use in
the paper in Table 1.

3 CFlood: A Constrained Flooding Protocol

We first describe CFlood’s design intuition, and then discuss its functional components
in detail.

3.1 Overview

CFlood is a decentralized flooding-based routing protocol. Routes are determined, i.e.,
recipients are chosen at each hop dynamically during data transmission. CFlood uses



Table 1: Notations

R Transmission range NB(Ni) Neighbors of node Ni
r Sensing range Parent(Ni) The parent of node Ni
Lh Estimated per-hop delay Source(Ni) The source node from which Ni receives a packet
Dh Distributed per-hop dead-

line
Forward(Ni) Flooding recipients of node Ni

PR Primary recipient Hop(Ni) The number of hops that Ni is away from the sink
SR Secondary recipient ρ Node density
Th The average throughput of a

node at hop h
Ch The number of nodes that are h hops away from

the sink node
SLi Slack time ratio DSR Deadline satisfaction ratio
δ Real-time capacity per unit

energy consumption
e The average energy for transmitting a single

time-sensitive packet

flooding to increase the deadline satisfaction ratio. But flooding may not be necessary
at each hop. It is desirable to constrain the scale of flooding as much as possible to
enhance energy efficiency.

We describe energy efficiency by measuring the average energy e consumed for
transmitting a single time-sensitive packet, i.e., the ratio of the total energy consump-
tion to the total number of time-sensitive packets generated. With a flooding protocol,
a single packet may be copied multiple times. Thus, the total energy consumption con-
sists of the energy for transmitting and receiving all the copies. We do not emphasize
the unit of energy, since it depends on the specific hardware platform. We also define
the metric real-time capacity per unit energy consumption as δ = DSR

e , which mea-
sures what percentage of time-sensitive packets is delivered meeting their deadlines for
unit energy consumption. Thus, higher δ is, the more efficient the flooding protocol is.
The primary objective of CFlood therefore can be described as improving the real-time
capacity per unit energy consumption δ as much as possible.

Our approaches used for controlling the scale of flooding and correspondingly in-
creasing δ include: 1) reducing the flooding actions as much as possible, and using
unicasting instead; and 2) reducing the number of recipients when flooding is neces-
sary.

Our intuition in controlling the flooding scale of CFlood with the first approach is
as follows. After a recipient at a given hop finds that the transmission of its next hop can
meet the sub-deadline, it is unnecessary for other recipients to continue flooding for the
next hop. Thus, this recipient can abort the subsequent flooding of other ones. For this
hop, it seems as unicasting is used instead of flooding. This way, the end-to-end time
constraint can be satisfied and the energy efficiency can be enhanced.

Even if flooding is necessary, we should reduce the number of recipients. We use
several criteria for recipient selection, in which the end-to-end time constraint is the
primary one. First, we introduce a deadline partition scheme to distribute the end-to-
end deadline to multiple hops. Then, CFlood estimates the per-hop delays between
nodes. If the estimated per-hop delay is longer than the distributed sub-deadline, it is
highly unlikely that the route through the node can meet the end-to-end time constraint.



Otherwise, the node can be chosen as a recipient of the flooding. With this approach, the
number of recipients can potentially be reduced with respect to meeting the end-to-end
time constraint.
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Fig. 1: Functional components of CFlood

Based on this intuition, we design CFlood with four functional components, which
are shown in a network protocol stack in Figure 1. The components are described as
follows:

– Neighborhood table management. CFlood maintains a neighborhood table on each
node to save the routing information, the neighboring relations, and the estimated
per-hop delays. These information fields are shared between neighbors through pe-
riodic HELLO message exchanges, and are used for making flooding decisions.

– Real-time guarantee verification. Among all the one-hop neighbors, we want to
flood only to those nodes that can satisfy the time constraint. This component ver-
ifies whether a neighbor can meet the end-to-end time constraint, and therefore
could be considered as a flooding recipient. This decision is made by comparing the
estimated per-hop delay, denoted as Lh, and the distributed per-hop sub-deadline,
denoted as Dh. If Lh < Dh, i.e., the transmission at this hop can be completed within
the sub-deadline distributed to this hop, then this neighbor could be selected as a
prospective recipient.

