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Abstract

We consider the problem of recovering from failures of distributable threads with assured timeliness.

When a node hosting a portion of a distributable thread fails, it causes orphans — i.e., segments of

distributable threads that are disconnected from the thread’s root. We consider a termination model

for recovering from such failures, where the orphans must be detected and aborted, resources held by

them must be released and rolled back to safe states, and exceptions must be delivered to farthest,

contiguous surviving thread segment from where execution can be resumed. Since distributable threads

are subject to time constraints in real-time distributed systems, such recovery must be conducted with

assured timeliness. Toward this, we present 1) a real-time scheduling algorithm called AUA, and 2)

a distributable thread integrity protocol called TP-TR. We show that AUA and TP-TR bound the

orphan cleanup and recovery time (thereby bounding thread starvation durations), maximize total thread

accrued timeliness utility, and satisfy thread mutual exclusion constraints. We implement AUA and TP-

TR in a real-time middleware that supports distributable threads. Our experimental studies with the

implementation validate the algorithm/protocol’s time-bounded recovery property and confirm their

effectiveness.

Index Terms

distributable thread, thread maintenance and recovery, time/utility function, utility accrual schedul-

ing
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I. Introduction

Many distributed systems are most naturally reasoned about in terms of asynchronous concurrent

sequential flows of execution within and among objects. The distributable thread programming model

supported in OMG’s recent Real-Time CORBA 1.2 standard (abbreviated here as RTC2) [1] and Sun’s

upcoming Distributed Real-Time Specification for Java (DRTSJ) standard [2] directly provides that as a

first-class abstraction. Distributable threads first appeared in the Alpha OS [3], [4] and later in Alpha’s

descendant, the MK7.3 OS [5].

A distributable thread is a single thread of execution with a globally unique identifier that transpar-

ently extends and retracts through local and remote objects. Thus, a distributable thread is an end-to-end

control flow abstraction, with a logically distinct locus of control flow movement within/among objects

and nodes. In the rest of the paper, we will refer to distributable threads as threads except as necessary

for clarity.
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Fig. 1. Distributable Threads

A thread carries its execution context as it transits node

boundaries, including its scheduling parameters (e.g., time

constraints, execution time), identity, and security creden-

tials. Hence, threads require that Real-Time CORBA’s

Client Propagated model be used, not the Server Declared

model. The propagated thread context is used by node

schedulers for resolving all node-local resource contention

among threads such as that for node’s physical (e.g., CPU,

I/O) and logical (e.g., locks) resources, and for scheduling

threads to optimize system-wide timeliness. Thus, threads

constitute the abstraction for concurrency and scheduling.

Figure 1 cited from [1] shows the execution of threads.

The Real-Time CORBA specification envisions four distributed scheduling ’cases’, summarized in

Table I. This paper explicitly supports distributed scheduling schemes corresponding to Case 1 (in the

case of local use of the AUA protocol) and Case 2 (for distributed threads). While the Real-Time

CORBA specification does not address thread integrity concerns in any detail, it might be argued that

the TP-TR protocol discussed in this paper amounts to a form of distributed resource management

(specifically in the presence of partial failures) properly classified under Case 3 or 4.

Experience with OSes and middleware that directly provide the thread abstraction show that the ab-

straction can reduce application development and maintenance costs. This is in contrast with situations
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Case 1) Scheduling decisions take place independently on each node.

Case 2) Scheduling decisions take place independently on each node, subject to time

constraints which propagate between nodes with application activities.

Case 3) Scheduling decisions are made by a distributed scheduling algorithm with in-

stances on each node. Local scheduler instances collaborate to achieve or approx-

imate global optimality.

Case 4) Scheduling is hierarchical, with higher-level schedulers above case 1 or 2 instances

which seek to improve resource allocation decisions with some global knowledge.

TABLE I

Real-Time CORBA Distributed Scheduling Cases [1, Section 3.8]

where a similar trans-node, control flow abstraction has to be emulated using lower level abstractions such

as RPC’s/RMI’s, OS threads, locks, etc., and end-to-end properties of the flows have to be maintained

such as assuring satisfaction of end-to-end time constraints, ensuring flow integrity through distributed

node and link failure detection and recovery, and ensuring system safety through distributed deadlock

detection and recovery.

