
Location-Aware Cache-Coherence Protocols for Distributed Transactional
Contention Management in Metric-Space Networks

Bo Zhang, Binoy Ravindran
ECE Department, Virginia Tech

Blacksburg, VA 24061, USA
{alexzbzb, binoy}@vt.edu

Abstract

Transactional Memory API utilizes contention managers
to guarantee that whenever two transactions have a conflict
on a resource, one of them is aborted. Compared with multi-
processor transactional memory systems, the design of dis-
tributed transactional memory systems is more challenging
because of the need for distributed cache-coherence proto-
cols and the underlying (higher) network latencies involved.
The choice of the combination of the contention manager
and the cache-coherence protocol is critical for the perfor-
mance of distributed transactional memory systems. We
show that the performance of a distributed transactional
memory system on metric-space networks is O(N2

i) for Ni
transactions requesting for a single object under the Greedy
contention manager and an arbitrary cache-coherence pro-
tocol. To improve the performance, we propose a class
of location-aware distributed cache-coherence protocols,
called LAC protocols. We show that the combination of
the Greedy contention manager and an efficient LAC proto-
col yields an O(N logN · s) competitive ratio, where N is
the maximum number of nodes that request the same object,
and s is the number of objects. This is the first such per-
formance bound established for distributed transactional
memory contention managers. Our results yield the follow-
ing design strategy: select a distributed contention man-
ager and determine its performance without considering
distributed cache-coherence protocols; then find an appro-
priate cache-coherence protocol to improve performance.

1. Introduction

Conventional synchronization methods for multiproces-
sors based on locks and condition variables are inherently
non-scalable and failure-prone. Transactional synchroniza-
tion is considered as an alternative programming model to
manage contention in accessing shared resources. A trans-

action is an explicitly delimited sequence of steps that is
executed atomically by a single thread. A transaction ends
by either committing (i.e., it takes effect), or by aborting
(i.e., it has no effect). If a transaction aborts, it is typically
retried until it commits. Transactional API for multiproces-
sor synchronization, called Transactional Memories, have
been proposed both for hardware and software [5–7].

Transactions read and write shared objects. Two transac-
tions conflict if they access the same object and one access is
a write. The transactional approach to contention manage-
ment guarantees atomicity by making sure that whenever a
conflict occurs, only one of the transactions involved can
proceed.

This paper studies the contention management problem
and the cache-coherence protocols problem in a distributed
system consisting of a network of nodes that communicat-
ing with each other by message-passing links. Quantita-
tively, the goal is to maximize the throughput, measured
by minimizing the makespan - i.e., the total time needed to
complete a finite set of transactions.

Different models of transactions in distributed systems
have been studied in the past [10]. Herlihy and Sun iden-
tify three competing transaction models: the control flow
model, in which data objects are typically immobile, and
computations move from node to node via remote proce-
dure call (RPC); the data flow model, where transactions are
immobile (running on a single node) and data objects move
from node to node; and the hybrid model, where data ob-
jects are migrated depending on a number of heuristics such
size and locality. These transactional models make differ-
ent trade-offs. Past work on multiprocessor [8] suggests that
the data flow model can provide better performance than the
control flow model on exploiting locality, reducing commu-
nication overhead and supporting fine-grained synchroniza-
tion.

Distributed transactional memory differs from multipro-
cessor transactional memory in two key aspects. First,
multiprocessor transactional memory designs extend built-
in cache-coherence protocols that are already supported in

modern architectures. Distributed systems where nodes
linked by communication networks typically do not come
with such built-in protocols. A distributed cache-coherence
protocol has to be designed. When a transaction attempts to
access an object, the cache-coherence protocol must locate
the current cached copy of the object, move it to the request-
ing node’s cache, invalidating the old copy. Secondly, the
communication costs for distributed cache-coherence proto-
cols to located the copy of an object in distributed systems
are orders of magnitude larger than that in multiprocessors
and therefore un-negligible. The communication costs are
often determined by the different locations of nodes that in-
voke transactions, as well as that of the performance of the
cache-coherence protocol at hand. Such cost must be taken
into account in the performance evaluation. Such costs di-
rectly affect the system performance e.g., system through-
out; number of aborted transactions, etc.

For multiprocessors, the performance of the contention
manager A is evaluated by the competitive ratio, which is
the ratio of the makespan of A to the makespan of an op-
timal off-line clairvoyant scheduler OPT. For networked
distributed systems, the specific cache-coherence protocol
C has to be introduced as a new variable to affect the per-
formance. Hence, we have to evaluate the performance of
a distributed transactional memory system by taking into
account its contention management algorithm as well as it
supporting cache-coherence protocol.

The problem that we study in the paper is the follow-
ing: what combination of contention managers and cache-
coherence protocols can achieve the optimal makespan for
distributed transactional memory systems? We answer this
question by first selecting a contention manager, which can
guarantee a provable performance with the worst possible
cache-coherence protocol. In other words, we first deter-
mine the worst-case performance provided by a given con-
tention manager. Now, what contention manager should we
select? Motivated by the past work on transactional mem-
ory on multiprocessors, we consider the Greedy contention
manager [4] for distributed transactional memory systems.
The pending commit property of the Greedy manager is re-
served: at any time, the transaction with the highest priority
will be executed and will never be aborted by other trans-
actions. This property is crucial for contention managers to
guarantee progress.