– Recipient selection. First, each node periodically computes a next-hop neighbor (or
parent as in [14]), which has the highest probability of meeting the time constraint.
This parent node is used as the primary recipient (or PR) of flooding. Then, each
node also selects several secondary recipients (or SRs) based on the time constraint
as well as the criteria on flooding-controllability, congestion avoidance and com-
putation simplicity. When unicasting is determined to be sufficient for meeting a
packet’s time constraint, the PR aborts the SRs’ next-hop flooding (this is done
through the flooding control mechanism discussed next). Otherwise, the PR and all
the SRs continue to flood the packet further.

– Flooding control. The working sequence of a MAC protocol, which supports col-
lision avoidance with the RTS/CTS exchange mechanism, can be summarized as
RTS-CTS-DATA or RTS-BACKOFF, depending on whether the RTS/CTS exchange
succeeds. For controlling the scale of flooding, CFlood inserts an ABORT phase
after CTS for the PR’s flooding, and a WAIT phase before RTS for SRs’ flood-
ing. Thus, the working sequence of the PR will be modified as RTS-CTS-ABORT-
DATA or RTS-BACKOFF, and that of the SRs will be modified as WAIT-ABORT,



WAIT-RTS-CTS-DATA or WAIT-RTS-BACKOFF. If a PR finds that the channel is
clear after receiving a CTS, it broadcasts an ABORT message so that SRs can abort
their subsequent flooding actions.

We now describe each of these components in detail.

3.2 Neighborhood Table Management

This component manages the neighborhood table, each entry of which corresponds to a
neighbor node. An entry includes the following fields:

(NeighborID, ParentID, HopCount, SendDelay, TTL)

ParentID is the ID of this neighbor node’s parent. HopCount is the number of hops by
which the neighbor node is away from the sink node. SendDelay is the estimated delay
for sending a packet to this neighbor node. TTL is short for Time To Live. The table
management operations include adding, updating, expiring, and removing.

The entries in the neighborhood table are updated via HELLO message exchanges,
which is a commonly used approach for sharing local knowledge among neighbors [3].
The mechanism has the advantage that it can adapt the network to possible topology
changes (e.g., those caused by link failure, node failure). Each HELLO message in-
cludes the fields (SenderID, ParentID, HopCount, SendDelay), so that all the receivers
may update the entry in their neighborhood tables for the node that sends this HELLO
message. For example, at the beginning, when a network is deployed, each node in the
network holds an empty neighborhood table. From a HELLO message received from a
sink node, all the neighbors of this sink node will know that their HopCount is 1. By
iteration, the HopCount will be increased by 1 at each hop from the sink node to all
other nodes in the network. (We will discuss the selection of a node’s parent and the
estimation of SendDelay later in this section.)

3.3 Real-time Guarantee Verification

As previously discussed, CFlood compares the estimated per-hop delay Lh with the dis-
tributed per-hop sub-deadline Dh to determine whether or not a potential recipient can
satisfy the time constraint. This component is responsible for estimating Lh, computing
Dh, and conducting the comparison.

Per-hop delay estimation The delay experienced at a hop usually consists of the trans-
mission delay, the propagation delay, and the receiving delay. The transmission delay is
the time that a data packet experiences at the MAC and PHY layers of the sender. The
propagation delay is the duration when a data signal together with its carrier travels in
the air. The receiving delay is the time that a data packet experiences at the PHY and
MAC layers of the receiver. Since the delay includes parts at both the sender and the
receiver, the precise measurement will require time synchronization, which is gener-
ally energy inefficient [15]. We introduce a feasible mechanism without assuming time
synchronization, although our estimation result may not be perfectly precise due to the
asymmetry of wireless channels.



The problem of estimating the round-trip delay has been well studied in the past [16].
We simply apply the existing method into the HELLO message exchange mechanism.
Suppose the neighbors of a node N are {Ni|Ni ∈NB(N)}. Node N may append a round-
trip delay estimation request for a specific neighbor node Ni in a randomly chosen
HELLO message (e.g., one out of every twenty continuous HELLO messages). Neigh-
bors other than Ni deal with this HELLO message as usual, while Ni is supposed to reply
with a HELLO message immediately. Then a round-trip delay is obtained by node N,
the half of which can be used as the estimated per-hop delay and is saved in the Send-
Delay field of Ni’s entry. This does not require time synchronization since the starting
and ending time points of the round trip are sampled at the same node.