A. Dynamic Systems and TUF/UA Scheduling

In this paper, we focus on real-time distributed systems that operate in environments with dynami-

cally uncertain properties. These uncertainties include transient and sustained resource overloads (due

to context-dependent, activity execution times), arbitrary arrival patterns for application activities,

and arbitrary node/link failure occurrences. Nevertheless, such systems’ desire the strongest possible

assurances on activity timeliness behavior. Another important distinguishing feature of most of these

systems is their relatively long activity execution time magnitudes, compared to those of conventional

real-time subsystems—e.g., in the order of milliseconds to minutes. Some examples of such dynamic

systems that motivate our work (from the defense domain) include phased array radars [6]), surveillance

aircrafts [7]–[9]), and network-centric warfare [10], [11]).

An activity’s urgency is typically orthogonal to its relative importance—-e.g., the most urgent activity

can be the least important, and vice versa; the most urgent can be the most important, and vice versa.

Hence when resource overloads occur, completing the most important activities irrespective of activity

urgency is often desirable. Thus, a clear distinction has to be made between urgency and importance,

during overloads. During under-loads, such a distinction is not necessary, because deadline-scheduling

algorithms can meet all deadlines [12].
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Deadlines by themselves cannot express both urgency and impor-

tance. Thus, we consider the abstraction of time/utility functions (or

TUFs) [13] that express the utility of completing an application activity

as a function of that activity’s completion time. We specify deadline as a

binary-valued, downward“step” shaped TUF; Figure 2 shows examples.

Note that a TUF decouples importance and urgency—i.e., urgency is

measured as a deadline on the X-axis, and importance is denoted by utility on the Y-axis.

When time constraints are expressed with TUFs, the scheduling optimality criteria are typically to

maximize the accrued activity utility—e.g., maximizing the sum of the activities’ attained utilities. Such

criteria are called Utility Accrual (UA) criteria, and sequencing (scheduling, dispatching) algorithms

that optimize UA criteria are called UA sequencing algorithms (see algorithms in [14]). RTC2 has IDL

interfaces for the UA scheduling discipline, besides others.

UA criteria directly facilitate adaptive behavior during resource overloads, when (optimally or sub-

optimally) completing activities that are more important than those which are more urgent is often

desirable. For example, UA algorithms that maximize summed utility typically meet all activity dead-

lines when sufficient CPU time is available for doing so [15]–[17]. Further, when overloads occur, such

algorithms favor activities that are more important (from whom greater utility can be accrued) than

those which are more urgent.

B. Our Contributions: Time-Bounded Thread Maintenance and Recovery

When nodes transited by distributable threads fail, this can cause threads that span the nodes to

break by dividing them into several pieces. Segments of a thread that are disconnected from its node

of origin (called the thread’s root), are called orphans. For providing the abstraction of a continuous

reliable thread, orphan segments of the thread must be detected and aborted, resources held by them

must be released and rolled back to safe states, and a failure exception must be delivered to the farthest

execution point of the surviving portion of the thread — i.e., the farthest contiguous thread segment

from the thread’s root. We focus on such a termination exception handling model as that is consistent

with most concurrent programming paradigms (e.g., Ada, Java).1

When threads are subject to time constraints, orphan cleanup and removal must be done in a timely

manner. For example, cleanup and removal of orphans of a failed low-urgent/important thread must

1Under a continuation model, the orphan segments are simply allowed to continue execution. A discussion of termination

versus continuation models is beyond the scope of this paper.
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cause as minimum interference to high-urgent/important threads as possible. On the other hand, if or-

phans of a failed low-urgent/important thread hold resources which are blocking high-urgent/important

threads, then the cleanup activity must have execution eligibility that reflect the urgency/importance of

the blocked threads. Furthermore, once a failure occurs, the time interval between detection of the thread

failure and notification of the failure exception to the farthest, contiguous surviving thread segment must

be bounded. If this time interval is unbounded, it can potentially cause starvation—e.g., threads blocked

on resources held by orphans can never be unblocked since those orphans are never cleaned-up. Thread

breaks are countered and thread integrity is maintained through thread integrity protocols.

