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Abstract— We consider several object sharing synchronization
mechanisms including lock-based, lock-free, and wait-free shar-
ing for LNREF [1], an optimal real-time scheduling algorithm on
multiprocessors. We derive LNREF’s minimum-required space
cost for wait-free synchronization using the space-optimal wait-
free algorithm. We then establish the feasibility conditions for
lock-free and lock-based sharing under LNREF, and the con-
comitant tradeoffs. While the tradeoff between wait-free versus
the other sharing is obvious, i.e., space and time costs, we show
that the tradeoff between lock-free and lock-based sharing for
LNREF hinges on the cost of the lock-free retry, blocking time
under lock-based. Finally, we numerically evaluate lock-free and
lock-based sharing for LNREF.

I. INTRODUCTION

Multiprocessor architectures are gaining more interest be-
cause major processor manufacturers (Intel, AMD) are making
them decreasingly expensive. Responding these trends, RTOS
vendors are increasingly providing multiprocessor platform
support. Responding to this trend, RTOS vendors are increas-
ingly providing multiprocessor platform support — e.g., QNX
Neutrino is now available for a variety of SMP chips [2].
But this exposes the critical need for real-time scheduling
for multiprocessors — a comparatively undeveloped area of
real-time scheduling which has recently received significant
research attention, but is not yet well supported by the RTOS
products. Consequently, the impact of cost-effective multipro-
cessor platforms for embedded systems remains nascent.

The Pfair class of algorithms [3] have been shown to be the-
oretically optimal—i.e., they achieve a schedulable utilization
bound (below which all tasks meet their deadlines) that equals
the total capacity of all processors. However, Pfair algorithms
incur significant run-time overhead due to their quantum-
based scheduling approach [4], [5]: under Pfair, tasks can be
decomposed into several small uniform segments, which are
then scheduled, causing frequent scheduling and migration.

We have presented another optimal real-time scheduling
algorithm for multiprocessors, which is not based on time
quanta in [1]. The algorithm called LNREF, is based on the
fluid scheduling model and the fairness notion. However, we
have assumed that all running tasks are independent each other
and the object sharing synchronization for LNREF has not
been considered yet.

We consider object sharing synchronization mechanisms
for an optimal scheduling algorithm, LNREF, in this paper.
Compared to the research efforts on multiprocessor schedul-
ing, synchronization for multiprocessor scheduling has been
less studied. For example, the synchronization under global

EDF was considered only recently in [6]. We consider several
resource sharing methods under multiprocessor scheduling,
including wait-free, lock-free and lock-based for LNREF
algorithms.

Most embedded real-time systems involve concurrent access
to shared data objects, resulting in contention for those objects.
Resolution of the contention directly affects the system’s
timeliness, and thus the system’s behavior. Mechanisms that
resolve such contention can be broadly classified into: (1) lock-
based—e.g., Priority Inheritance and Ceiling protocols [7],
Stack Resource Policy [8], DASA [9]; (2) wait-free—e.g.,
NBW protocol [10], Chen’s protocol [11], [12], [13]; and
(3) lock-free—e.g., [14].

Lock-based object sharing traditionally relies on mutual
exclusion to obtain atomicity. Sometimes, its mutual exclusion
incurs several disadvantages such as serialized access to shared
objects, resulting in reduced concurrency and thus reduced
resource utilization [14].

These drawbacks have motivated research on wait-free and
lock-free object sharing in real-time systems. An implementa-
tion of wait-free protocols uses multiple buffers (e.g., a circular
buffer) for writers and readers [10], [13], [15]. For the single-
writer/multiple-reader problem (SWMR), wait-free buffers
typically use multiple internal buffers for the shared object,
where the number of internal buffers used is proportional to
the maximum number of times the readers can be preempted
by the writer, when the readers are reading. The maximum
number of preemptions of a reader bounds the number of
times the writer can update the object while the reader is
reading. Thus, by using as many internal buffers as the worst-
case number of preemptions of readers, the readers and the
writer can continuously read and write in different buffers,
respectively, and avoid interference.

