
The Case for Intra-Unikernel Isolation
Pierre Olivier1, Antonio Barbalace2, Binoy Ravindran3

1The University of Manchester, 2The University of Edinburgh, 3Virginia Tech
pierre.olivier@manchester.ac.uk, antonio.barbalace@ed.ac.uk, binoy@vt.edu

Abstract
The unikernel is an emerging operating system model offering
lightweightness, security and performance benefits. In this paper
we argue that a fundamental design principle of unikernels, the fact
that one instance is viewed as a single unit of trust, is not suitable
for the high security requirements of today’s cloud applications.
We advocate for the introduction of intra-unikernel isolation. We
observe that some unikernel benefits derive from another funda-
mental design principle: the presence of a single address space.
We investigate bringing intra-unikernel isolation without breaking
that principle with the help of hardware technologies in the form
of modern (Intel Memory Protection Keys) and future (hardware
capabilities) Instruction Set Architecture extensions.

1 Introduction
The unikernel [18] is a new Operating System (OS) model in which
an application and its dependency libraries run alongside a thin
Library Operating System (LibOS) [7] on top of a hypervisor in a
VM. Unikernels are a form of lightweight virtualization and provide
various benefits including attack surface reduction, low resource
usage leading to cost reduction/high consolidation, strong isolation,
as well as improved system performance.

As a result, unikernel application domains are plentiful, encom-
passing cloud- and edge-deployed micro-services/SaaS/ software [2,
14, 19, 27], server applications [14, 17, 18, 27, 38], NFV [5, 18–20],
IoT [5, 6], HPC [16], efficient VM introspection/malware analy-
sis [37], and regular desktop applications [24, 29]. In particular,
unikernels have an important role to play in the upcoming explo-
sion of serverless computing/FaaS [8, 10, 13].

Regarding security, with this OS model one application runs per
VM instance so the isolation between several unikernels (i.e., appli-
cations) running on the same host is considered strong [19], which
is ideal from the cloud provider point of view. However, one of the
fundamental design principles of unikernels is that application and
LibOS code/data share a single and unprotected address space [18]:
there is no isolation within a unikernel instance, which is viewed as a
single unit of trust. This is concerning from the tenant standpoint,
because with all of the current unikernel offers, a component of the
application manipulating sensitive data cannot be isolated from less
trusted components such as third party or memory-unsafe code.
This lack of internal isolation has been noted as one of the main
security issues of unikernels [21].

In this position paper, we advocate for an evolution of this OS
model to support the isolation of software components within a uniker-
nel instance. We observe that several performance benefits of uniker-
nels result from the use of a single address space per instance, en-
abling for example fast context switches or low system call latencies.
Thus, we propose to bring intra-unikernel isolation while keeping
a single address space per VM. We investigate the use of modern
and future security ISA extensions. More specifically, we report

early results about the use of Intel Memory Protection Keys (MPK)
and the associated challenges. We then look at a promising emerg-
ing technology, namely hardware capabilities, and reason about its
application to the problem of intra-unikernel isolation. Because of
the peculiarities of each technology, we expect the related isolation
models to be quite different, in particular regarding isolation granu-
larity. Furthermore, both technologies offer different characteristics
in terms of security guarantees, scalability to high number of pro-
tection domains, as well as programmability/ease of applicability
to existing unikernel codebases. Focusing on these technologies is
motivated by the fact that they allow low-latency security domain
switches within a single address space. Low-latency switches align
with unikernel design principles and objectives. Finally, it is worth
noting that some of the isolation ideas presented here may also
apply to other OS models.

In the rest of this paper, we make the case for intra-unikernel
isolation in Section 2. Next, we discuss the use of Intel MPK as
well as hardware capabilities to implement compartmentalization
in unikernels in Section 3.

2 Advocating for Intra-Unikernel Isolation
There are many situations in which the lack of intra-unikernel
isolation raises serious security concerns. Modern applications are
made of several components/libraries that have various degrees
of trustworthiness (for example third-party vs. own code) and a
variable potential for vulnerabilities (for example a formally verified
cryptography library vs. a user-facing input parser) [1]. Isolating
components within an application is useful from the security point
of view, so as to avoid scenarios in which a subverted vulnerable
component leads to the attacker taking over the entire system,
including other components manipulating sensitive data. To bring
such intra-application isolation, a Trusted Computing Base (TCB)
has to be established to enforce an isolation policy. With current
unikernels, the LibOS cannot play that role as it runs at the same
level of privileges as the user code.