In this paper, we present a UA scheduling algorithm Abort-assured Utility Accrual scheduling algorithm

(or AUA), and a thread integrity protocol called Thread Polling with Time-bounded Recovery (or TP-

TR) that achieve these objectives. The algorithm and the protocol consider a programming model, where

real-time application activities are programmed using distributable threads that are subject to (end-to-

end) time constraints specified using TUFs. Activities may arrive at arbitrary times, thus arbitrarily

spawning threads. Threads may span nodes that are subject to arbitrary crash failures. Upon arrival at

a node, threads are assumed to present execution time estimates of normal and abort code (or exception

handler code) segments of the thread at that node to the node scheduler.

While execution time estimates of normal code can be violated at run-time (e.g., due to context

dependence), causing overloads, that of abort code cannot be, as they are assumed to be non-context-

dependent and relatively short (compared with normal code). Threads may share non-CPU resources

that are subject to mutual exclusion constraints.

For such an application and system model, the algorithm/protocol objective is to maximize the total

thread accrued utility and bound orphan cleanup and recovery time, while satisfying mutual exclusion

constraints. We show that AUA achieves optimal total accrued utility during (the special case of) under-

loads and no failures, and maximizes total utility during overloads and failures. We establish that the

algorithm in conjunction with TP-TR, always bound cleanup and recovery times (bounding thread

starvation), and respect mutual exclusion. Further, we implement AUA and TP-TR in an RTC2-like real-

time middleware and conduct experimental studies. Our initial measurements from the implementation

validate AUA/TP-TR’s properties and confirm their effectiveness.

Like UA algorithms, thread integrity protocols have been developed in the past—e.g., Alpha’s Thread

Polling protocol [18], [19], the Node Alive protocol [20], and their adaptive versions [20]. However, to the

best of our knowledge, no combination of UA algorithm and thread integrity protocol exist that provide

end-to-end time-bounded cleanup and recovery, which is precisely what our work does. Thus, the paper’s

central contribution is the AUA algorithm and the TP-TR protocol that provide time-bounded cleanup
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and recovery.

The rest of the paper is organized as follows: In Section II, we discuss the models of our work and

state the algorithm/protocol objectives. Section III presents the AUA algorithm, and section IV presents

the TP-TR protocol. In Section V, we discuss our implementation experience. We conclude the paper

and identify future work in Section VI.

II. Models and Algorithm/Protocol Objectives

Hybrid approach has been explored in other contexts, for example by Nagy and Bestavros in the

context of soft-deadline transactions. [21]

A. Distributable Thread Abstraction

We consider RTC2/DRTSJ’s distributable threads as our programming and scheduling abstraction.

Details of this model can be found in [1]; here we summarize and provide an overview.

Distributable threads execute in local and remote objects by location-independent invocations and

returns. A distributable thread begins its execution by invoking an object operation. The object and the

operation are specified when the thread is created. The portion of a thread executing an object operation

is called a thread segment. Thus, a thread can be viewed as being composed of a concatenation of thread

segments.

A thread’s initial segment is called its root and its most recent segment is called its head. The head

of a thread is the only segment that is active. A thread can also be viewed as being composed of a

sequence of sections, where a section is a maximal length sequence of contiguous thread segments on a

node. The first segment in the section results from an invocation from another node and the last segment

in the section performs a remote invocation. Figure 3 cited from [20] illustrates threads, sections, and

segments.

The application is thus comprised of a set of threads, denoted T = {Tk : 1 ≤ k ≤ n}.

We specify the time constraint of each thread using a TUF. The TUF of a thread Ti is denoted as Ui ().

Thus, thread Ti’s completion at a time t will yield an utility Ui (t). Though TUFs can take arbitrary

shapes, here we focus on step-shaped functions as shown in Figure 2.