On the other hand, lock-free protocols allow readers to
concurrently read while the writer is writing (without ac-
quiring locks), but the readers check whether their reading
was interfered by the writer. If so, they read again. Thus, a
reader continuously reads, checks, and retries until its read
becomes successful. Since a reader’s worst-case number of
retries depends upon the worst-case number of times the
reader is preempted by the writer, the additional execution-
time overhead incurred for the retries is bounded by the
number of preemptions.

Both wait-free and lock-free protocols incur additional
costs with respect to their lock-based counterparts. Wait-
free protocols generally incur additional space costs due to



their multiple internal buffer usage, which is infeasible in
many small-memory, embedded real-time systems. Lock-free
protocols generally incur additional time costs due to their
retries, which is antagonistic to timeliness optimization.

We consider these object sharing methods for LNREF on
multiprocessors. Similar to [6], we focus on the common case
of concurrent, non-nested, serialized access to simple shared
objects. Simple objects (e.g., buffers, queues, stacks) are the
predominant shared objects in many embedded applications.
For example, Tsigas and Yang observe that almost all synchro-
nization in the SPLASH-2 and the Spark98 kernel benchmark
suites are for simple objects [16], [17]. Thus, we focus on
simple object sharing under LNREF.

For the LNREF algorithm, it is problematic to impose time
costs for executing tasks. This is because, LNREF abides by
the fairness notion that requires for each task to run at a certain
rate in time intervals. (Note that LNREF does not maintain P-
fairness [3].) Therefore, any prolonged execution of tasks may
violate fairness. In this sense, it is appropriate to consider wait-
free synchronization for LNREF, which does not impose any
time costs, but incurs space cost. However, the space costs
can be minimized using the optimal wait-free synchronization
algorithm [15]. Thus, we derive the minimal required space
costs for LNREF using the wait-free algorithm for the SWMR
problem.

Despite wait-free synchronization’s compatibility with the
fairness notion, it is restricted in its use, e.g, overload case,
as opposed to lock-free and lock-based sharing. Lock-free
objects are known to work well particularly for simple objects
like buffers, queues, and lists. In multiprocessor real-time
systems, lock-free algorithms have been viewed as impractical,
because deducing bounds on retries due to interferences across
processors is difficult [18]. Holman et al. have bounded retries
under Pfair scheduling by exploiting its tight synchrony, and
under the observation that lock-free operations take very small
time [18]. However, bounding retries is more difficult for
asynchronous real-time scheduling, which does not depend
on time quanta, e.g., LNREF. Thus, we consider an auxiliary
method to bound retires, i.e., non-preemptive area (or NPA)
surrounding each lock-free operation, inspired by [6]. If there
is a scheduling event during the NPA and another task tries
to preempt the processor, it will be blocked up to the end of
the NPA. Thus, the NPA guarantees finite number of retries
for lock-free object sharing. This allows us to use lock-free
object sharing even during overloads as opposed to wait-free
object sharing. In this paper, we present feasible conditions
for LNREF with NPA-assisted lock-free object sharing.

Although lock-free is efficient for simple objects, lock-based
object sharing is still needed to implement more complicated
objects. We consider queue-based spin locks (or queue locks)
for both LNREF. In queue locks [6], a task waits by busy-
waiting, or spinning, on “spin variable” (i.e., repeatedly testing
its status), and waiting tasks are ordered within a “spin queue”.
When a task attempts to acquire a lock, it appends its lock
request onto the end of the spin queue. The task at the head
of the queue may access the critical section, after which, it

updates the spin variable for the next task in the queue so that
it stops spinning.

Similar to [6], we assume that shared object calls are
implemented as critical sections accessed via queue locks
invoked within non-preemptive regions. It is because if a task
is preempted within a critical section, then the waiting times
for any tasks that it blocks could significantly increase. Thus,
in this paper, we consider shared objects implemented with
queue-based spin locks within NPA for LNREF. As claimed
in [6], the idea of the NPA is in line with views expressed by
others. The founder of RTLinux recommends accessing simple
critical sections non-preemptively in [19], for example. We
then derive feasible conditions for LNREF under this lock-
based scheme.