In order to bring intra-application isolation to unikernel environ-
ments, we envision two models for placing the TCB, depicted on
Figure 1. A first model, present on the left side of the picture, has
each application component running in a different VM instance,
placing the TCB in the hypervisor. This is the model obtained when
using for example the KylinX [38] unikernel, implementing support
for fork by spawning a unikernel per process. We believe that this
model conflicts with the lightweightness objectives of unikernels:
indeed, the per-instance memory footprint is multiplied by the
number of application components. Furthermore, this model breaks
the single address space principle and as a consequence switching
between security domains is costly (VMEXIT, EPT switch) and im-
pacts performance. Thus, we advocate for a second model, pictured
on the right of Figure 1. In this model, we establish another layer of
trust on top of the hypervisor, within the unikernel LibOS, which

1



SPMA 2020, April 2020, Heraklion, Greece P. Olivier et al.

HypervisorHypervisor

Entire app.

TCB in hypervisor 
(HV)

This paper:
TCB in LibOS+HV

LibOSLibOS LibOS

TCB
TCB

TCBLibOS

Unikernel (VM) instances

Untrusted app. 
component

Trusted app. 
component

Figure 1: Trust models for isolation in unikernel environ-
ments: in-hypervisor (left) and in-LibOS + in-hypervisor
(right) Trusted Computing Bases (TCBs). The TCB repre-
sents the code we trust to enforce isolation between appli-
cation components.

is now responsible for enforcing isolation within the instance. This
preserves lightweightness and performance with a single instance
and address space per application, but requires isolation between
the application code and the LibOS, i.e., user/kernel separation in
the guest.

A second security issue resulting from the lack of intra-unikernel
isolation appears in unikernels LibOSes written with memory-safe
languages [3, 15, 18, 34]. Although they offer stronger safety guar-
antees compared to LibOSes written in C/C++ [11, 12, 22], they all
include a certain quantity of untrusted code necessary to perform
the low-level operations an OS has to support. It can be either plain
C code [3, 18, 34] or unsafe Rust code [15]. This can negate the
security guarantees that come from using a memory safe language
– an attacker may exploit a bug in an unsafe kernel component
to take over the system. This further motivates the need for intra-
unikernel isolation in the form of safe/unsafe kernel components
separation.

3 Leveraging Modern and Future ISA
Extensions

Unikernels have by design no user/kernel isolation, a deliberate
choice made to cut the switching latency and enable cross kernel-
user compiler optimizations. Therefore, we consider intra-unikernel
isolation solutions that do not involve costly page table or classical
user/supervisor switches. A historical way to provide protection
among a fragmented address space is segmentation. However, it
is unavailable/deprecated in most modern ISAs, including x86-64.
Although there exist other memory protection techniques that may
apply to unikernels, such as Mondrian protection [35], in this paper
we focus on the ones that have real-world implementations or
will have one in a near future. More precisely, we consider two
recent/emerging technologies that satisfy our requirements: Intel
MPK [4] and hardware capabilities [36].

3.1 Intel MPK
Memory Protection Keys is a technology available on recent Intel
processors that allows memory protection between cores sharing
a page table – i.e., within threads sharing a single address space.

2

Page # Key

Virtual
address

space

3 7 8 12 13

2 0

7 1

12 2

Key
Perm.

0
-

1
-

Core 2 (thread 2)

… …

…

…

RW W RW

RW

Key
Perm.

0
RW

1
RO

15
-

Core 1 (thread 1)

…

PKRU register: PKRU:

Page table:

2
RW

Figure 2: Intra-address space isolation with Intel MPK.
PKRU registers and page table entries are setup in order to
give different access permissions to threads 1 and 2 regard-
ing the virtual pages 2, 7 and 12.