Each TUF Ui has an initial time Ii and a termination time Xi. Initial time is the earliest time for which

the function is defined, while termination time denotes the last point that a TUF crosses the x-axis. For

a step downward TUF, the critical time is its discontinuity point. We assume that Ui (t) > 0,∀t ∈ [Ii,Xi]

and Ui (t) = 0,∀t /∈ [Ii,Xi] , i ∈ [1, n].
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Fig. 3. Distributable Threads, Segments, and Sections

B. System and Failure Models

We consider a system model, where a set of processing components, generically referred to as nodes,

are interconnected via a network. Each node executes thread segments. The order of executing segments

on a node is determined by the scheduler residing at the node. We consider RTC2’s Case 2 approach [1]

for thread scheduling. According to this approach, node schedulers use the propagated thread scheduling

parameters and independently schedule thread segments on respective nodes to optimize the system-wide

timeliness optimality criterion. Thus, scheduling decisions made by a node scheduler are independent

of other node schedulers. Though this results in approximate, global, system-wide timeliness, RTC2

supports the approach, due to its simplicity and capability for coherent end-to-end scheduling. The

approach’s effectiveness is illustrated in Alpha OS [4] and Tempus middleware [22].2

We consider a Local Area Network model (e.g., a single broadcast domain), where nodes are inter-

connected through a switch. We presume the existence of a reliable message transport with worst case

message delivery latency D. Not all aspects of the protocol require reliable messaging. Message packets

that are generated when threads invoke remote object operations, will contend for the network links.

Such contentions must be resolved and packets must be scheduled on network links using a packet

scheduling algorithm. We do not consider any particular algorithm for scheduling packets; AUA and

TP-TR are independent of any such algorithm.

We denote the set of nodes as Pi ∈ P, i ∈ [1,m]. We assume that all node clocks are synchronized

2RTC2 also describes Cases 1, 3, and 4, which describe non real-time, global and multilevel distributed scheduling,

respectively [1]. However, RTC2 does not support Cases 3 and 4.
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using a protocol such as [23]. We consider an arbitrary, crash failure model for the nodes—i.e., any node

can fail at any time and when it does so, it simply halts.

III. The AUA Algorithm

A. Rationale

In order to attain bounded recovery time for distributed threads, it is necessary to have a scheduling

algorithm which guarantees a bound on the time required by each orphaned distributed thread section

to detect and conduct cleanup operations. Without this guarantee, it would be possible for a broken

thread to leave the system in an unsafe state. In particular, it would be possible for a single distributed

thread to have multiple, uncoordinated points of execution for an unbounded amount of time. In order

to facilitate this guarantee, we have developed the AUA scheduling algorithm, described below.

The AUA scheduling algorithm is a hybrid approach, providing traditional hard real-time guarantees

for the execution of those blocks of code designated as cleanup handlers. As such, traditional hard

real-time analysis techniques may be applied to this (typically small) subset of the application code. In

particular, these guarantees are exploited by the TP-TR thread integrity protocol presented in Section

IV.

For the remainder of the application code, the AUA scheduling algorithm provides best-effort utility

accrual scheduling similar to that presented extensively in the literature. AUA traces its lineage to the

DASA scheduling algorithm introduced by Clark [24], and is equivalent to DASA if no abort handlers

are introduced.

B. Algorithm Overview

When a thread segment/handler pair is introduced to the system, the scheduler first checks to see if the

handler’s execution can be guaranteed. If not, the thread segment/handler pair is rejected and no new

schedule is created. If a new handler is accepted, its last-chance time (LCT) to commence execution

is calculated by subtracting its WCET from its deadline, allowing the scheduler to plan for the last

moment at which the abort handler can be guaranteed to execute to completion.

At a scheduling event, all handlers are first inserted into an EDF-ordered schedule. Only after it

has been verified that each thread segment’s abort handler is feasible does AUA proceed to the best-

effort optimization step. Thread segments are inserted into this schedule using the DASA algorithm,

considering thread segments in decreasing order of their value density, and inserting them into a deadline-

ordered schedule if they are feasible. Once the schedule is created, the first entity (either task or handler)

in the schedule is chosen for execution.
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Observation AUA-1: If no abort handlers are submitted to the schedule, AUA is identical to DASA.

Consequently, the properties guaranteed by DASA in underload hold. In particular, AUA is equivalent

to the known-optimal Earliest Deadline First (EDF) scheduling discipline if there are no abort handlers

and the system is in underload. This useful property is borne out in our experiments below.

When a handler’s LCT arrives without the handler’s task having completed, the scheduler auto-

matically wakes up and schedules the handler, thus guaranteeing that the handler is completed by its

deadline.

Scheduling events in AUA include the arrival of a thread/handler pair, the completion of a thread, the

completion of a handler, a resource request, a resource release, and the arrival of a handler’s last-chance

time (LCT). For clarity, we present only those events which directly impinge on AUA’s performance.