The rest of the paper is organized as follows: Section II
shows an overview of LNREF. Section III discusses wait-free,
lock-free, lock-based sharing for LNREF and then we compare
the different schemes and identify tradeoffs. In Section IV, we
numerically evaluate lock-free and lock-based schemes. We
conclude the paper in Section V.

II. LNREF SCHEDULING ALGORITHM

LNREF [1] can meet all deadlines as long as the total uti-
lization demand does not exceed the total processing capacity
of all processors. In this section, we briefly introduce LNREF
algorithm.

A. Model

We consider global scheduling, where task migration is not
restricted, on an SMP system with M identical processors. We
consider the application to consist of a set of tasks and tasks
are assumed to arrive periodically at their release times. Each
task has an execution time, and a relative deadline which is
the same as its period. The utilization ui of a task is defined
as its execution time over its relative deadline and is assumed
to be less than 1. Similar to [4], [20], we assume that tasks
may be preempted at any time, and are independent, i.e., they
do not share resources or have any precedences.

B. Time and Nodal Execution Time Plane

In the fluid scheduling model, each task executes at a
constant rate at all times [21]. The quantum-based Pfair
scheduling algorithm is based on the fluid scheduling model,
as the algorithm constantly tracks the allocated task execution
rate through task utilization. The Pfair algorithm’s success
in constructing optimal multiprocessor schedules can be at-
tributed to fairness — informally, all tasks receive a share
of the processor time, and thus are able to simultaneously
make progress. P-fairness is a strong notion of fairness, which
ensures that at any instant, no application is more than one
quantum away from its due share (or fluid schedule) [3], [22].

Toward designing an optimal scheduling algorithm, we thus
consider the fluid scheduling model and the fairness notion. To
avoid Pfair’s quantum-based approach, we consider an abstrac-
tion called the Time and Nodal Execution Time Domain Plane
(or abbreviated as the T-N plane), where tokens representing



Fig. 1. Fluid Schedule versus a Practical Schedule

tasks move over time. We use the T-N plane to describe fluid
schedules, and present a new scheduling algorithm that is able
to track the fluid schedule without using time quanta.

Figure 1 illustrates the fundamental idea behind the T-N
plane. For a task Ti with its release time ri, execution time
ci and deadline di, the figure shows a 2-dimensional plane
with time represented on the x-axis and the task’s remaining
execution time represented on the y-axis. If ri is assumed as
the origin, the dotted line from (0, ci) to (di, 0) indicates the
fluid schedule, the slope of which is utilization −ui. Since the
fluid schedule is ideal but practically impossible, the fairness
of a scheduling algorithm depends on how much the algorithm
approximates the fluid schedule path.

When Ti runs like in Figure 1, for example, its execution
can be represented as a broken line between (0, ci) and (di, 0).
Note that task execution is represented as a line whose slope
is -1 since x and y axes are in the same scale, and the non-
execution over time is represented as a line whose slope is
zero.

Fig. 2. T-N Planes

When N number of tasks are considered, their fluid sched-
ules can be constructed as shown in Figure 2, and a right
isosceles triangle for all tasks is found between every two
consecutive scheduling events. We call this as the T-N plane
TNk, where k is simply increasing over time. The size of
TNk may change over k. The bottom side of the triangle
represents time. The left vertical side of the triangle represents

a part of tasks’ remaining execution time, which we call the
nodal remaining execution time, li, which is supposed to be
consumed before each TNk ends. Fluid schedules for each
task can be constructed as overlapped in each TNk plane,
while keeping their slopes.

C. Scheduling in T-N planes

The abstraction of T-N planes is significantly meaningful
in scheduling for multiprocessors, because T-N planes are
repeated over time, and a good scheduling algorithm for a
single T-N plane is able to schedule tasks for all repeated T-N
planes. Here, good scheduling means being able to construct
a schedule that allows all tasks’ execution in the T-N plane to
approximate the fluid schedule as much as possible. Figure 3
details the kth T-N plane.