Each core (or more precisely, hardware thread) has a register named
PKRU specifying the core’s permission for each of the 16 available
keys. These permissions are read-only, read-write, and no access.
Each page of the address space can be tagged with a specific key
using four bits of the corresponding page table entry. An example of
MPK operation is described on Figure 2, where three protection keys
are used to give different access permission to variousmemory areas
to two threads sharing a single address space. Switching between
protection domains on a core simply corresponds to updating the
PKRU register, which is very fast [30]. Combined with the fact that
it operates within a single address space, this makes MPK a very
compelling technology to provide intra-unikernel isolation.

However, using MPK is not without limitations/challenges. First,
the limited number of memory keys (16) is a problem and although
it can be virtually increased [23], this will be at the cost of a perfor-
mance impact. Second, for performance reasons the PKRU switch
is an unprivileged operation, and isolation schemes must be com-
plemented by static code analysis to validate all PKRU manipula-
tion [30]. Indirect PKRU tampering through techniques such as
Return-Oriented Programming [26] can be mitigated with Address
Space Layout Randomization – an issue in some unikernels sup-
porting only static binaries.

Unikernel Isolation Model. Due to the low number of pro-
tection keys, with MPK we advocate for a coarse-grained intra-
unikernel isolation model. A simple example of such model would
provide isolation between (1) user and kernel space; (2) trusted
and untrusted kernel components; (3) trusted and untrusted user
components. Realising (1) and (2) is a direct responsibility of the
unikernel LibOS developer. (3) falls out of his/her control, however
the LibOS should provide APIs in order to allow the creation of
isolation domains in user space: a possible way to do so would be
an extended version of mprotect).

We recently implemented user/kernel separation as well as safe/
unsafe kernel components isolation [28] in the RustyHermit [15]
unikernel. The work consisted in implementing MPK support for
the LibOS, writing the protection domains switch code, and seg-
regating in memory data that should be shared between domains
from data that should not. For this last task we relied on custom ELF
sections for static data as well as segregated heaps/stacks. Shared
data is marked as such with simple attributes added to the code by
the programmer. Results are encouraging as the isolation scheme

2



The Case for Intra-Unikernel Isolation SPMA 2020, April 2020, Heraklion, Greece

Filesystem
Network

stack

Storage driver Network
driver

Console

...

Application

Core kernel

Application

Component 1 Component 2

Kernel

Syscalls

Application

Component 1 Component 2

Kernel

Syscalls

Subsystem-level isolation System call vertical isolation System call horizontal isolation

Figure 3: Various compartmentalization strategies offered by capabilities’ fine-grain isolation properties: subsystem-level
(left), system call vertical (center) and system call horizontal (right) compartmentalization.

provides security with a very low overhead. In other words, we
are able to maintain unikernel lightweightness properties: system
calls latency is 3x faster compared to Linux, due to the MPK secu-
rity domain switch operation being much faster than a traditional
user/kernel world switch. We also measured an average of 0.6%
slowdown over a set of memory/compute intensive macro bench-
marks compared to a non-isolated unikernel execution.

3.2 Hardware Capabilities
A rather old concept still getting attention today is hardware capabil-
ities. It allows, among other benefits, the compartmentalization [33]
of software at a very fine grain (byte level) in a single address space.
It has been recently implemented by the CHERI project [36] on a
MIPS architecture. CHERI is an extension of legacy ISAs to support
capabilities and is currently ported to ARM [9] as well as RISC-
V [32]. A real-world prototype board from ARM, one of the ISAs
used in the data center [25], is expected for 2021 [9]. Hence, we fore-
see that in the near future hardware capabilities will be available
on multiple CPUs of diverse ISA, some of which used in regular
computers servers/desktop, but also others used as controllers for
devices/smart devices.

OS and compiler code to support hardware capabilities has been
developed before by the projects around CHERI [31], including
support for FreeBSD and LLVM. The overhead reported by these
pioneering projects for using hardware capabilities is very low,
justifying usage atop a paged memory system. Moreover, CHERI
type capabilities come in two main forms, what is called the hybrid
capability and pure capability. Hybrid capabilities are similar to a
segmented memory scheme, this may definitely be used to divide
kernel code from application code as well as different parts of the
kernel or the application between each other, with a low-overhead.
As an alternatively, pure capabilities can be used as well, but they
require compiler support, and memory is accessed via capabilities
that maybe heavy, moreover, pointers are saved as capabilities thus
using double the normal memory space.