We establish the competitive ratio of the Greedy man-
ager with an arbitrary cache-coherence protocol for a single
object. In the worst case, the competitive ratio is O(N2

i)
where Ni is the number of transactions that request such
object. This is due to delay characteristics of the underly-
ing network, where different nodes may try to locate objects
from different locations in the network. During this period,
lower-priority transactions may locate objects earlier than
higher-priority transactions — a phenomenon called "over-

taking" [10]. Overtaking may result in high penalty on the
final makespan. Overtaking is unavoidable in distributed
transactional memory systems due to the network topology.
Therefore, we need to design an improved cache-coherence
protocol that takes into account the overtaking phenomenon
and yields a better performance.

We consider metric-space networks, similar to [10]. In
metric-space networks, the communication delay between
nodes forms a metric. For distributed systems with metric-
space networks, we propose a class of distributed cache-
coherence protocols with location-aware property, called
LAC protocols. In LAC protocols, the duration for a trans-
action requesting node to locate the object is determined by
the communication delay between the requesting node and
the node that holds the object. The lower communication
delay implies lower locating delay. In other words, nodes
that are "closer" to the object will locate the object more
quickly than nodes that are "further" from the object in the
network. We show that the performance of the Greedy man-
ager with LAC protocols is improved. We prove this worst-
case competitive ratio and show that LAC is an efficient
choice for the Greedy manager to improve the performance
of the system.

We make the following contributions in this paper:
1. We identify that the performance of distributed trans-

actional memory systems is determined by two factors: the
contention manager and the cache-coherence protocol used.
We show that, for a single object, the optimal off-line clair-
voyant scheduler for a set of transactions with the ideal
cache-coherence protocol visits all nodes along the short-
est Hamiltonian path. This is the first such result.

2. We present a proof of the worst-case competitive ratio
of the Greedy contention manager with an arbitrary cache-
coherence protocol. We show that this ratio can sometimes
lead to the worst choice of transaction execution.

3. We present location-aware cache-coherence protocols
called LAC protocols. We show that the worst-case per-
formance of the Greedy contention manager with an effi-
cient LAC protocol is improved and predictable. We prove
an O(N logN · s) competitive ratio for the Greedy man-
ager/LAC protocol combination, where N is the maximum
number of nodes that request the same object, and s is the
number of objects. To the best of our knowledge, we are
not aware of any other competitive ratio result on the per-
formance of transactional memory contention managers in
distributed systems.

The rest of the paper is organized as follows: In Sec-
tion 2, we discuss the related work. We present the sys-
tem model and state the problem formally in Section 3. We
study the performance of the Greedy manager with an arbi-
trary cache-coherence protocol in Section 4, and the perfor-
mance for the combination of the Greedy manger and LAC
protocols in Section 5. The paper concludes in Section 6.

2. Related Work

Contention managers were first proposed in [8], and a
comprehensive survey on the subject is due to Scherer and
Scott [17]. A major challenge in implementing a contention
manager is guaranteeing progress. Using timestamp-based
priorities to guarantee progress, the Greedy manager was
proposed by Guerraoui et al. [4], where a O(s2) upper
bound is given for the Greedy manager on multiproces-
sors with s being the number of shared objects. Attiya et
al. [1] formulated the contention management problem as
the non-clairvoyant job scheduling paradigm and improved
the bound of the Greedy manager to O(s).

Transactional memory models have received attention
from many researchers, both in hardware and in software
(e.g., [9, 12, 16]. These include both purely software sys-
tems, and hybrid systems where software and hardware sup-
port for transactional memory are used in conjuncture to
improve performance.

Despite this large body of work, few papers in the
past [2, 10, 14] investigate transactional memory for dis-
tributed systems consisting of a network of nodes. Among
these efforts, Herlihy and Sun’s work [10] calls our atten-
tion mostly. They present a Ballistic cache-coherence pro-
tocol based on hierarchical clustering for tracking and mov-
ing up-to-date copies of cached objects, and suggest a finite
response time for each transaction request. In contrast, our
work focuses on the makespan to finish a set of transactions
whose contention is managed by the Greedy manager under
certain cache-coherence protocols, and the design of such
protocols in metric-space networks.

We prove that finding an optimal off-line algorithm
for scheduling transactions in a graph for a single ob-
ject is equivalent to the Traveling Salesman Path Prob-
lem (TSPP) [13], a problem closely related to the Travel-
ing Salesman Problem (TSP) that replaces the constraint
of a cycle by a path. It is well-known that finding such
an algorithm is NP-hard. For an undirected metric-space
network, where edge lengths satisfy the triangle inequal-
ity, the best known approximation ratio is 5/3 due to
Hoogeveen [11]. Among heuristic algorithms of general
TSP problems, Rosenkrantz et. al. [15] proved a O(log n)
approximation ratio for the nearest neighbor algorithm,
which is closely related to our makespan analysis of the
Greedy manager.

3. System Model

3.1. Metric-Space Network Model

We consider the metric-space network model of dis-
tributed systems proposed by Herlihy and Sun in [10].We
assume a complete undirected graph G = (V,E), where

|V | = n. The cost of an edge e(i, j) is measured by
the communication delay of the shortest path between two
nodes i and j. We use d(i, j) to denote the cost of e(i, j).
Thus, d(i, j) forms the metric of the graph and satisfies the
triangle inequality. We scale the metric so that 1 is the
smallest cost between any two nodes. All n nodes are as-
sumed to becontained in a metric space of diameter Diam.

3.2. Transaction Model

We are given a set ofm ≥ 1 transactions T1, ..., Tm and a
set of s ≥ 1 objectsR1, ..., Rs. Since each transaction is in-
voked on an individual node, we use vTi

to denote the node
that invokes the transaction Ti, and VT = {vT1 , ..., vTm}.
We use Ti ≺ Tj to represent that transaction Ti is issued a
higher priority than Tj by the contention manager (see Sec-
tion 3.3).