Per-hop deadline computation Most of the past works on the end-to-end deadline par-
tition [17,18] have adopted either uniform or exponential models. Uniform distribution
allocates the total end-to-end deadline evenly to all the hops from the source to the sink,
implicitly assuming that a packet suffers the same delay at each hop. The exponential
model computes the per-hop sub-deadline as Dh = D

2h , where h is the number of hops
from the sink node and D represents the end-to-end deadline. These schemes are based
on analytical models and do not consider the actual throughputs of the network. We
introduce a deadline partition model by establishing a relationship between the per-hop
sub-deadline and the number of nodes at each hop in an intuitive manner.

Let ρ denote the node density of the network. Now, the average number of nodes
that are h hops away from the sink node, denoted as Ch, can be computed as ρ(π(hR)2−
π[(h−1)R]2) = ρπR2(2h−1). Intuitively, at a specific hop in a convergecast network,
lesser the number of nodes, greater will be the traffic that each node has to transport
toward the sink node. Thus, longer will be the delay that a packet will suffer at the
hop. Consequently, a longer sub-deadline will be needed for the hop. This relationship
can be approximately modeled as Dh ∼ Th ∼ 1

Ch
, where Th is the average throughput

of a node at hop h. When the node density ρ is fixed for a given implementation, we
have Dh ∼ 1

2h−1 . Thus, the end-to-end deadline D over an h-hop transmission can be

distributed to each hop k as Dk =
1

2k−1

∑h
k=1

1
2k−1

·D. Especially the sub-deadline of the first

hop from the source is:

Dh =
1

2h−1

∑h
k=1

1
2k−1

·D (1)

Figure 2 shows the comparison among the uniform model, the exponential model,
and the throughput-based model, for an example with a 200 ms end-to-end deadline
over 20 hops. We can observe that compared with the uniform model, the throughput-
based model is more adaptive for the many-to-one convergecast architecture of WSNs.
In addition, compared with the exponential model for which the distributed per-hop
deadline decreases quickly to zero, the throughput-based model supports a larger-scale
network.

For a single node N, its hop count from the sink node may be different when con-
sidering different routes via different neighbor nodes. Therefore the result of (1) needs
to be computed for each potential recipient. Suppose HopCount of a neighbor node Ni
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Fig. 2: Deadline Distribution

is hi. Now, when Ni is used for relaying, the distributed per-hop sub-deadline at this hop
is:

Dhi+1 =
1

2(hi+1)−1

∑hi+1
k=1

1
2k−1

·D (2)

Real-time guarantee verification For a specific neighbor Ni, we establish a function
CanMeetDeadline(Ni), in which the per-hop deadline Dhi+1 is computed and compared
with the per-hop delay Lhi+1 (i.e., the value of SendDelay in the neighborhood table).
The function CanMeetDeadline(Ni) returns true when Lhi+1 < Dhi+1 and false other-
wise. Only those neighbors that has a true return value will be considered as potential
recipients.

3.4 Recipient Selection

The recipient selection component is responsible for selecting the flooding recipients
(both a PR and multiple SRs) from the one-hop neighbors. With CFlood, each node
computes a parent node as the PR periodically even when no data packets are pass-
ing through. The criteria used for SR selection include real-time guarantee, flooding-
controllability, congestion avoidance, and simplicity of computation.

Primary recipient As one of CFlood’s techniques to constrain the flooding scale is to
substitute unicasting for flooding as much as possible, a parent needs to be prepared for
each node as the next-hop neighbor of unicasting.

For a neighbor Ni, (2) shows the distributed per-hop deadline Dhi+1. We can also
estimate the per-hop delay Lhi+1 with the round-trip HELLO message exchange. Thus,

we define a ratio SLi = 1− Lhi+1
Dhi+1

to describe the proportion of the slack time, and call
it, the slack time ratio. The slack time ratio describes how likely Ni can meet a packet’s
sub-deadline for this hop. Based on our throughput-based deadline partition model, the
slack time ratio also describes how likely a route via Ni can meet the end-to-end time



constraint. Therefore, we select a neighbor Ni with the maximum SLi as the parent node,
i.e., a neighbor with

max
i

(SLi)∼min
i

{ Lhi+1

Dhi+1

}
=

1
D
·min

i

{
Lhi+1 ·

∑hi+1
k=1

1
2k−1

1
2(hi+1)−1

}

Secondary recipients For selecting SRs, we progressively remove those neighbor
nodes that cannot satisfy the following criteria:

1. Real-time guarantee. An SR should meet the time constraint (i.e., CanMeetDeadline(Ni)
returns true).

2. Flooding-controllability. The subsequent flooding of an SR should be able to be
aborted by the PR.

3. Congestion avoidance. An SR should not introduce new congestion, since CFlood’s
major objective is to quickly bypass network congestion or connection failure. Thus we
remove redundant SRs that share the parent with other SRs and have lower probabili-
ties for meeting the time constraint. By strictly prohibiting two recipients from sharing
a common parent, the network congestion could be avoided at least for the next hop.

4. Simplicity of computation. CFlood is designed to be as simple as possible due to
the constrained computing capability of sensor nodes. We use a set of “common sense-
based” operations to quickly reduce the problem size before applying the first three
ones. These quick reduction operations include: 1) remove all the neighbors whose
parent is also a neighbor of the flooding node, and thus also has a chance to receive
the packet at this hop, i.e., Parent(Ni) ∈ NB(N); 2) remove all the neighbors that send
packets to the flooding node at the last hop, i.e., Ni = Source(N); and 3) remove all the
neighbors that have received packets at the last hop, i.e., Ni ∈ Forward(Source(N)).

Next, we describe the SR selection algorithm at a high-level of abstraction in Algo-
rithm 1. The algorithm complexity is O(n2) for searching Ni in Forward(Source(N)),
where n is the average number of one-hop neighbors of a node. The magnitude of
n is small. For example, our simulation shows that in a network with node density
0.005 node/m2 (i.e., each node covers an area of 200 m2), n is only up to 5.

3.5 Flooding Control

One of the most important contributions of this paper is the flooding control mechanism,
i.e., to abort the subsequent flooding after the current flooding occurs. In detail, the PR
and the SRs forward packets in different ways. As the flooding node of the next hop, the
PR initiates an RTS/CTS exchange with its PR immediately after receiving a packet. If a
CTS is received successfully, the PR broadcasts an ABORT message and then unicasts
the data packet. Otherwise, the PR backs off for some period of time and again initiates
the RTS/CTS exchange later. Unlike the PR, the SRs set an ABORT timer for each
received data packet. If an ABORT message from a PR is received for a buffered data
packet, the SRs drop that packet. Otherwise, if the timer runs out first, the SRs know that
the PR’s flooding for the next hop is delayed (i.e., backed off), and therefore they start to
flood the packet to the next hop. In this way, when the network condition is good (e.g.,



Algorithm 1 Secondary recipient selection
1: Initialize the SR candidate set as SR = {Ni|Ni ∈ NB(N),Hop(Ni) < Hop(N)};
2: for all (Ni ∈ SR) do
3: Examine Ni with the conditions of three quick reduction operations, i.e., remove Ni if

(Parent(Ni) ∈ NB(N)) or (Ni = Source(N)) or (Ni ∈ Forward(Source(N)));
4: Remove Ni if it violates the time constraint, i.e., if (CanMeetDeadline(Ni)=false);
5: Remove Ni if it violates the flooding-controllability criterion, i.e., if it cannot hear from

the PR (Ni 6∈ NB(PR));
6: Remove Ni if it violates the congestion avoidance criterion by sharing a parent with the

PR, i.e., if (Parent(Ni) = Parent(PR));
7: end for
8: if (SR == φ ) then
9: return φ

10: end if
11: Sort the remaining SRs in a descending order of SLi;
12: for all (Ni ∈ SR) do
13: Remove Ni if it violates the congestion avoidance criterion by sharing a parent with

another SR with a higher SLi, i.e., if (∃ j < i,Parent(Ni) = Parent(N j));
14: end for
15: return SR

the RTS/CTS exchange initiated by the PR succeeds without backoff), the flooding is
reduced to unicast (because the SRs drop the packet on receiving the ABORT message).