Hardware capabilities are a compelling technology to implement
intra-address space isolation for unikernels, but currently, it is not
clear what will be their performance in production.

Unikernel IsolationModel. The benefits of hardware capabil-
ities are the fine-grain level of protection and the potentially infinite
number of security domains. Security domains boundaries can be
set at the function call level while keeping good performance.

The unikernel LibOS could be decomposed in many different
ways. Different isolation strategies are presented on Figure 3. Isola-
tion can be achieved at the subsystem level (left of Figure 3), pro-
viding a micro kernel-like level of security while requiring modest
changes to existing unikernel codebases. Another example would
be to vertically compartmentalize LibOS services invocations made
by untrusting user components (center of Figure 3). Horizontal
compartmentalization can also be used in the kernel to isolate the
different processing steps of untrusted inputs, coming either from
the user (e.g., a file write operation) or from the hardware (e.g., an
incoming network packet), as depicted on the right of Figure 3.

Regarding application code, it can either be legacy (capability-
unaware) code, in which case the kernel should provide a system-
call like API, or wrappers at another level such as the C library, for
automated capability enabling tools to help bring its support for
legacy code. Some applications will also be written with capabilities
in mind. The interface the OS should provide to these can be a set
of object-capabilities representing various system services such as
memory, files, etc [33]. It should be noted that with unikernels the
LibOS and application are compiled together and reside at runtime
within the same address space, this provides the opportunity to
compartmentalize application and OS altogether.

Capabilities should allow for a much more secure and scalable
protection model compared to coarse-grained solutions such as
MPK, however it is likely that these solutions would involve a
significant redesign of existing unikernel codebases. The additional
memory overhead brought by capabilities could also conflict with
the minimal footprint objective of unikernels.

4 Conclusion
The unikernel is a promising OS model, however it lacks an inter-
nal isolation mechanism to offer sufficient security guarantees for
modern applications. We propose and analyze the use of modern
(Intel MPK) and future (hardware capabilities) ISA extensions in
order to provide intra-unikernel isolation while still keeping the
single-address space feature of this OS model so as to maintain
their lightweightness characteristics.

Acknowledgements
This work was supported in part by the US Office of Naval Research
under grants N00014-18-1-2022, N00014-16-1-2104, and N00014-16-
1-2711.

3



SPMA 2020, April 2020, Heraklion, Greece P. Olivier et al.

References
[1] Julian Bangert, Sergey Bratus, Rebecca Shapiro, Michael E. Locasto, Jason Reeves,

Sean W. Smith, and Anna Shubina. 2013. ELFbac: Using the Loader Format for
Intent-Level Semantics and Fine-Grained Protection. Technical Report TR2013-727.
Dartmouth College, Computer Science, Hanover, NH. http://www.cs.dartmouth.
edu/reports/TR2013-727.pdf

[2] Alfred Bratterud, Alf-Andre Walla, Hårek Haugerud, Paal E Engelstad, and Kyrre
Begnum. 2015. IncludeOS: A minimal, resource efficient unikernel for cloud ser-
vices. In Proceedings of the 7th IEEE International Conference on Cloud Computing
Technology and Science (CloudCom 2015). IEEE, 250–257.

[3] Cloudozer LLP. 2017. LING/Erlang on Xen website. http://erlangonxen.org/.
Online, accessed 11/20/2017.

[4] Jonathan Corbet. 2015. Memory protection keys. Linux Weekly News (2015).
https://lwn.net/Articles/643797/.

[5] Vittorio Cozzolino, Aaron Yi Ding, and Jörg Ott. 2017. FADES: Fine-Grained
Edge Offloading with Unikernels. In Proceedings of the Workshop on Hot Topics in
Container Networking and Networked Systems (HotConNet’17). ACM, 36–41.

[6] Bob Duncan, Andreas Happe, and Alfred Bratterud. 2016. Enterprise IoT security
and scalability: how unikernels can improve the status Quo. In IEEE/ACM 9th
International Conference on Utility and Cloud Computing (UUC 2016). IEEE, 292–
297.

