
Brief Announcement: On Scheduling Best-Effort HTM
Transactions

Mohamed Mohamedin
Virginia Tech

Blacksburg, VA
mohamedin@vt.edu

Roberto Palmieri
Virginia Tech

Blacksburg, VA
robertop@vt.edu

Binoy Ravindran
Virginia Tech

Blacksburg, VA
binoy@vt.edu

ABSTRACT
This paper shows the issues to face while designing con-
tention management policies that involve best-effort hard-
ware transactions. Also, in this paper we present Octonauts,
a solution for scheduling HTM transactions without rely-
ing on on-the-fly information. Octonauts learns the objects
accessed by a hardware transaction while running and it
uses them in case of conflict. It also proposes an innovative
scheme for optimizing the communication between transac-
tions running in hardware and software.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.3.3 [Programming Languages]: Language Con-
structs and Features

Keywords
Scheduling, Hardware Transactional Memory, Synchroniza-
tion

1. INTRODUCTION
Transactional Memory (TM) [8] is increasingly becoming

a promising technology for designing and implementing con-
current applications. Recently, TM gained more traction
because hardware vendors released the first commodity pro-
cessors with transactional support (i.e., hardware transac-
tional memory or HTM): Intel Haswell [11], and the IBM
Power 8 [3]. The common issue of all those processors is
their best effort nature, namely transactions are not guar-
anteed to progress in HTM, thus a software fallback path is
a mandatory requirement, which leads to hybrid TM.

Most TM implementations achieve high concurrency when
the actual contention level is low (i.e., few transactions con-
flict with each other). At higher contention levels, trans-
actions abort each other more frequently and a contention
manager (CM) is often required to manage concurrency. A
CM is an encounter-time technique: when a transaction

SPAA’15, June 13–15, 2015, Portland, OR, USA.
.

conflicts with another one, the CM is consulted to decide
which of the two transactions can proceed. A CM collects
information about each transaction (e.g., start time, num-
ber of reads/writes, number of retries) and, according to
the implemented policy, it decides priorities among conflict-
ing transactions. This management guarantees more fair-
ness and progress. A CM can work either during the trans-
action execution by using live (on the fly) information, or
work prior the transaction execution. Schedulers in the lat-
ter category use information about transaction’s potential
working-set (reads and writes) defined a priori in order to
avoid the need of solving conflicts while transactions are ex-
ecuting. Examples include [7, 5, 2, 13, 10, 6, 1].

The problem of defining a CM for handling HTM trans-
actions is still not investigated because current HTM imple-
mentations embed the conflict resolution strategy entirely
into the cache-coherence protocol. Roughly, i) the L1 cache
of each CPU-core is used as a buffer for the transactional
write and read operations; ii) the granularity used for track-
ing accesses is the cache line; and iii) the eviction and inval-
idation of cache lines defines when a transaction is aborted
(it reproduces the idea of read-set and write-set invalida-
tion of STM). In addition, the Intel Haswell documentation
says“Data conflicts are detected through the cache-coherence
protocol. Data conflicts cause transactional aborts. In the
initial implementation, the thread that detects the data con-
flict will transactionally abort.”. From the specification, it is
impossible to unequivocally define which thread will detect
the conflict as the details of the hardware cache-coherence
protocol are not publicly available.

Since there is no way to change the provided HTM conflict
resolution policies without modifying the hardware itself,
classical CMs policies cannot be trivially ported for schedul-
ing HTM transaction. In fact, when the hardware detects a
conflict between threads (executing transactions) accessing
the same cache line, the progress made by one of them is im-
mediately aborted without giving the programmer a chance
to either manage the conflict differently, or extract any run-
time information (i.e., any written object is automatically
discarded after an abort). As a consequence of this process,
when the programmer receives the notification that a trans-
action is aborted, it is already too late for avoiding it or
deciding which transaction is more convenient to abort.

HTM treats all reads and writes executed within the bound-
aries of a transaction as transactional, even if the accessed
object is not shared or there is no need to guarantee atom-
icity on it. Non-transactional accesses inside a transac-
tion cannot be performed in current architectures providing

HTM support. Customizing the conflict resolution policy
and controlling which transaction aborts necessitates de-
tecting the conflict before it happens. However, this fact
means redoing what HTM already efficiently provides (i.e.,
the conflict detection). In addition, every access (read or
write) to shared data should be monitored for a potential
conflict. Also, per-object runtime information should also
be kept (i.e., meta-data) and this leads to one of the major
problems of CM in HTM: accessing shared meta-data for
each object introduces more conflicts and reduces available
cache-lines.