Each transaction is a sequence of actions, each of which
is an access to a single resource. Each transaction Tj re-
quires the use of Ri(Tj) units of object Ri for one of its
actions. If Tj updates Ri, i.e., a write operation, then
Ri(Tj) = 1. If it readsRi without updating, thenRi(Tj) =
1
n , i.e., the object can be read by all nodes in the network
simultaneously. When Ri(Tj) + Ri(Tk) > 1,Tj and Tk
conflict at Ri. We use v0

Ri
to denote the node that holds Ri

at the start of the system, and vjRi
to denote the j’th node

that fetches Ri. We denote the set of nodes that requires the
use of the same object Ri as V Ri

T := {vTj
|Ri(Tj) ≥ 0, j =

1, ...,m}.
An execution of a transaction Tj is a sequence of timed

actions. Generally, there are four action types that may be
taken by a single transaction: write, read, commit and abort.
When a transaction is started on a node, a cache-coherence
protocol is invoked to locate the current copy of the object
and fetch it. The transaction then starts with the action and
may perform local computation (not involving access to the
object) between consecutive actions. A transaction com-
pletes either with a commit or an abort. The duration of
transaction Tj running locally (without taking into account
the time of fetching objects) is denoted as τi.

3.3 Distributed Transactional Memory
Model

We apply a data-flow model proposed in [10] to support
the transactional memory API in a networked distributed
system. Transactions are immobile (running at a single
node) but objects move from node to node. Transaction
synchronization is optimistic: a transaction commits only
if no other transactions has executed a conflicting access. A
contention manager module is responsible to mediate be-
tween conflicting accesses to avoid deadlock and livelock.

The core of this design is an efficient distributed cache-
coherence protocol. A distributed transactional memory
system uses a distributed cache-coherence protocol for op-
erations in the distributed system. When a transaction at-
tempts to access an object, the cache-coherence protocol
must locate the current cached copy of the object, move it
to the requesting node’s cache, and invalidate the old copy.

We assume each node has a transactional memory proxy
module to provide interfaces to the application and to prox-
ies at other nodes. This module mainly perform following
functions:

Data Object Management: An application informs the
proxy to open an object when it starts a transaction. The
proxy is responsible for fetching a copy of the object re-
quested by the transaction, either from its local cache or
from other nodes. When the transaction asks to commit, the
proxy checks whether any object opened by the transaction
has been modified by other transactions. If not, the proxy
makes the transaction’s tentative changes to the object per-
manent, and otherwise discard them.

Cache-Coherence Protocol Invocation: The proxy is re-
sponsible for invoking a cache-coherence protocol when
needed. When a new data object is created in the local
cache, the proxy calls the cache-coherence protocol to pub-
lish it in the network. When an object is requested by a
read access and not in the local cache, the proxy calls the
cache-coherence protocol to look up the object and fetch
a read-only copy. If it is a write request, the proxy calls
the cache-coherence protocol to move the object to its local
cache.

Contention Management: When another transaction asks
for an object used by an active local transaction, the proxy
can either abort the local transaction and make the object
available, or it can postpone a response to give the local
transaction a chance to commit. The decision is made by
a globally consistent contention management policy that
avoids livelock and deadlock. An efficient contention man-
agement policy should guarantee progress: at any time,
there exists at least one transaction that proceeds to commit
without interrupt. For example, the Greedy manager guar-
antees that the transaction with the highest priority can be
executed without interrupt by arrange a globally consistent
priority policy to issue priorities to transactions.

3.4 Problem Statement

We evaluate the performance of the distributed transac-
tional memory system by measuring its makespan. Given
a set of transactions requiring accessing a set of objects,
makespan(A,C) denotes the duration that the given set of
transactions are successfully executed under a contention
manager A and cache-coherence protocol C.

It is well-known that optimal off-line scheduling of tasks

with shared resources is NP-complete [3].While an on-
line scheduling algorithm does not know a transaction’s re-
source demands in advance, it does not always make op-
timal choices. An optimal clairvoyant off-line algorithm,
denoted OPT, knows the sequence of accesses of the trans-
action to resources in each execution.

We use makespan(OPT) to denote the makespan of the
optimal clairvoyant off-line scheduling algorithm with the
ideal cache-coherence protocol. The ideal cache-coherence
protocol exhibits the following property: at any time, the
node that invokes a transaction can locate the requested ob-
ject in the shortest time. We evaluate the combination of
a contention manager A and a cache-coherence protocol C
by measuring its competitive ratio.

Definition 1. Competitive Ratio (CR(A,C)): the compet-
itive ratio of the combination (A,C) of a contention man-
ager A and a cache-coherence protocol C is defined as

CR(A,C) =
makespan(A,C)
makespan(OPT)

.

Thus, our goal is to solve the following problem: Given
a Greedy contention manager (or “Greedy" for short), what
kind of cache-coherence protocol should be designed to
make CR(Greedy, C) as small as possible?

4. Makespan of the Greedy Manager

4.1. Motivation and Challenge

The past work on transactional memory systems on mul-
tiprocessors motivates our selection of the contention man-
ager. The major challenging in implementing a contention
manager is to guarantee progress: at any time, there ex-
ists some transaction(s) which will run uninterruptedly until
they commit. The Greedy contention manager proposed by
Guerraoui et. al. [4] satisfies this property. Two non-trivial
properties are proved in [4] and [1] for the Greedy manager:

• Every transaction commits within a bounded time

• The competitive ratio of Greedy is O(s) for a set of s
objects, and this bound is asymptotically tight.