[7] Dawson R Engler, M Frans Kaashoek, and James O’Toole Jr. 1995. Exokernel: An
operating system architecture for application-level resource management. ACM
SIGOPS Operating Systems Review 29, 5 (1995), 251–266.

[8] Henrique Fingler, Amogh Akshintala, and Christopher J Rossbach. 2019. USETL:
Unikernels for serverless extract transform and load why should you settle for
less?. In Proceedings of the 10th ACM SIGOPS Asia-Pacific Workshop on Systems.
23–30.

[9] Richard Grisenthwaite. 2019. A Safer Digital Future, By Design. https://www.
arm.com/blogs/blueprint/digital-security-by-design.

[10] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, Joseph Gonzalez, Raluca Popa, Ion Stoica, and David Patterson. 2019.
Cloud Programming Simplified: A Berkeley View on Serverless Computing.

[11] Antti Kantee and Justin Cormack. 2014. Rump Kernels No OS? No Problem!
USENIX; login: magazine (2014).

[12] Avi Kivity, Dor Laor Glauber Costa, and Pekka Enberg. 2014. OS v - Optimizing
the Operating System for Virtual Machines. In Proceedings of the 2014 USENIX
Annual Technical Conference (ATC’14). 61.

[13] Michał Król and Ioannis Psaras. 2017. NFaaS: named function as a service. In
Proceedings of the 4th ACM Conference on Information-Centric Networking. ACM,
134–144.

[14] Simon Kuenzer, Anton Ivanov, Filipe Manco, Jose Mendes, Yuri Volchkov, Flo-
rian Schmidt, Kenichi Yasukata, Michio Honda, and Felipe Huici. 2017. Uniker-
nels Everywhere: The Case for Elastic CDNs. In Proceedings of the 13th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE’17). ACM, 15–29.

[15] Stefan Lankes, Jens Breitbart, and Simon Pickartz. 2019. Exploring Rust for
Unikernel Development. In Proceedings of the 10th Workshop on Programming
Languages and Operating Systems (PLOS’19). ACM, New York, NY, USA, 8–15.
https://doi.org/10.1145/3365137.3365395

[16] Stefan Lankes, Simon Pickartz, and Jens Breitbart. 2016. HermitCore: a unikernel
for extreme scale computing. In Proceedings of the 6th International Workshop on
Runtime and Operating Systems for Supercomputers (ROSS 2016). ACM.

[17] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire,
David Sheets, David J Scott, Richard Mortier, Amir Chaudhry, Balraj Singh, Jon
Ludlam, et al. 2015. Jitsu: Just-In-Time Summoning of Unikernels.. In Proceedings
of the 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’15). 559–573.

[18] A Madhavapeddy, R Mortier, C Rotsos, DJ Scott, B Singh, T Gazagnaire, S Smith,
S Hand, and J Crowcroft. 2013. Unikernels: library operating systems for the
cloud.. In Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’13). ACM,
461–472.

[19] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit
Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM is Lighter
(and Safer) Than Your Container. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP ’17). ACM, New York, NY, USA, 218–233.
https://doi.org/10.1145/3132747.3132763

[20] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,
Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the Art of Network Function
Virtualization. In Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation (NSDI’14). USENIX Association, Berkeley, CA, USA,
459–473. http://dl.acm.org/citation.cfm?id=2616448.2616491

[21] Spencer Michaels and Jeff Dileo. 2019. Assessing Unikernel Security.
[22] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy Ravin-

dran. 2019. A Binary-Compatible Unikernel. In Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE’19).

[23] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019.
libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK). In
2019 USENIX Annual Technical Conference (USENIX ATC19). 241–254.

[24] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and Galen C.
Hunt. 2011. Rethinking the Library OS from the Top Down. In Proceedings of
the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XVI). ACM, New York, NY, USA,
291–304. https://doi.org/10.1145/1950365.1950399

[25] Amazon Web Services. 2019. AWS Graviton Processor. https://aws.amazon.com/
ec2/graviton/.