See [22] for a thorough description of resource request/grant event processing in the Metascheduler.

In order to describe AUA, we introduce the notation given in Table II. A high-level description of the

AUA scheduling algorithm is presented in Algorithm 1, which we discuss below.

When the algorithm is invoked at time tcur, it first computes a deadline ordered schedule of all the

abortion handlers accepted into the system. Then, depending on the scheduling event, it will do one of

three things: attempt to add a handler to the system, remove a handler from the system, or schedule

the handler with the earliest deadline for execution. The scheduling events associated with each action

are stated in Algorithm 1.

The setLCT() function sets a timer that will wake the scheduler when the next LCT arrives. The

dependencies and value density (VD) of each thread are then calculated using getDep() and computeVD(),

respectively. The function sortByVD() then uses the value density to create a list of all the threads in

the system sorted in non-increasing order by VD. AUA goes through this list in order and attempts

to insert each thread into a feasible, deadline ordered list using procedure insertByEDF(). Finally, AUA

returns the thread Texe, which is the task within the feasible schedule with the earliest deadline.
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Tr current set of unscheduled threads accepted into the system.

Tc current set of handlers accepted into the system.

Trnew new thread arriving in the scheduling event

Tcnew new handler arriving in the scheduling event

Ti.DL the thread’s deadline for Ti ∈ Tr

Ti.ExecTime the thread’s remaining execution time

Ti.Value potential utility gained the if the thread completes before its deadline

Ti.Dep The task that Ti is dependent on

σ the current ordered schedule

σ(i) denotes the thread occupying the ith position in the schedule σ

reqResource(Ti) returns the resource requested by Ti

owner(R) returns the thread that is currently holding resource R

headOf(σ) returns the first thread in schedule σ

sortByVD(σ) returns a new schedule sorted by non-increasing value density (VD)

insert(T, σ, i) inserts thread T in the ordered list σ at the position indicated by index i; if there

are already entries with the index i, T is inserted before them. After insertion,

the index of T in σ is i

remove(T, σ) removes T from the ordered list σ. If T is not in σ no action is taken.

feasible(σ) returns a boolean value indicating schedule σ’s feasibility. For σ to be feasible,

the predicted completion time of each thread in σ must never exceed its deadline.

setLCT(t) sets a timer to wake up the scheduler at time t

copySchedule(σ) makes a copy of schedule σ

TABLE II

Variables and Operations used in AUA

Algorithm 1: AUA Algorithm

Data: Tr, Tc, event
Result: selected thread to execute, Texe

t ← Tcur ;1

σ ← ∅ ;2

for Ti ∈ Tc do σ ← insertByEDF(Ti, σ) ;3

switch event do4

case removing handler Tcrem /* resource release or task completion */5

remove(Tcrem, σ) ;6

Tc ← Tc − Tcrem ;7

case adding handler Tcnew /* resource request or task arrival */8

σcopy ← insertByEDF(Tcnew, σ) ;9

if feasible(σcopy) then10

Tc ← Tc ∪ Tcnew ;11

Tcnew.LCT ← Tcnew.DL- Tcnew.ExecT ime ;12

σ ← σcopy ;13

end14

case LCT /* LCT timeout */15

Texe ← headOf(σ);16

return Texe17

18

end19

Thandler ← headOf(σ);20

setLCT(Thandler.LCT);21

for Ti ∈ Tr do22

;
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The computeVD function sums the values of a thread and its dependencies. The function then divides

the sum of values by the sum of execution times for a thread and its dependencies. This yields the

aggregate value density the system can expect from executing the thread and all threads upon which it

depends. The getDep function returns the thread that holds the resource that Ti is requesting.

The insertByEDF function inserts a task and its dependencies into a deadline ordered list. Initially,

the function makes a copy of the schedule and inserts the new thread, Ti, into the schedule copy.

The dependency chain is then iterated through and each dependency’s deadline is tightened before the

dependency is added to the schedule copy. The function returns the copy of the schedule without making

any changes to the original.