The core idea of the Greedy manager is to use a glob-
ally consistent contention management policy that avoids
both livelock and deadlock. For the Greedy manager, this
policy is based on the timestamp at which each transac-
tion starts. This policy determines the sequence of priori-
ties of the transactions and relies only on local information,
i.e., the timestamp assigned by the local clock. To make
the Greedy manager work efficiently, those local clocks are
needed to by synchronized. This sequence of priorities is
determined at the beginning of each transaction and will not

change over time. In other words, the contention manage-
ment policy serializes the set of transactions in a decentral-
ized manner.

At first, transactions are processed greedily whenever
possible. Thus, a maximal independent set of transactions
that are non-conflicting over their first-requested resources
is processed each time. Secondly, when a transaction be-
gins, it is assigned a unique timestamp which remains fixed
across re-invocations. At any time, the running transaction
with highest priority (i.e., the "oldest" timestamp) will nei-
ther wait nor be aborted by any other transaction.

The nice property of the Greedy manager for multipro-
cessors motivates us to investigate its performance in dis-
tributed systems. In a network environment, the Greedy
manager still guarantees the progress of transactions: the
priorities of transactions are assigned when they start. At
any time, the transaction with the highest priority (the ear-
liest timestamp for the Greedy manager) never waits and is
never aborted by a synchronization conflict.

However, it is much more challenging to evaluate the
performance for the Greedy manager in distributed systems.
The most significant difference between multiprocessors
and distributed systems is the cost for locating and mov-
ing objects among processors/nodes. For multiprocessors,
built-in cache-coherence protocols are supported by mod-
ern architectures and such cost can be ignored compared
with the makespan of the set of transactions. For networked
distributed systems, the case is completely different. Some
cache-coherence protocols are needed for locating and mov-
ing objects in the network. Due to the characteristics of
the network environment, such cost cannot be ignored. In
fact, it is quite possible that the cost for locating and mov-
ing objects constitutes the major part of the makespan if
communication delays between nodes are sufficiently large.
Hence, in order to evaluate the performance of the Greedy
manager in distributed systems, the property of supported
cache-coherence protocol used must be taken into account.

One unique phenomenon for transactions in distributed
systems is the concept of “overtaking". Suppose there are
two nodes, vT1 and vT2 , which invoke transactions T1 and
T2 that require write accesses for the same object. Assume
T1 ≺ T2. Due to the locations of nodes in the network,
the cost for vT1 to locate the current cached copy of the
object may be much larger than that for vT2 . Thus, vT2 ’s
request may be ordered first and the cached copy is moved
to vT2 first. Then vT1 ’s request has to be sent to vT2 since
the object is moved to vT2 . The success or failure of an
overtaking is defined by its result:

Overtaking Success: If vT1 ’s request arrives at vT2 after
T2’s commit, then T2 is committed before T1.

Overtaking Failure: If vT1 ’s request arrives at vT2 before
T2’s commit, the contention manager of vT2 will abort the
local transaction and send the object to vT1 .

Overtaking failures are unavoidable for transactions in
distributed systems because of the unpredictable locations
of nodes that invoke transactions or hold objects. Such fail-
ures may significantly increase the makespan for the set
of transactions. Thus, we have to design efficient cache-
coherence protocols to relieve the impact of overtaking fail-
ures. We will show the impact of such failures in our worst-
case analysis of the transaction makespan.

4.2 makespan(Greedy, C) for a Single Object

We start with the makespan for a set of transactions
which require accesses for a single object Ri, denoted by
makespani. It is composed of three parts:

1. Traveling Makespan (makespandi): the total time that
Ri travels in the network.

2. Execution Makespan (makespanτi): the duration for
transactions’ executions of Ri, including all successful or
aborted executions; and

3. Idle Time (Ii): the time that Ri waits for a transaction
request.

We first investigate the makespan for all move requests
for Ri by an optimal off-line algorithm OPT with the ideal
cache-coherence protocol, denoted by makespani(OPT).
For the set of nodes V Ri

T that invoke transactions with re-
quests for object Ri, we build a complete subgraph Gi =
(Vi, Ei) where Vi = {V Ri

T

⋃
v0
Ri
} and the cost of ei(j, k)

is d(j, k). We use H(Gi, v0
Ri
, vTj

) to denote the cost of the
minimum cost Hamiltonian path from v0

Ri
to vTj

that visits
each node exactly once.Then we have the following lemma:

Lemma 1.

makespandi (OPT) ≥ min
vTj
∈V Ri

T

H(Gi, v0
Ri
, vTj

)

and
makespanτi (OPT) ≥

∑
vTj
∈V Ri

T

τj .

Proof. The execution of the given set of transactions with
the minimum makespan schedules each job exactly once,
which implies that Ri only have to visit each node in V Ri

T

once. In this case, the node travels along a Hamiltonian
path in Gi starting from v0

Ri
. Hence, we can lower-bound

the traveling makespan by the cost of the minimum cost
Hamiltonian path. On the other hand, object Ri is kept by
node vTj

for a duration at least τj for a successful commit.
The execution makespan is lower-bounded by the sum of
τj . The lemma follows.

Now we focus on the makespan of the Greedy manager
with a given cache-coherence protocol C. We postpone the
selection of cache-coherence protocol to the next section.
Given a subgraph Gi, we define its priority Hamiltonian
path as follows:

Definition 2. Priority Hamiltonian Path: the priority
Hamiltonian path for a subgraph Gi is a path which starts
from v0

Ri
and visits each node from the lowest priority to the

highest priority.

Specifically, the priority Hamiltonian path is v0
Ri
→

vTNi
→ vTNi−1 ... → v1, where Ni = |V Ri

T | and v1 ≺
v2 ≺ ... ≺ vTNi

. We use Hp(Gi, v0
Ri

) to denote the cost of
the priority Hamiltonian path for Gi.