Fig. 3. kth T-N Plane

The status of each task is represented as a token in the T-
N plane. The token’s location describes the current time as a
value on the horizontal axis and the task’s remaining execution
time as a value on the vertical axis. The remaining execution
time of a task here means one that must be consumed until the
time tkf , and not the task’s deadline. Hence, we call it, nodal
remaining execution time.

As scheduling decisions are made over time, each task’s
token moves in the T-N plane. Although ideal paths of tokens
exist as dotted lines in Figure 3, the tokens are only allowed
to move in two directions. When the task is selected and
executed, the token moves diagonally down, as TN moves.
Otherwise, it moves horizontally, as T1 moves. If M proces-
sors are considered, at most M tokens can diagonally move
together. The scheduling objective in the kth T-N plane is
to make all tokens arrive at the rightmost vertex of the T-N
plane—i.e., tkf with zero nodal remaining execution time. We
call this successful arrival, nodally feasible. If all tokens are
made nodally feasible at each T-N plane, they are possible to
be scheduled throughout every consecutive T-N planes over
time, approximating all tasks’ ideal paths.

For convenience, we define the nodal laxity of a task Ti

as tkf − tcur − li, where tcur is the current time. The oblique
side of the T-N plane has an important meaning: when a token



hits that side, it implies that the task does not have any nodal
laxity. Thus, if it is not selected immediately, then it cannot
satisfy the scheduling objective of nodal feasibility. We call
the oblique side of the T-N plane no nodal laxity diagonal
(or NLLD). All tokens are supposed to stay in between the
horizontal line and the nodal laxity diagonal.

We observe that there are two time instants when the
scheduling decision has to be made again in the T-N plane.
One instant is when the nodal remaining execution time of a
task is completely consumed, and it would be better for the
system to run another task instead. When this occurs, the token
hits the horizontal line, as TN does in Figure 3. We call it the
bottom hitting event (or event B). The other instant is when
the nodal laxity of a task becomes zero so that the task must
be selected immediately. When this occurs, the token hits the
NLLD, as T1 does in Figure 3. We call it the ceiling hitting
event (or event C). To distinguish these events from traditional
scheduling events such as task releases and task departures, we
call events B and C sub-events.

To provide nodal feasibility, M of the largest nodal remain-
ing execution time tasks are selected first (or LNREF) for every
sub-event. We call this, the LNREF scheduling policy. Note
that the task having zero nodal remaining execution time (the
token lying on the bottom line in the T-N plane) is not allowed
to be selected, which makes our scheduling policy non work-
conserving. The tokens for these tasks are called inactive, and
the others with more than zero nodal remaining execution time
are called active. At time tkf , the time instant for the event of
the next task release, the next T-N plane TNk+1 starts and
LNREF remains valid. Thus, the LNREF scheduling policy is
consistently applied for every event.

III. SYNCHRONIZATION FOR LNREF

We consider three synchronization schemes for LNREF
such as wait-free buffers, lock-free objects, and lock-based
objects in this section.

A. Wait-Free Buffers

Wait-free protocols generally incur additional space costs
due to their multiple internal buffer usage. Fortunately, as far
as the maximum number of interferences a read operation may
suffer from a write operation or/and the maximum number of
readers are known, the wait-free buffer algorithm guaranteeing
space optimality is usable [15]. Even when either of them is
not easy to obtain, the wait-free buffer algorithm is still usable
by assuming the unknown value as an infinite.

We consider periodic task arrival and underload cases to
compute the minimum required space cost of wait-free buffer
for LNREF. It is because there exists the feasibility test of
LNREF only for the periodic task sets. Though, we would
like to emphasize again that the wait-free buffer algorithm is
available to any case where the maximum number of inter-
ferences a read operation may suffer from a write operation
or/and the maximum number of readers are known, even with
non-periodic task sets.