As an example of this claim, let us consider the case of
adding a read/write lock for each shared object, which in-
dicates that a transaction is currently reading/writing the
object. In order to preserve the semantics of the lock, each
transaction should read the value of the lock before accessing
the related object. Let us now consider the case of two trans-
actions both reading the object. In this case each transac-
tion checks the availability of the read-lock, then it registers
itself as another read-lock holder and proceeds by accom-
plishing the read operation. However, at the memory level,
the acquisition of the lock means writing to the lock variable.
Due to the HTM implementation, the lock is just an object
enclosed in a cache line. Reading the lock status will add
it to the transaction read-set, and acquiring (updating) the
lock will add it to the write-set. Since all memory accesses
in an HTM transaction are considered as transactional, once
a transaction acquires the lock, it will conflict with all other
transactions that read/wrote to the same lock. The issue
described in the previous example can be applied to any
meta-data used by the CM.

2. HTM-AWARE SCHEDULER
To circumvent the aforementioned problem, we propose

a CM that operates on “static” information about incoming
transactions (i.e., not collected during the transactional ex-
ecution, but rather before or after it). According to these
information, only those transactions that are non conflicting
with each other can be concurrently scheduled. One would
say that, given such a CM, transactions are not needed
anymore because no conflicting executions can happen at-a-
time. However the previous case is ideal because, due to the
“static” nature of the runtime information, the CM could er-
roneously activate two conflicting transactions, concurrently.
In such a case, correctness is still preserved through the con-
flict resolution of HTM.

We propose Octonauts, an HTM-aware scheduler that
deploys the idea illustrated above by using queues (called
scheduling-queues) that guard shared objects. A transaction
is associated with the objects that will be potentially ac-
cessed during the execution (called working-set). Then, the
working-set is used for deciding which scheduling-queue(s)
the transaction should be subscribed to. The subscription
process is atomic. If a transaction needs to subscribe to more
than one scheduling-queue, it locks the required queues in a
deterministic order to avoid deadlocks, and then it proceeds
with the actual enqueuing process. When the transaction
reaches the top of all subscribed queues, it can execute.

The working-set could be either statically declared by the
programmer or dynamically built as follow. Once submitted,
HTM transactions are firstly activated as hardware transac-
tions without waiting any decision from Octonauts. While
executing, the accessed objects are collected and, in case the

transaction is committed, the just-composed working-set is
used for classifying the next incoming transactions of the
same profile (e.g., the New Order transaction profile of the
TPC-C benchmark [4]). This way, after a period of appli-
cation execution time, accesses can be predicted and the
respective transaction will be enqueued in the appropriate
scheduling-queues. This approach to populate the working-
set is not deterministic and it depends on the actual runtime
execution, therefore it should be refined as a result of sub-
sequent commits.

In practice, in order to efficiently implement Octonauts’s
scheduling scheme, we use a system inspired by the syn-
chronization mechanism where tickets are leveraged. We
associate two integers (i.e., enq_counter, deq_counter) and
a lock with each scheduling-queue. The subscription pro-
cess of a thread T to a scheduling-queue Qs consists of
the following steps. T increments the enq_counter of Qs

(in other words T obtains a ticket on Qs). After that, T
waits until the deq_counter reaches the value of the ac-
quired ticket. To prevent deadlocks, T must subscribe to
all required scheduling-queues atomically. To accomplish
this task, T acquires all locks associated with the required
scheduling-queues before incrementing all enq_counter. Af-
ter executing a transaction, T increments the deq_counter

of all subscribed scheduling-queues, thus allowing next (con-
flicting) transactions to proceed.

Using the described technique, two read-only transactions
accessing the same object are not allowed to execute concur-
rently, although such transactions cannot conflict with each
other because they just read. Serializing those read-only
transactions could significantly limit the overall concurrency,
especially in read dominated workloads. To overcome this
drawback, we modified the aforementioned ticketing tech-
nique to accommodate reader and writer tickets. Threads
owning reader tickets can proceed concurrently if there is no
active writer. Rather, conflicting writers are serialized.

2.1 Handling HTM’s Software Fallback
Transactions that cannot be committed in HTM (even

if they run alone), need a software fallback path to ensure
the application’s progress. However, the communication be-
tween the STM and HTM paths should have minimal over-
head, otherwise the Octonauts’s goal of increasing concur-
rency is nullified.

To minimize the aforementioned communication overhead,
we use a phasing approach inspired by [9]. We execute HTM
transactions in two ways: plain HTM and instrumented
HTM. When the whole transactional workload runs in HTM,
then the plain mode is adopted. Once an STM transaction
is activated, it makes a notification so that all new HTM
transactions after this point start in the instrumented HTM
mode. In such a case, the STM transaction waits until all
the plain HTM transactions finish, and then starts its ex-
ecution. When all STM transactions are committed, the
execution returns to the plain HTM mode.

When the instrumented HTM mode is active, we propose
to use a circular buffer (called the ring [12]), which con-
tains the write-set signatures (i.e., Bloom filters) of each
committed HTM transaction. An HTM transaction gets an
empty entry from the ring before starting the transaction
(i.e., non-transactionally using a CAS operation). During
the HTM transaction, every write operation to a shared ob-
ject is logged into a local write-set signature (e.g., a Bloom

filter). Before committing the HTM transaction, the local
write-set signature is stored into a preemptively reserved en-
try of the ring. This design eliminates false conflicts due to
shared HTM-STM meta-data (in our case, the ring). The
ring entry is reserved before starting the HTM transaction
and each HTM transaction writes to its own private ring en-
try. For STM transactions, they read only the ring entries so
that they cannot conflict (at memory level) with any HTM
transaction.