The following theorem gives the upper bound of
makespani(Greedy, C)

Theorem 2.

makespandi (Greedy, C) ≤ 2Ni ·Hp(Gi, v0
Ri

)

and

makespanτi (Greedy, C) ≤
∑

1≤j≤Ni

j · τj .

Proof. We analyze the worst-case traveling and execution
makespans of the Greedy manager. At any time t of the
execution, let set A(t) contains nodes whose transactions
have been successfully committed, and let set B(t) con-
tains nodes whose transactions have not been committed.
We have B(t) = {bi(t)|b1(t) ≺ b2(t) ≺ ...}. Hence, Ri
must be held by a node rt ∈ A(t).

Due to the property of the Greedy manager, the trans-
action requested by b1(t) can be executed immediately and
will never be aborted by other transactions. However, this
request can be overtook by other transactions if they are
closer to r(t). In the worst case, the transaction requested
by b1(t) is overtook by all other transactions requested by
nodes in B, and every overtaking is failed. In this case, the
only possible path that Ri travels is r(i) → b|B(t)|(t) →
b|B(t)|−1(t) → ... → b1(t). The cost of this path is com-
posed of two parts: the cost of r(i) → b|B(t)|(t) and the
cost of b|B(t)|(t) → b|B(t)|−1(t) → ... → b1(t). We can
prove that each part is at most Hp(Gi, v0

Ri
) by triangle in-

equality (note thatGi is a metric completion graph). Hence,
we know that the worst traveling cost for a transaction ex-
ecution is 2Hp(Gi, v0

Ri
). The first part of the theorem is

provided.
The second part can be proved directly. For any transac-

tion Tj , it can be overtook at mostNi−j times. In the worst
case, they are all overtaking failures. Hence, the worst exe-
cution cost for Tj’s execution is

∑
j≤k≤Ni

τk. By summing
them over all transactions, the second part of the theorem
follows.

Now we have the following corollary:

Corollary 3.

CRdi (Greedy, C) = O(N2
i) (1)

and
CRτi (Greedy, C) = O(Ni). (2)

Proof. We can directly get Equation 2 by Theorem 2. To
prove Equation 1, we only have to prove

Hp(Gi, v0
Ri

) ≤ Ni · min
vTj
∈V Ri

T

H(Gi, v0
Ri
, vTj

).

In fact, we can prove this equation by showing that the cost
of the longest path between any two nodes inGi is less than
or equal to the cost of the minimum cost Hamiltonian path.
Then the corollary follows.

Figure 1. Example 1: a 3-node network

Example 1: in the following example, we show that for
the Ballistic protocol [10], the upper bound in Equation 1 is
asymptotically tight, i.e., the worst-case traveling makespan
for a transaction execution is the cost of the longest Hamil-
tonian path.

Consider a network composed of 3 nodes A,B and C in
Figure 1. Based on the Ballistic protocol, a 3-level directory
hierarchy is built, shown in Figure 2. Suppose ε << α.
Nodes i and j are connected at level l if and only if d(i, j) <
2l+1. A maximal independent set of the connectivity graph
is selected with members as leaders of level l. Therefore,
at level 0, all nodes are in the hierarchy. At level 1, A and
C are selected as leaders. At level 2, C is selected as the
leader (also the root of the hierarchy).

We assume that an object is created at A. According to
the Ballistic protocol, a link path is created: C → A →
A, which is used as the directory to locate the object at A.
Suppose there are two transactions TB and TC invoked on
B and C, respectively. Specifically, we have TB ≺ TC .

Now nodesB and C have to locate the object in the hier-
archy by probing the link state of the leaders at each level.
For node C, it doesn’t have to probe at all because it has
a no-null link to the object. For node B, it starts to probe
the link state of the leaders at level 1. In the worst case,
TC arrives at node A earlier than TB , and the link path is
redirected as C → C → C and the object is moved to node
C. Node B probes a non-null link after the object has been
moved, and TB is sent to node C. If TC has not been com-
mitted, then TC is aborted and the object is sent to node
B.

Figure 2. Example 1: link path evolvement of the directory hierarchy built by Ballistic protocol

In this case, the traveling makespan to execute TB is
d(A,C) + d(C,B) = 2α, which is the longest Hamil-
tonian path starting from node A. On the other hand,
the optimal traveling makespan to execute TB and TA is
d(A,B) + d(B,C) = ε + α. Hence, the worst-case trav-
eling makespan to execute TB is asymptotically the num-
ber of transactions times the cost of the optimal traveling
makespan to execute all transactions.

Remarks: Corollary 3 upper-bounds the competitive ra-
tio of the traveling and execution makespans of the Greedy
manager with any given cache-coherence protocol C. It
describes the worst case property of the Greedy manager
without taking into account the property of any specific
cache-coherence protocol. In the worst case, the compet-
itive ratio of the traveling makespan of the Greedy manager
is O(N2

i) for a single object without considering any de-
sign of cache-coherence protocols. Hence, we can design
a cache-coherence protocol to improve the performance of
competitive ratio. A class of cache-coherence protocols de-
signed to lower the O(N2

i) bound is introduced in the fol-
lowing section.

5. Location-Aware Cache-Coherence Protocol

5.1 Cache Responsiveness

To implement transactional memory in a distributed
system, a distributed cache-coherence protocol is needed:
when a transaction attempts to read or write an object, the
cache-coherence protocol must locate the current cached
copy of the object, move it to the requesting node’s cache
and invalidate the old copy.

Definition 3. Locating Cost (δC(i, j)): in a given graph
G that models a metric-space network, the locating cost is
the time needed for a transaction running on a node i for
successfully locating an object held by node j (so that it can
read or write the object), under a cache-coherence protocol
C.