The maximum number of interferences for each reader’s
operation is obtained in following Sections and the minimum
space cost for wait-free buffer can be obtained by the algo-
rithm for Wait-Free Buffer size decision Problem (or WFBP)
presented in [15].

Fig. 4. Reader and Writer Execution Time Line

The maximum number of interferences that a reader may
have should be computed. Let ρ denote the set of wait-free
objects shared by tasks. We assume that each wait-free buffer
wk ∈ ρ is accessed by at least two tasks and that each task
accesses wk at most once. pi is ith task’s period and deadline
for periodic tasks. We assumes a writer W and multiple
readers Rj access wk. Since assuming each task accesses wk

at most once, each reader Rj and writer W for wk corresponds
to a task. Therefore, pRj

and pW imply the period of Rj and
the period of W respectively. NMax

j denotes the maximum
number of times a writer might interfere with the jth reader
during read operation.

Under underload, the worst case scenario in terms of maxi-
mum number of interferences of the reader by the writer task is
illustrated in Figure 4, as presented in [13]. (We assume that
each task’s deadline is the same as its period.) This occurs
when the first interfering write operation happens as late as
possible within the writer’s period and the last interfering
write operation happens as early as possible within the writer’s
period. Each x denotes a write operation. This scenario occurs
under LNREF.

Corollary 3.1 (Maximum number of interferences): When
periodic tasks can be feasibly scheduled by LNREF, the
upper-bound on the number of interferences NMax

j that
the writer W might interfere with reader Rj during read
operation is:

NMax
j = max

(
2, 1 +

⌈pRj

pW

⌉)
.

Proof: See [13]
When all NMax

j for each wk are obtained, we compute the
minimum (optimal) space costs for each wk with the algorithm
of WFBP presented in [15].

However, the overload caused by relaxed task arrival is
difficult to cope with. There are basic requirements for a shared
object to be used for overload, i.e., the object operations should
be anonymous in the sense that it does not require identities of
tasks. This is because several jobs of a task may be pending
in ready queue under overload and non-anonymous operations
are unable to distinguish those jobs since they have the same
identifier inherited from the same task. Moreover, it is difficult
to assess how many jobs of a task could be pending in the
ready queue at the same time.



Unfortunately, the wait-free buffer as well as other wait-free
buffers are not anonymous and thus, they have those restriction
for the environment allowing overload. It is intuitively under-
standable that the rationale behind wait-free buffer algorithm
is against anonymity. Informally, wait-free buffer algorithm
deploys a finite number of internal buffers proportionally to the
number of readers and writers, and assigns each internal buffer
to each reader and writer to avoid conflict between them, with
a certain clever way to handle data replication across those
internal buffers. In other words, it starts from assumption that
the fixed number of readers and writers is known in advance.

B. Lock-Free Objects

Lock-free objects are a good candidate of non-blocking
synchronization under overload because most well-known
lock-free objects are anonymous. However, it is additionally
required to assure that the lock-free retry should be bounded
under overload as well as underload.

The boundness of retry is derived under several
assumptions, which are made from practical observation
of lock-free objects and potential interferences associated
with applied scheduling algorithms as well as task arrival
patterns. In [18], the observation is introduced that lock-free
operations typically are very short in comparison to the length
of a time quantum, that their scheduling algorithm, Pfair,
is based upon. The following assumptions are the variants
of theirs to bound retry for using lock-free objects with our
scheduling algorithms.

(1) Interference Assumption (IA) Any pair of concurrent
accesses to the same object may potentially interfere with
each other.

(2) Retry Assumption (RA) A retry can be caused only by
the completion of some object access. This bounds the
number of retries to at most the number of concurrent ac-
cesses to an object and prevents two tasks from livelocking
due to repeated mutual interferences.

(3) Preemption Assumption (PA) A single object access
will be preempted for a finite number of times.

These assumptions help to establish bounds on retries
in multiprocessor real-time systems even with interferences
across processors. Holman et al. have bounded retry in Pfair
scheduling by exploiting its tight synchrony and observation
that lock-free operations take very small time [18]. However,
bounding retry is more difficult for asynchronous real-time
scheduling not depending on time quanta, e.g., LNREF, etc.