Overhearing is also an approach for controlling flooding [19], e.g., the SRs abort
the subsequent flooding upon overhearing the transmission of the PR. However, over-
hearing is not a good choice under the time constraint. Not until the SRs overhear the
complete packet payload and send it up to the network layer, can they drop the cor-
responding packet saved in the buffer. Such a transmission through the network stack
may introduce extra delays, especially when the data packet is long.
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Fig. 3: An example of CFlood’s flooding control mechanism



Figure 3 shows an example of CFlood’s flooding control mechanism. In the figure,
the circle with the number i represents node Ni. In Figure 3a, the dash-dot arrows show
the parent relation (e.g., Parent(N2) = N5), the solid lines show the actual data trans-
mission (e.g., Forward(N1) = {N2,N3}), and the dotted line represents the ABORT
messages. Figure 3b shows the time sequence of the nodes. The dotted curves show
the working mechanism of flooding control. When N2 (as the PR of N1) finds that the
channel is clear on receiving the CTS reply, it broadcasts an ABORT message and then
sends out the data packet. Node N3 (as an SR of N1) receives the ABORT message
from N2 before the timer runs out. Thus, it aborts the subsequent flooding and drops the
packet. On the contrary, N5 does not receive the CTS reply from its parent node. Thus,
it has to backoff for sometime without broadcasting an ABORT message. As N4 and
N6 do not receive the expected ABORT message before the timer runs out, they have to
continue the flooding by initiating the RTS/CTS exchange. The expiration time for the
ABORT timers on SRs can be either determined by specific application configurations,
or computed as the minimum allowed slack time mini{Dhi+1−Lhi+1} of that SR node
at the next hop.

4 Experimental Evaluation

We evaluated CFlood using the simulation tools Qualnet 4.0 [20] and sQualnet [21],
which is an extension to Qualnet for sensor networks. The simulation is based on the
CSMA/CA MAC protocol implemented in sQualnet.

4.1 Simulation Environment

We deploy 20 to 150 sensor nodes uniformly in a square area of 200m× 200m, and
assume Mica motes [22] as the hardware platform. We set R = 60m, r = 30m, and the
data rate as 38.4 kbps. We leverage the statistics provided by sQualnet to estimate the
energy consumption.

Each sensor node samples and reports an event (e.g., detection of a target) once per
second. We configure the lengths of a data packet, a HELLO message, and an ABORT
message as 150 bytes, 50 bytes, and 10 bytes, respectively. Usually 10 bytes (e.g. in-
cluding the ID of the source node and the ID of this packet) are long enough for an
ABORT message to identify a specific data packet.

We compared CFlood against three past competitor algorithms. Mint routing (or
MR) is a single path delivery protocol [14], which serves as a lower bound on both real-
time performance and energy consumption. MCMP [2], a multipath routing protocol, is
one of the latest efforts on optimizing data delivery under both real-time and reliability
constraints. DFP [10] (short for Directional Flooding Protocol) is a forwarding protocol
that optimizes the delivery probability. We measure the performance metrics of interest
of CFlood and these protocols under varying degrees of node density, link reliability,
and end-to-end time constraint, the default values of which are 0.0015 node/m2, 75%,
and 100ms, respectively.
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4.2 Simulation Results

Figure 4 shows the deadline satisfaction ratio of the four protocols under different node
densities. Due to the competition of the two factors, the number of recipients and the
congestion level, the curves present crests. We observe that CFlood yields the best DSR.

Figure 5 shows the average energy consumption per real-time packet under different
node densities. We observe that MR, as the lower bound, consumes the least energy, and
CFlood consumes the most. But the energy consumption of CFlood is very close to that
of DFP.

Figure 6 shows the real-time capacity per unit energy consumption δ under different
node densities. We observe that CFlood performs the best, especially when the node
density is low. Detailed simulation results show that on average, CFlood is 197%, 346%,
and 20% better than MR, MCMP and DFP, respectively.
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Fig. 7: Deadline satisfaction
ratio DSR vs. link reliability
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sumption e vs. link reliability
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Fig. 9: Real-time capacity δ
vs. link reliability

Figure 7 shows the deadline satisfaction ratio under various per-hop wireless link
reliability. Among the four protocols, CFlood yields the best DSR, especially when the
link reliability is low. As the link reliability increases, the DSRs of CFlood, MCMP,
and DFP tend to be comparable, and MR remains as the lower bound. We observe that
MCMP performs well especially when the network condition is good, while CFlood is
more adaptive to unreliable network environments.