Note that the locating cost doesn’t include the cost to
move the object since we assume the object is moved via

the shortest path after being located. The locating cost is
network-specific, depending on the topology of G and the
locations of i and j in the network. On the other hand, it
also depends on the specific cache-coherence protocol C.

The cache-coherence protocol has to be responsive so
that every transaction commits within a bounded time. We
prove that for the Greedy manager, a cache-coherence pro-
tocol is responsive if and only if δC(i, j) is bounded for any
G that models a metric-space network.

Let V Ri

T (Tj) = {vTk
|vTk

≺ vTj , vTk
, vTj ∈ V Ri

T } for
any graph G. Let ∆C [V Ri

T (Tj)] = max
vRi
∈V Ri

T

δC(i, j)

and D[V Ri

T (Tj)] = max
vRi
∈V Ri

T (Tj)
d(vRi

, vTj
). We have

the following theorem.

Theorem 4. A transaction Tj’s request for object Ri with
the Greedy manager and cache-coherence protocolC is sat-
isfied within time

|V Ri

T (Tj)| · {∆C [V Ri

T (Tj)] +D[V Ri

T (Tj)] + τj}.

Proof. The worst case of response time for Tj’s move re-
quest of object Ri happens when Tj’s request overtakes
each of the transaction that has a higher priority. Then the
object is moved to vTj and the transaction is aborted just
before its commit. Thus, the penalty time for an overtaking
failure is δC(i, j)+d(vRi

, vTj
)+τj ,where vRi

∈ V Ri

T (Tj).
The overtaking failure can happen at most |V Ri

T (Tj)| times
until all transactions that have higher priority than Tj com-
mit. The lemma follows.

Theorem 4 shows that for a set of objects, the respon-
siveness for a cache-coherence protocol is determined by
its locating cost. Formally, we use stretch as a metric to
evaluate the responsiveness of a cache-coherece protocol.

Definition 4. Stretch(C): the stretch of a cache-
coherence protocol C is the maximum ratio of the locating
cost to the communication delay:

Stretch(C) = max
i,j∈V

δC(i, j)
d(i, j)

.

Apparently, the ideal cache-coherence protocol’s stretch
is 1. In the practical design of a cache-coherence protocol,
we need to lower its stretch as much as possible. For exam-
ple, the Ballistic protocol provides a constant stretch, which
is asymptotically optimal .

5.2. Location-Aware Cache-Coherence Pro-
tocols

We now define a class of cache-coherence protocols
which satisfy the following property:

Definition 5. Location-Aware Cache-Coherence Protocol:
In a given network G that models a metric-space net-
work, if for any two edges e(i1, j1) and e(i1, j1) such that
d(i1, j1) ≥ d(i1, j1), there exists a cache-coherence proto-
col C which guarantees that δC(i1, j1) ≥ δC(i2, j2), then
C is location-aware. The class of such protocols are called
location-aware cache-coherence protocols or LAC proto-
cols.

By using a LAC protocol, we can significantly improve
the competitive ratio of traveling makespan of the Greedy
manager, when compared with Equation 1. The following
theorem gives the upper bound of CRdi (Greedy, LAC).

Theorem 5.

CRdi (Greedy, LAC) = O(Ni logNi)

Proof. We first prove that the traveling path of the worst-
case execution for the Greedy manager to finish a transac-
tion Tj is equivalent to the nearest neighbor path from v0

Ri

that visits all nodes with lower priorities than Tj .

Definition 6. Nearest Neighbor Path: In a graph G, the
nearest neighbor path is constructed as follows [15]:

1. Starts with an arbitrary node.
2. Find the node not yet on the path which is closest to

the node last added and add the edge connecting these two
nodes to the path.

3. Repeat Step 2 until all nodes have been added to the
path.

The Greedy manager guarantees that, at any time, the
highest-priority transaction can execute uninterrupted. If
we use a sequence {v1

Ri
≺, ...,≺ vNi

Ri
} to denote these

nodes in the priority-order, then in the worst case, the object
may travel in the reverse order before arriving at v1

Ri
. Each

transaction with priority p is aborted just before it commits
by the transaction with priority p−1. Thus,Ri travels along
the path v0

Ri
→ vNi

Ri
→ ... → v2

Ri
→ v1

Ri
. In this path,

transaction invoked by by vRj
i

is overtaken by all transac-
tions with priorities lower than j, implying

d(v0
Ri
, vNi

Ri
) < d(v0

Ri
, vkRi

), 1 ≤ k ≤ Ni − 1

and

d(vjRi
, vj−1
Ri

) < d(vjRi
, vkRi

), 1 ≤ k ≤ j − 2.

Clearly, the worst-case traveling path ofRi for a success-
ful commit of the transaction invoked by vjRi

is the nearest
neighbor path inGji starting from vRj−1

i
, whereGji is a sub-

graph ofGi obtained by removing {v0
Ri
, ..., vj−2

Ri
} inGi and

G1
i = Gi.
We use NN(G, vi) to denote the traveling cost of the

nearest neighbor path in graph G starting from vi. We
can easily prove the following equation by directly apply-
ing Theorem 1 from [15].

NN(Gji , v
j−1
Ri

)

minvk
Ri
∈Gj

i
H(Gi, v

j−1
Ri

, vkRi
)
≤ dlog(Ni−j+1)e+1 (3)

Theorem 1 from [15] studies the competitive ratio for
the nearest tour in a given graph, which is a circuit on the
graph that contains each node exactly once. Hence, we
can prove Equation 3 by the triangle inequality for metric-
space networks. We can apply Equation 3 to upper-bound
makespandi (Greedy, LAC) :

makespandi (Greedy, LAC) ≤
∑

1≤j≤Ni

NN(Gji , v
j−1
Ri

)

≤
∑

1≤j≤Ni

min
vk

Ri
∈Gj

i

H(Gji , v
j−1
Ri

, vkRi
)·(dlog(Ni−j+1)e+1).