[26] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-Libc without Function Calls (on the X86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS ’07). Association for
Computing Machinery, New York, NY, USA, 552–561. https://doi.org/10.1145/
1315245.1315313

[27] Giuseppe Siracusano, Roberto Bifulco, Simon Kuenzer, Stefano Salsano,
Nicola Blefari Melazzi, and Felipe Huici. 2016. On the Fly TCP Acceleration
with Miniproxy. In Proceedings of the 2016 Workshop on Hot topics in Middleboxes
and Network Function Virtualization (HotMiddlebox 2016). ACM, 44–49.

[28] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran. 2019. Intra-
Unikernel Isolation with Intel Memory Protection Keys. In Proceedings of the
16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (VEE’20).

[29] Chia-Che Tsai, Kumar SaurabhArora, Nehal Bandi, Bhushan Jain,William Jannen,
Jitin John, Harry A Kalodner, Vrushali Kulkarni, Daniela Oliveira, and Donald E
Porter. 2014. Cooperation and security isolation of library OSes for multi-process
applications. In Proceedings of the Ninth European Conference on Computer Systems
(EuroSys’14). ACM, 9.

[30] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Peter Druschel, and
Deepak Garg. 2019. ERIM: Secure, Efficient In-process Isolation with Memory
Protection Keys. USENIX Security Symposium (2019).

[31] Robert Watson. 2019. CHERI Software Stack. https://www.cl.cam.ac.uk/research/
security/ctsrd/cheri/cheri-software.html.

[32] Robert NMWatson, Peter GNeumann, JonathanWoodruff,Michael Roe, Jonathan
Anderson, John Baldwin, David Chisnall, Brooks Davis, Alexandre Joannou, Ben
Laurie, SimonWMoore, et al. 2017. Capability hardware enhanced risc instructions:
Cheri instruction-set architecture (version 6). Technical Report. University of
Cambridge, Computer Laboratory.

[33] Robert NM Watson, Jonathan Woodruff, Peter G Neumann, Simon W Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, et al. 2015. Cheri: A hybrid capability-system architecture for scalable
software compartmentalization. In 2015 IEEE Symposium on Security and Privacy.
IEEE, 20–37.

[34] Adam Wick. 2012,. The HaLVM: A Simple Platform for Simple Platforms. Xen
Summit.

[35] Emmett Witchel, Josh Cates, and Krste Asanović. 2002. Mondrian memory
protection. In Proceedings of the 10th international conference on Architectural
support for programming languages and operating systems. 304–316.

[36] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G Neumann, Robert Norton,
and Michael Roe. 2014. The CHERI capability model: Revisiting RISC in an age
of risk. In 2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA). IEEE, 457–468.

[37] Xen Website. 2018. Google Summer of Code Project, TinyVMI: Port-
ing LibVMI to Mini-OS. https://blog.xenproject.org/2018/09/05/
tinyvmi-porting-libvmi-to-mini-os-on-xen-project-hypervisor/, Online, ac-
cessed 10/30/2018.

[38] Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang, Huiba Li,
Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen. 2018. KylinX:
A Dynamic Library Operating System for Simplified and Efficient Cloud Virtual-
ization. In Proceedings of the 2018 USENIX Annual Technical Conference.

4

http://www.cs.dartmouth.edu/reports/TR2013-727.pdf
http://www.cs.dartmouth.edu/reports/TR2013-727.pdf
http://erlangonxen.org/
https://lwn.net/Articles/643797/
https://www.arm.com/blogs/blueprint/digital-security-by-design
https://www.arm.com/blogs/blueprint/digital-security-by-design
https://doi.org/10.1145/3365137.3365395
https://doi.org/10.1145/3132747.3132763
http://dl.acm.org/citation.cfm?id=2616448.2616491
https://doi.org/10.1145/1950365.1950399
https://aws.amazon.com/ec2/graviton/
https://aws.amazon.com/ec2/graviton/
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1315245.1315313
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-software.html
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-software.html
https://blog.xenproject.org/2018/09/05/tinyvmi-porting-libvmi-to-mini-os-on-xen-project-hypervisor/
https://blog.xenproject.org/2018/09/05/tinyvmi-porting-libvmi-to-mini-os-on-xen-project-hypervisor/

	Abstract
	1 Introduction
	2 Advocating for Intra-Unikernel Isolation
	3 Leveraging Modern and Future ISA Extensions
	3.1 Intel MPK
	3.2 Hardware Capabilities

	4 Conclusion
	References