One example that the boundness of retry collapses is in
Figure 5. It shows task Ti running on one processor in a
multiprocessor system. Even if assuming (RA) holds, other
tasks’ scheduling events causes preemptions and hence, retry
may never end. In other words, a condition for the assumption
(PA) is required to hold with asynchronous real-time schedul-
ing algorithms for use of lock-free objects.

To prevent from the continuous retry, we suggest the NPA
surrounding each lock-free operation. The objective of NPA

Fig. 5. An Example of Continuous Retry

is to make (PA) hold by ensuring that the access to a single
object is never preempted. If there is a scheduling event during
the NPA and another task tries to preempt the processor, it will
be blocked up to the end of NPA.

1) Non-Preemptive Area: We follow some notations as
used in [18]. Let ρ denote the set of objects shared by tasks.
We assume that each object rk ∈ ρ is accessed by at least two
tasks and that each task accesses rk at most once. We assume
that each access to rk has a base cost of b(rk) and a retry
cost of s(rk). We are assuming that the costs of all operations
(e.g., read, write) of rk are the same as in [18], which could
be eliminated at the price of slightly more complicated notion
and analysis. The number of tasks accessing rk is denoted by
A(rk). Note that A(rk) never exceeds the number of tasks, N ,
because we assume each task accesses rk at most once. pi is
ith task’s period for periodic tasks or minimum time interval
between adjacent ith task’s releases for sporadic tasks. ei is
the ith task’s base execution cost, i.e., the worst-case cost of
a single job of Ti without considering shared-object accesses.
We assume a job of Ti accesses at most Ri number of shared
objects. The set of shared objects that Ti accesses is denoted
by γi. We assume M identical processors in the system.

We attempt to make three assumptions aforementioned
including (IA), (RA), and (PA), with the NPA. Under all
assumptions, the time cost of NPA may be extended by retry.

Theorem 3.2 (Maximum Execution Cost of NPA): When
Ti accesses a lock-free object rk with NPA-assisted sharing
mechanisms, LLF

i,k , the maximum execution time of the NPA
is:

LLF
i,k = s(rk) · {min (A(rk),M)− 1}+ b(rk),

where rk ∈ γi.
Proof: NPA can be extended by continuous retry, which

occur from interferences. There are A(rk) number of tasks
which access rk and thus, may cause interferences. Therefore,
the maximum possible interferences for accessing rk is A(rk)
and it cannot exceed the number of processors M . Based on it,
the time of possible retry is at most s(rk) ·{min (A(rk),M)−
1}. In addition, the base access cost, b(rk), is also considered.
Preemption is prohibited by the NPA surrounding each lock-
free operation.

Note that the NPA causes blocking and thus the execution
cost of the NPA affects feasibility analysis considering block-
ing times.

To the best of our knowledge, the feasibility analysis
of more relaxed task arrival patterns than periodic one for
multiprocessor real-time scheduling does not exist due to



difficulty. More specifically, most of feasibility analysis for
two well-known scheduling algorithms including Pfair and
global EDF have been on periodic tasks. Even though NPA-
assisted lock-free approach allows sporadic tasks which may
cause overloads where lock-free retry can be bounded, we also
focus on the feasibility analysis of periodic tasks in following
sections.

2) Lock-Free Objects For LNREF: LNREF is an optimal
real-time scheduling algorithm satisfying all time requirements
if the total utilization demand of tasks is less than the capacity
of processors. We consider NPA-assisted lock-free sharing for
LNREF.