Note that

min
vTj
∈V Ri

T

H(Gi, v0
Ri
, vTj) ≥ min

vk
Ri
∈Gj

i

H(Gji , v
j−1
Ri

, vkRi
).

Combined with Lemma 1, we derive the competitive ratio
for traveling makespan of the Greedy manager with a LAC
protocol as:

CRdi (Greedy, LAC) =
makespandi (Greedy, LAC)

makespandi (OPT)

≤
∑

1≤j≤Ni

(dlog(Ni − j + 1)e+ 1) ≤ log(Ni!) +Ni.

The theorem follows.

Example 2: We now revisit the scenario in Example
1 by applying LAC protocols. Note that TB ≺ TC and
d(A,B) < d(A,C). Due to the location-aware property,
TB will arrive at A earlier than TC . Hence, the traveling
makespan to execute TB and TC is d(A,B) + d(B,C),
which is optimal in this case.

Now we change the condition of TB ≺ TC to TC ≺ TB .
In this scenario, the upper bound of Theorem 5 is asymptot-
ically tight. TC may be overtook by TB and the worst case

traveling makespan to execute TC is d(A,B) + d(B,C),
which is the nearest neighbor path starting from A.

Remarks: the upper bounds presented in Corollary 3 also
applies to LAC protocols. However, for LAC protocols, the
traveling makespan becomes the worst case only when the
priority path is the nearest neighbor path.

5.3 makespan(Greedy, LAC) for Multiple Ob-
jects

Theorem 5 and Corollary 3 give the makespan upper
bound of the Greedy manager for each individual objectRi.
In other words, they give the bounds of the traveling and
execution makespans when the number of objects s = 1.
Based on this, we can further derive the competitive ratio
of the Greedy manager with a LAC protocol for the gen-
eral case. Let N = max1≤i≤sNi, i.e., N is the maximum
number of nodes that requesting for the same object. Now,

Theorem 6. The competitive ratio CR(Greedy, LAC) is

O(max[N · Stretch(LAC), N logN · s)].

Proof. We first prove that the total idle time in the optimal
schedule is at least N · Stretch(LAC) · Diam times the
total idle time of the Greedy manager with LAC protocols,
shown as Equation 4.

I(Greedy, LAC) ≤ N · Stretch(LAC) ·Diam · I(OPT)
(4)

If at time t, the system becomes idle for the Greedy man-
ager, there are two possible reasons:

1. A set of transactions S is invoked before t have been
committed and the system is waiting for new transactions.
There exist an optimal schedule that completes S at time at
most t, is idle till the next transaction released, and possibly
has additional idle intervals during [0, t]. In this case, the
idle time of the Greedy manager is less than that of OPT.

2. A set of transactions S are invoked, but the system is
idle since objects haven’t been located. In the worst case,
it takes Ni · δLAC(i, j) time for Ri to wait for invoked re-
quests. On the other hand, it only takes d(i, j) time to ex-
ecute all transactions in the optimal schedule with the ideal
cache-coherence protocol. The system won’t stop after the
first object has been located.

The total idle time is the sum of these two parts. Hence,
we can prove Equation 4 by introducing the stretch of LAC.

Now we derive the bounds of makespand and
makespanτ in the optimal schedule. Consider the set of
write actions of all transactions. If s + 1 transactions or
more are running concurrently, the pigeonhole principle im-
plies that at least two of them are accessing the same ob-
ject. Thus, at most s writing transactions are running con-
currently during time intervals that are not idle under OPT.

Thus, makespanτ (OPT)) satisfies:

makespanτ (OPT) ≥
∑m
i=1 τi
s

.

In the optimal schedule, s writing transactions run concur-
rently, implying each objectRi travels independently. From
Lemma 1, makespand(OPT) satisfies:

makespand(OPT) ≥ max
1≤i≤s

min
vTj
∈V Ri

T

H(Gi, v0
Ri
, vTj

).

Hence, we bound the makespan of the optimal schedule
by

makespan(OPT) ≥ I(OPT)+
∑m
i=1 τi
s

+ max
1≤i≤s

min
vTj
∈V Ri

T

H(Gi, v0
Ri
, vTj).

Note that, whenever the Greedy manager is not idle, at
least one of the transactions that are processed will be com-
pleted. However, from Theorem 2 we know that it may be
overtook by all transactions with lower priorities, and there-
fore the penalty time cannot be ignored. Use the same ar-
gument of Theorem 2, we have

makespanτ (Greedy, LAC) ≤
s∑
i=1

Ni∑
k=1

k · τk.

The traveling makespan of transaction Tj is the sum of
the traveling makespan of each object that Tj involves. With
the result of Theorem 5, we have

makespand(Greedy, LAC) ≤
s∑
i=1

Ni∑
j=1

NN(Gji , v
j−1
Ri

)

≤ s ·
N∑
j=1

min
vk

Ri
∈Gj

i

H(Gji , v
j−1
Ri

, vkRi
) · (dlog(N − j+1)e+1)

≤ s · (dlog(N !)e+Ni) · max
1≤i≤s

min
vTj
∈V Ri

T

H(Gi, v0
Ri
, vTj

).