Figure 8 shows that CFlood consumes the most energy. However, when we consider
the real-time capacity per unit energy consumption δ , CFlood outperforms the other
three protocols when the link reliability is lower than 80%, as shown in Figure 9.
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Fig. 10: Real-time capacity δ vs. end-to-end
time constraint
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Fig. 11: Energy for data transmission and
ABORT broadcast

Figure 10 shows that the real-time capacity per unit energy consumption δ of CFlood
is higher than that of the other three protocols, as long as the end-to-end time constraint
is not very tight.

CFlood’s flooding control mechanism based on ABORT messages does introduce
some overheads. However, the extra energy consumption is negligible. Figure 11 shows
the contrast between the energy consumption for data transmission and that for the
ABORT message exchange. We observe that the energy consumption for ABORT mes-
sages is only about 1% of the energy consumption for data transmission. This implies
that CFlood’s flooding control mechanism introduces little overhead.

Thus, our simulation results reveal that CFlood achieves better real-time capacity
per unit energy consumption than past protocols, especially for sparse node deployment,
unreliable wireless links, and loose end-to-end time constraints.

5 Related Work

Existing works on supporting real-time traffic in WSNs have focused on latency and
timely delivery from various perspectives. For example, Abdelzaher et. al. discussed
a WSN’s real-time capacity from a macro perspective without making any detailed as-
sumptions [17]. He et. al. present detailed delay bounds for each chain of target tracking
applications in [1]. Other efforts considered real-time performance as a constraint that
must be satisfied [23]. In contrast, we focus on improving the deadline satisfaction ratio
per unit energy consumption.

In unreliable network environments, past data delivery protocols use different ap-
proaches to guarantee timeliness. Single path forwarding protocols transmit one copy
of data along a predetermined single path, and depend on retransmissions to guaran-
tee reliability [24]. In contrast, multipath data delivery protocols transmit a number of
copies through multiple routes simultaneously. This will increase the reliability and the
probability of delivering real-time data in a timely manner, but often at the expense of
additional energy consumption.

Multipath routing protocols can be broadly classified into two categories, static rout-
ing and dynamic routing. Static multipath routing protocols setup multiple routes, which



are either disjoint [3] or braided [4], before sending out a data packet. The source nodes
then either choose one of the routes or combine the resources of all the routes for a
single flow. In contrast, dynamic multipath forwarding protocols decide the flooding
recipients at each hop so that the data flow is split distributively.

Dynamic routing protocols can be further classified into multicast, broadcast (or
flooding), and gossip. Multicast has been extensively studied for WSNs [5], most of
which aim at multihop one-to-many communications. Broadcasting and flooding are
usually used interchangeably, but there are also works that distinguish them with minor
differences [25]. The HHB scheme introduced in [6] is a hop-by-hop broadcast protocol
that leverages the broadcasting capability of wireless medium to guarantee the reliable
delivery. The HHB protocol broadcasts at each hop with a specific probability to avoid
degenerating into a flooding storm. Zhang et. al. present a constrained flooding protocol
in [7], which exhibits good energy efficiency by constraining retransmissions. Gossip
can be considered as a form of probabilistic flooding. In [8], Lu et. al. present a gossip
algorithm called NBgossip, which forwards the linear combinations of the received
messages.

Almost all of the multipath data delivery protocols introduce extra overheads even
when unicasting is enough for satisfying QoS constraints such as timeliness. In contrast,
CFlood uses flooding but constrains the energy consumption effectively by controlling
the scale of flooding.

6 Conclusions

This paper presents a constrained flooding protocol, called CFlood, that enhances the
real-time capability per unit energy consumption in WSNs. Besides the fundamental
functions of a routing protocol such as neighborhood table management, we present
a flooding control mechanism based on ABORT message exchanges, and a recipient
selection method to reduce energy consumption. Our experimental evaluation based
on Qualnet shows that CFlood outperforms past multipath routing/forwarding proto-
cols, especially for sparsely deployed networks or unreliable wireless links. This result
reveals that the cross-layer design of CFlood’s flooding control, e.g. substituting uni-
casting for flooding as much as possible, effectively improves the flooding efficiency.

Directions for future work include:
1) improving CFlood’s flooding and energy consumption control mechanisms to be

more adaptive;
2) achieving reliability guarantees; and
3) extending CFlood to sensor networks with multiple sink nodes.
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