C. Metascheduler Threads

Ready Running

Terminal

Exit

resume_task

preempt_task

Normal

Abort

abort_task

BLOCK 

UNPAUSE

BLOCK 

PAUSE

UNBLOCK 

PAUSE

Blocking call

Pause

Msg

Unpause

Msg

Return from

Blocking call

Pause

Msg
Unpause

Msg

Pause

Msg

NEW_HEAD

Msg

Fig. 4. Thread Scheduling States

The Metascheduler framework used to implement

the AUA algorithm enforces scheduling state con-

sistency on all threads in the system. The AUA

algorithm is not directly aware of the distributable

thread abstraction, however the primitive blocking,

pausing, and abort states are sufficient to construct

the DT abstraction in middleware. As a conse-

quence, AUA may be used to schedule local-only

threads without incurring any overhead associated

with DTs.

In Figure 4, we present the various scheduling states supporting the distribution middleware. When a

thread enters a PAUSE or BLOCK state, the scheduler is able to resolve resource contention and depen-

dencies while respecting local mutual exclusion invariants. Furthermore, the PAUSE state is explicitly

governed to allow coordinated control of all segments of a distributable thread.

IV. The TP-TR Protocol

A. Overview

The TP-TR TMAR protocol is an extension of the Alpha TMAR protocol described in [20]. The

TP-TR protocol is instantiated in a software component called the Thread Integrity Manager (TIM).

Every node which hosts distributable threads has a TIM component, which continually runs TP-TR’s

three-phase polling operation.
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The TP-TR specifies unique behaviors for nodes hosting the root segment of a DT. The TIM on each

node is responsible for maintaining the health and coordinating any cleanup required for DTs rooted

there. Downstream segments, then, manage their health by responding to health update information

sent by the root. If health information fails to arrive for a given amount of time, the segment deems

itself an orphan and commences autonomous cleanup. Once this occurs, the thread segment is effectively

disconnected from the remainder of the thread’s call-graph, and control is returned to application code

in the context of an exceptional cleanup handler.

The operations of the TIM are considered to be administrative operations, and they are conducted

with scheduling eligibility that exceeds all application threads. As a consequence, we ignore the (com-

paratively small, and bounded) processing delays on each node in the analysis below.

In the exposition below we provide informal observations of the protocol’s timeliness properties. For

clarity and brevity, we have not included the full proofs.

B. Thread Polling

In the first phase, the root node of a given distributed thread (DT) regularly broadcasts an ROOT ANNOUNCE

message to all nodes within the system. The ROOT ANNOUNCE message is sent every Tp, or polling

interval. Figure 5 illustrates the polling process for a healthy thread.

ROOT
 SEGMENT1
 SEGMENT2
 SEGMENT3


ROOT_ANNOUNCE


ROOT_ANNOUNCE


SEG_ACK

SEG_ACK


SEG_ACK
 Worst-Case

Message Delay 
 D


SEG_HEALTH


SEG_HEALTH


SEG_HEALTH


Polling

Interval T
 p


Health Evaluation

Interval T


h


Fig. 5. TP-TR Operation — Healthy Thread

Observation TP-TR1: Every healthy segment of a healthy thread will receive the ROOT ANNOUNCE
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message at an interval not exceeding Tp +D. If the segment does not receive this message in that interval,

either the root node has failed or the segment has become disconnected. The segment is thus orphaned.

In the second phase, all nodes that are hosting segments of that given DT respond to the ROOT ANNOUNCE

with a segment acknowledgment (SEG ACK) message.

Observation TP-TR2: The root node will receive a SEG ACK message from every healthy segment

within a delay of 2D following a ROOT ANNOUNCE broadcast. Thus, the thread health evaluation time

Th may be tuned as a function of the worst case message delay to ensure that no acknowledgment messages

are missed. Furthermore, the worst case latency after which a broken thread will be detected is 2Th.

In the last phase, the root node waits for the health evaluation interval Th to expire before examining

the information it has received from the SEG ACK messages to determine the status of the DT (broken

or unbroken). If the DT is determined to be unbroken, the root sends health update (SEG HEALTH)

messages to all segments of the DT, refreshing them. If there is a break in the DT, the root node refreshes

only segments of the DT deemed healthy, and enters the recovery state to deal with the break.

Observation TP-TR3: Every healthy segment of a healthy thread will have received a SEG HEALTH

message within Th+D of the receipt of any ROOT ANNOUNCE message. Therefore, every healthy segment

of a healthy thread will receive a SEG HEALTH at a maximum interval of Tp + Th + D. Segments may

thus evaluate their health at a constant interval, irrespective of the dynamics of the system.