Hence, the makespan of the Greedy manger with a LAC
protocol satisfies:

makespan(Greedy, LAC) ≤ I(Greedy, LAC)+
s∑
i=1

Ni∑
k=1

k·τk

+s · (dlog(N !)e+N) · max
1≤i≤s

min
vTj
∈V Ri

T

H(Gi, v0
Ri
, vTj

).

The theorem follows.

Remarks: Theorem 6 generalizes the performance of
makespan of (Greedy,LAC). In order to lower this upper
bound as much as possible, we need to design a LAC proto-
col with Stretch(LAC) ≤ s logN . In this case, the com-
petitive ratio for (Greedy, LAC) is O(N logN · s). Com-
pared with the O(s) bound for multiprocessors, we con-
clude that the competitive ratio of makespan of the Greedy
manager degraded for distributed systems. As we stated in
Section 4, the penalty of overtaking failures is the main rea-
son for the performance degradation.

6. Conclusion and Open Questions

Compared with transactional memory systems for mul-
tiprocessors, the design of such systems for distributed sys-
tems is more challenging because of cache-coherence pro-
tocols and the underlying (higher) network latencies in-
volved. We investigate how the combination of contention
managers and cache-coherence protocols affect the perfor-
mance of distributed transactional memory systems. We
show that the performance of a distributed transactional
memory system with a metric-space network is far from
optimal, under the Greedy contention manager and an ar-
bitrary cache-coherence protocol due to the characteristics
of the network topology. Hence, we propose a location-
aware property for cache-coherence protocols to take into
account the relative positions of nodes in the network. We
show that the combination of the Greedy contention man-
ager and an efficient LAC protocol yields a better worst-
case competitive ratio for a set of transactions. This results
of the paper thus facilitate the following strategy for de-
signing distributed transactional memory systems: select a
contention manager and determine its performance without
considering cache-coherence protocols; then find an appro-
priate cache-coherence protocol to improve performance.

Many open problems are worth further exploration. We
do not know if there exists other combinations of contention
managers and cache-coherence protocols that provide sim-
ilar or better performance. For example, is there any other
property of cache-coherence protocols that can improve the
performance of the Greedy manager? Are there other con-
tention managers that can provide a better performance with
LAC protocols? What principles can be used by designers
(of distributed transactional memory systems) to make such
choices? These open problems are very interesting and im-
portant for the design of distributed transactional memory
systems.

References

[1] H. Attiya, L. Epstein, H. Shachnai, and T. Tamir. Transac-
tional contention management as a non-clairvoyant schedul-
ing problem. In PODC ’06: Proceedings of the twenty-fifth

annual ACM symposium on Principles of distributed com-
puting, pages 308–315, 2006.

[2] R. L. Boccino, V. S. Adve, and B. L. Chamberlain. Software
transactional memory for large scale clusters. In PPoPP’08,
pages 247–258, 2008.

[3] M. R. Garey and R. L. Graham. Bounds for multiproces-
sor scheduling with resource constraints. SIAM Journal on
Computing, 4(2):187–200, 1975.

[4] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory
of transactional contention managers. In PODC ’05: Pro-
ceedings of the twenty-fourth annual ACM symposium on
Principles of distributed computing, pages 258–264, 2005.

[5] L. Hammond, V. Wong, M. Chen, B. Hertzberg, B. D. Carl-
strom, J. D. Davis, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional memory coherence and con-
sistency. In Proceedings of the 31st Annual International
Symposium on Computer Architecture, June 2004.

[6] T. Harris and K. Fraser. Language support for lightweighted
transactions. In Proceedings of the 18th ACM SIG-
PLAN Conference on Object-oriented Programming, Sys-
tems, Languages, and Applications, pages 388–402, 2003.

[7] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-
free synchronization: Double-ended queues as an exam-
ple. In Proceedings of the 23rd International Conference on
Distributed Computing Systems (ICDCS), pages 522–529,
2003.

[8] M. Herlihy, V. Luchangco, M. Moir, and I. William
N. Scherer. Software transactional memory for dynamic-
sized data structures. In PODC ’03: Proceedings of
the twenty-second annual symposium on Principles of dis-
tributed computing, pages 92–101, 2003.

[9] M. Herlihy and J. E. B. Moss. Transactional memory: Archi-
tectural support for lock-free data structures. In Proceedings
of the 20th Annual International Symposium on Computer
Architecture, 1993.

[10] M. Herlihy and Y. Sun. Distributed transactional memory for
metric-space networks. Distributed Computing, 20(3):195–
208, 2007.

[11] J.A.Hoogeveen. Analysis of christofides’ heuristic: some
paths are more difficult than cycles. Operations Research
Letters, 10:291–291, 1991.

[12] T. F. Knight. An architecture for most functional languages.
In Proceedings of ACM Lisp and Functional Programming
Conference, pages 500–519, August 1986.

[13] F. Lam and A. Newman. Traveling salesman path problems.
Math. Program., 113(1), 2008.

[14] K. Manassiev, M. Mihailescu, and C. Amza. Exploiting dis-
tributed version concurrency in a transactional memory clus-
ter. In PPoPP’06, pages 198–208, March 2006.

[15] D. J. Rosenkrantz, R. E. Stearns, P. M. Lewis, and II. An
analysis of several heuristics for the traveling salesman prob-
lem. SIAM Journal on Computing, 6(3):563–581, 1977.

[16] N. Shavit and D. Touitou. Software transactional memory.
In Proceedings of the 22nd Annual Symposium on Principles
of Ditributed Computing (PODC), pages 204–213, 1995.

[17] I. William N. Scherer and M. L. Scott. Advanced contention
management for dynamic software transactional memory. In
PODC ’05: Proceedings of the twenty-fourth annual ACM
symposium on Principles of distributed computing, pages
240–248, 2005.