As compared with EDF, NPA under LNREF causes more
times of blocking. It is because the priority order of jobs
under LNREF changes over their execution as opposed to
the case where tasks are scheduable under EDF. When tasks
are scheduable under EDF, the priority order of jobs never
changes so that a preempted job A cannot preempt a job B that
has preempted the job A before. However, it happens under
LNREF that allows more scheduling events, e.g., event C and
B as introduced in [1]. Whenever preemption occurs, blocking
may arise when the preempted task is within the NPA and no
processor is available. Therefore, each job can be blocked for
at most B = max∀i∀k {LLF

i,k }.
Theorem 3.3: (Blocking under LNREF with NPA-assisted

mechanisms) When a set of periodic tasks T1,...,TN has
deadline equal to period, the maximum times that Ti can be
blocked within its period pi is:

nB
i =

⌈N + 1
2

⌉
·
(
1 +

N∑

j=1

⌈ pi

pj

⌉)
.

Proof: Each T-N plane is constructed between two
consecutive events of task release. The number of task releases
within period pi is

∑N
j=1 d pi

pj
e. Thus, there can be at most

1 +
∑N

j=1 d pi

pj
e number of T-N planes within pi. It is known

that at most N + 1 events can occur in each T-N plane by
theorems in [1]. Since blocking of Ti happens only when Ti

attempts to preempt, Ti can be blocked at most dN+1
2 e in each

T-N plane. Therefore, within the period pi, Ti can be blocked
at most dN+1

2 e · (1 +
∑N

j=1 d pi

pj
e) times.

Theorem 3.4: (LNREF feasibility with NPA-assisted lock-
free synchronization) A set of periodic tasks T1,...,TN , all with
deadline equal to period, is guaranteed to be feasible on M
processors using LNREF if

N∑

i=1

BnB
i +

∑
∀rk∈γi

LLF
i,k + ei

pi
≤ M,

where LLF
i,k = s(rk)(min {A(rk),M} − 1) + b(rk).

Proof: When NPA-assisted lock-free objects are shared,
each task’s execution time extended by lock-free retry and
blocking time caused by the NPA should be considered. Ti’s
blocking happens at most nB

i times and each blocking time
costs at most B as described in Theorem 3.2 and 3.3. Besides,
when Ti accesses rk within the NPA, it can be extended at
most LLF

i,k as in Theorem 3.2. Therefore, the execution time

is extended by BnB
i +

∑
∀rk∈γi

LLF
i,k in maximum. When

the total utilization demand obtained with tasks’ extended
execution times is less than the capacity of processors, tasks
meet deadlines under LNREF.

Note that LNREF does not consider the case that the total
utilization demand exceeds the capacity of processors. Thus,
using shared objects, including lock-free shared objects, with
LNREF are under the assumption that the total utilization
demand never exceeds the capacity of processors.

C. Lock-Based Synchronization

We consider that shared objects implemented with queue-
based spin locks within the NPA as in [6]. NPA-assisted queue
lock causes blocking as aforementioned.

1) Non-Preemptive Area: As described in [6], under NPA-
assisted, queue-lock based synchronization, a job may be
blocked under two scenarios: (1) the job is executing and
requires access to a resource for which one or more jobs have
already enqueued their requests onto the spin queue, or (2) the
job becomes ready when one or more lower-priority jobs are
in their NPA and no processor is available.

Theorem 3.5 (Maximum Execution Cost of NPA): When
Ti accesses a queue-based spin lock object rk with NPA-
assisted sharing mechanisms, LQS

i,k , the maximum execution
time of the NPA is:

LQS
i,k = q(rk) ·min (A(rk), M),

where q(rk) is the access cost to rk, M is the number of
processors in system, and rk ∈ γi.

Proof: Since A(rk) tasks accessing rk may cause in-
terferences, the maximum possible interferences is A(rk) and
it cannot exceed the number of processors M . Based on it,
the maximum execution cost of completing access to rk is
q(rk) ·min (A(rk),M). Preemption is prohibited by the NPA
surrounding each lock-free operation.

For the same reason we presented in Section III-B.2, we
consider feasibility analysis on periodic task sets with lock-
based synchronization for LNREF.

2) Lock-Based Synchronization for LNREF: We consider
NPA-assisted lock-free shared objects under LNREF. More
frequent scheduling events of LNREF as compared to EDF
cause more blocking and thus, it affects the feasible condition.
Whenever preemption occurs, blocking follows when the pre-
empted task is within the NPA and no processor is available.