ROOT
 SEGMENT1
 SEGMENT2
 SEGMENT3


ROOT_ANNOUNCE


ROOT_ANNOUNCE


SEG_ACK

SEG_ACK


SEG_ACK
 Worst-Case

Message Delay 
 D


SEG_HEALTH


SEG_HEALTH


SEG_HEALTH


Polling

Interval T
 p


Health Evaluation

Interval T


h


Fig. 6. TP-TR Operation — Unhealthy Thread Entering Recovery
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C. Recovery

Recovery coordinated by TP-TR is considered to be an administrative function, and carries on

below the level of application scheduling. While recovery proceeds, the thread-polling activities continue

concurrently. This allows the protocol to recognize and deal with multiple simultaneous breaks, and even

simultaneous cleanup operations.

Update 

Graph
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Compute 

Health

Wait

ROOT_ANNOUNCE 

Message Sent Announce timeout

Graph updated

SEG_ACK 

Message 

Received

SEG_HEALTH 

Message Sent

Health 

timeout

Unpausing

Paused

Notify New 

Head

Healthy

Remove 

Old head

Pausing

Unhealthy 

Event /

PAUSE msg 

sent

PAUSE_ACK 

Received

NON-HEAD 

msg sent

Receive 

NON-HEAD 

ACK

NEW_HEAD 

msg sent

UNPAUSE 

sent

PAUSE_ACK 

timeout

No break

Fig. 7. High-level State Diagram – Root Segment

Recovery from a thread break proceeds through

four steps:

1) Pausing the thread and waiting for pause ac-

knowledgment,

2) Determining which segment will be the new

head,

3) Notifying the new head segment that it may

continue to execute, and

4) Unpausing the distributed thread.

Figure 7 (on the right-hand side) illustrates the

states experienced by an individual thread from the standpoint of its root segment. In the first step, the

recovery operation broadcasts a PAUSE message and waits. The recovery thread continues waiting until

it either receives a PAUSE ACK message from the current head of the thread or a user-specified amount

of time lapses without a PAUSE ACK message being received. In the second step, the recovery operation

analyzes the thread’s distributed call-graph and finds the farthest contiguous thread segment from the

root. This segment will be the new head. If the old head still exists after this step, the recovery thread

must terminate the old head and wait for an acknowledgement that this action has been completed. In

the third step, the recovery thread sends a NEW HEAD message to the node hosting the new head. In

the fourth step, the recovery thread broadcasts an UNPAUSE message to all nodes within the system.

The recovery operation then terminates, and the thread is considered healthy.

Observation TP-TR4: Based on Observation TP-TR3 above, the root node will identify a broken thread

within 2Th, will pause the DT within 2D, and will select and activate a new head within 2D. Therefore,

the worst case latency from detecting a failure and identifying a new head is 2Th + 4D.

From here, the point of execution is return to application code at the new head at the point of remote

invocation. An error code is returned to indicate that a thread integrity failure has occurred, and it is

the responsibility of the application programmer to decide what should be done to proceed.
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D. Orphan Cleanup

When a segment has not been refreshed for a specified amount of time it is flagged as an orphan

and removed during orphan cleanup, which is performed periodically on all nodes within the system.

Orphan cleanup is considered an administrative function, and occurs outside the context of application

scheduling. The integrity manager determines which locally hosted segments, if any, are orphans. The

manager then schedules the respective cleanup code to be run for each orphan. Orphan cleanup serves

both to remove segments that follow a break in the DT (called thread trimming) and to remove the

entirety of threads that have lost their root.

Observation TP-TR5: If every segment of every thread is scheduling using the AUA scheduling dis-

cipline, their recovery times are bounded by the assured execution time in each of their abort handlers.

By observation TP-TR3, every unhealthy segment will detect that it is an orphan and clean up within

Th + D + Tc, where Tc is the worst case completion time of the segment’s cleanup handler.

V. Implementation Experience

A. Implementation in Tempus

The AUA scheduling algorithm and TP-TR thread integrity protocol were implemented in a custom

distributed middleware environment developed in Virginia Tech’s Real-Time Systems Laboratory. This

environment consists of Tempus [22], an implementation of the distributable threads abstraction in the

C programming language. In addition, a pluggable scheduling framework called the Metascheduler [25]

facilitates the composition of user-defined scheduling policies such as AUA.