An STM transaction proceeds speculatively until its com-
mit phase. Before committing, it validates its read objects
against the concurrent HTM transactions (via the write-set
signatures in the ring). If it is valid, the commit can take
place. The proposed technique seems to favor HTM transac-
tions, but since both HTM and STM transactions subscribe
to the same object queues, HTM and STM transactions can
only conflict due to an inaccurate definition of the working-
set or due to Bloom filters’ false conflicts. Thus, STM trans-
actions cannot suffer from starvation.

3. PRELIMINARY EVALUATION
In order to show the practicality of our proposal, we built a

preliminary version of Octonauts using the TPC-C bench-
mark [4] configured with medium and high contention. The
former has been enforced by selecting a total number of
warehouses (the most contended object of TPC-C) as 20;
whereas for the high contention case, we used 10 warehouses.
We compared the throughput of Octonauts against the
pure HTM with the global locking as fallback. As test-
bed we used the Intel Haswell processor (i7-4770), which
is equipped with 4 physical cores and 8 threads (given the
hyper threading). Each hardware transaction retries 5 times
before falling back to the software path. In this preliminary
implementation, the working-set is defined by the program-
mer.

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0 2 4 6 8 10 12 14 16 18 20

M
 t
x
/s

e
c

Threads

HTM-GL

Octonauts

(a) Medium-contention.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 2 4 6 8 10 12 14 16 18 20

M
 t
x
/s

e
c

Threads

HTM-GL

Octonauts

(b) High-contention.

Figure 1: Throughput using TPC-C benchmark.

Figure 1 shows the results. When the contention level
in TPC-C is high, Octonauts is particularly effective, be-

ing able to reduce the number of conflicts significantly. In
addition, when the number of threads is larger than cores,
Octonauts is still able to scale because scheduling trans-
actions properly leads to more concurrency than just leav-
ing transactions to contend (and abort) each other. As an
evidence of that, in our experiments when the number of
threads is larger than 8 (which is the maximum number of
hardware threads supported in the Haswell processor), both
HTM-GL and Octonauts can run only 8 transactions at
a time and schedule the others. However, HTM-GL selects
those 8 transactions according to the policy of the operating
system’s scheduler, whereas Octonauts gives more guar-
antees that the selected ones are not conflicting.

4. ACKNOWLEDGMENTS
Authors would like to thank Ahmed Hassan and the anony-

mous reviewers for their important comments. This work is
supported in part by US National Science Foundation under
grant CNS 1217385 and AFOSR Grant FA9550-14-1-0187.

5. REFERENCES
[1] M. Ansari, M. Luján, C. Kotselidis, K. Jarvis, C. C.

Kirkham, and I. Watson. Steal-on-abort: Improving
transactional memory performance through dynamic
transaction reordering. In HiPEAC, pages 4–18, 2009.

[2] H. Attiya and A. Milani. Transactional scheduling for
read-dominated workloads. Journal of Parallel and
Distributed Computing, 72(10):1386 – 1396, 2012.

[3] H. W. Cain, M. M. Michael, B. Frey, C. May,
D. Williams, and H. Le. Robust architectural support
for transactional memory in the power architecture. In
ISCA, pages 225–236, 2013.

[4] T. Council. TPC-C benchmark. 2010.

[5] S. Dolev, D. Hendler, and A. Suissa. CAR-STM:
Scheduling-based Collision Avoidance and Resolution
for Software Transactional Memory. PODC, pages
125–134, 2008.

[6] A. Dragojević, R. Guerraoui, A. V. Singh, and
V. Singh. Preventing versus curing: Avoiding conflicts
in transactional memories. PODC, pages 7–16, 2009.

[7] R. Guerraoui, M. Herlihy, and B. Pochon.
Polymorphic contention management. In Distributed
Computing, volume 3724, pages 303–323. Springer,
2005.

[8] T. Harris, J. Larus, and R. Rajwar. Transactional
memory, 2nd edition. Synthesis Lectures on Computer
Architecture, 5(1), 2010.

[9] Y. Lev, M. Moir, and D. Nussbaum. PhTM: Phased
transactional memory. In TRANSACT, 2007.

[10] W. Maldonado, P. Marlier, P. Felber, A. Suissa,
D. Hendler, A. Fedorova, J. L. Lawall, and G. Muller.
Scheduling support for transactional memory
contention management. PPoPP, pages 79–90, 2010.

[11] J. Reinders. Transactional synchronization in haswell.
Intel Software Network., 2012.

[12] M. F. Spear, M. M. Michael, and C. von Praun.
RingSTM: Scalable transactions with a single atomic
instruction. In SPAA, 2008.

[13] R. M. Yoo and H.-H. S. Lee. Adaptive transaction
scheduling for transactional memory systems. SPAA
’08, pages 169–178, 2008.