B. Experimental Setup

The experiments presented below were performed on a small testbed of Intel Pentium III-based

PC’s running QNX Neutrino 6.2.1. The interconnect consists of commodity 10 megabit/sec interfaces

on a switched Ethernet network. Each machine hosts an instance of the Tempus middleware and

Metascheduler scheduling framework.
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C. Single Node AUA Performance

A number of experiments were carried out to establish the behavior of the AUA scheduling approach

in a single node context. We measured the Accrued Utility Ratio (AUR), Deadline Satisfaction Ratio

(DSR), and Deadline Miss Load (DML) produced by our implementation under a variety of load and

task structure conditions.
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Fig. 9. Deadline Satisfaction Ratio

The DSR metric is convenient for comparison to traditional deadline-driven scheduling approaches.

As with our AUR measurements, we conducted experiments to profile deadline satisfaction over a range

of load conditions. On the horizontal axis, the offered application task load is ramped from zero to

200% of available CPU capacity. Up to a certain load — when the system is “underloaded” — every

deadline is satisfied. As the load increases beyond the “deadline miss load” (presented in detail below),

an increasing number of tasks fail to complete by their deadlines.
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The AUR is a direct measurement of the“value”delivered to the application tasks. The data presented

in Figure 10 illustrates the accrued utility as the offered load on the scheduler is elevated between 0%

and 200%. As we have argued above, AUA delivers a 1.0 accrued utility ratio — it satisfies the deadline

of all tasks, irrespective of their utility — when operating in underload. This data bears out the claim

that AUA is equivalent to DASA, and hence EDF, in underloads.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 80  85  90  95  100  105  110

R
at

io
 o

f A
pp

lic
at

io
n 

T
as

k 
M

is
se

d 
D

ea
dl

in
es

Application Task Offered Load

Deadline Satisfaction Ratio (DSR)

Abort:Normal Execution Time
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Fig. 11. Deadline Satisfaction Ratio (detail)

Upon closer inspection (see Figure 11), it can be seen that the highest load at which AUA misses no

deadlines is a function of the currently accepted load of abort handlers. Intuitively, this is the correct

behavior since AUA effectively reserves schedule to ensure that cleanup handlers are feasible in the

presence of any offered application load. The data show that AUA is nevertheless able to degrade

gracefully as the load increases, continuing to meet significant fractions of the time constraints despite

operating in overload.
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The DML of a scheduler is defined to be the offered load under which the scheduler begins missing

task deadlines. Ideally, the DML would occur at precisely 100% load; the scheduler would never miss a

feasible deadline. Because of implementation-induced overhead such as context switch latency and time

spent in scheduler and operating system code, it is not possible to achieve this theoretical maximum.

Furthermore, the overhead associated with scheduler and OS logic becomes more pronounced as task

time constraints decrease, becoming very pronounced when the task execution times are on the same

order as scheduling latencies. In addition, we show in Figure 12 that the DML is also adversely affected

by the abort load induced by the currently-accepted set of threads. However, the algorithm performs

reasonably well for low abort loads, missing no deadlines at 95% of theoretical capacity, despite a 30%

load for abort reservations.

VI. Conclusions and Future Work

In this paper, we have presented a real-time scheduling algorithm AUA paired with a distributed

thread integrity protocol called TP-TA. Together, the algorithm and the protocol schedule and provide

thread integrity for distributed threads across a system in the Real-Time CORBA Case II model. In

addition, we are able to provide bounds on the worst-case fault detection and cleanup time for threads

experiencing partial failures.

The experimental results presented demonstrate the effectiveness of the AUA scheduling algorithm

scheduling a variety of tasks loads induced by distributed threads in the Tempus middleware environ-

ment. Furthermore, we argue that this suite provides a useful framework for implementing resilient

distributed computational activities in systems subject to partial (crash) failures.

Our work can be extended in several directions. Examples include considering mobile, ad-hoc networks,

relaxing the upper bounds on communication delays, relaxing the requirements for reliable communica-

tion, and richer assurance semantics for abort handlers.
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