Theorem 3.6: (LNREF feasibility with NPA-assisted lock-
based synchronization) A set of periodic tasks T1,...,TN , all
with deadline equal to period, is guaranteed to be feasible on
M processors using LNREF if

N∑

i=1

BnB
i +

∑
∀rk∈γi

LQS
i,k + ei

pi
≤ M,

where LQS
i,k = q(rk) ·min (A(rk),M).

Proof: When NPA-assisted queue-lock objects are
shared, each task’s execution time extended by the spin queue
and blocking time caused by the NPA should be considered.



Ti’s blocking happens at most nB
i times an in Theorem 3.3 and

each blocking time costs at most B = max∀i∀k LQS
i,k . Besides,

when Ti accesses rk within the NPA, it can be extended at
most LQS

i,k as in Theorem 3.5. Therefore, the execution time
is extended by BnB

i +
∑
∀rk∈γi

LQS
i,k in maximum. When

the total utilization demand obtained with tasks’ extended
execution times is less than the capacity of processors, tasks
meet deadlines under LNREF.

D. Tradeoffs

The tradeoff between the presented wait-free method and
lock-free/lock-based methods is one of space and time costs.
Wait-free object sharing costs space, but incurs no additional
(blocking or retry) time costs. Further, it allows the full capac-
ity of all processors to be utilized. However, it is restricted to
the case of bounded number of jobs, in contrast with lock-free
and lock-based which allows unbounded number of jobs.

We now discuss the tradeoff between the lock-free and
lock-based methods that we present. Lock-free object sharing
does not use lock mechanisms which can potentially cause
blocking, unlike lock-based object sharing. However, blocking
may happen with the lock-free objects as well as the lock-
based ones that we present, since both are designed to be
assisted with the NPA. Despite the blocking caused by the
NPA that is common to both, it is still worth discussing the
tradeoffs between NPA-assisted lock-free objects and NPA-
assisted queue lock objects.

We focus on the implementation of objects within the
NPA (but not on the implementation of the NPA itself).
First, lock-free sharing is an optimistic approach as opposed
to queue-based spin locks that must lock resources even
when no interference occurs. The optimism prohibits the time
costs for unnecessary operations. Second, lock-free sharing
mechanisms are implemented at the application level, whereas
the implementation of the NPA is through kernel calls. The
implementation at the application level is likely to help reduce
the overhead of operations since it does not invoke kernel,
which is advantageous with respect to timeliness.

For these reasons, lock-free object sharing is likely to be
superior to queue-lock object sharing when simple objects
(which are implementable in lock-free mechanisms) are con-
sidered. On the other hand, queue-lock object sharing is likely
to be superior when more complicated objects (e.g., map, etc.)
are considered.

IV. NUMERICAL ANALYSIS

Specifically, Theorem 3.4 and 3.6 show feasible conditions
under LNREF with lock-free and lock-based synchronization,
respectively. We observe that the forms of two feasibility
tests are identical when the access times to shared objects
are assumed similar, i.e., s(rk) = b(rk) = q(rk), ∀k. It is
because both sharing mechanisms are assisted by the NPA to
ensure the boundness of access time by preventing preemption
temporarily. Therefore, the performance difference between
NPA-assisted lock-free objects and NPA-assisted queue-lock
objects is primarily determined from the difference between

their object access times. (It is not a claim generalized for
every case, since NPA-assisted mechanisms considered here
should not be the only approach to implement lock-free and
lock-based sharing.)

In [6], they set contention-free costs for object operations
in 1.3 − 6.5 µs range for both lock-free and queue-lock
approaches by their measurement. We vary the costs, s(rk),
b(rk), and q(rk), from 1.0 to 6.0 to see the effect. The
performance metric is the total utilization inflation denoting
the difference between total utilization without shared objects
and that with shared objects, which could be interpreted as
synchronization overhead or utilization loss as described in [6].

We assume four processors and 20 tasks. Each task has
three objects shared with others and each objects are shared
by 10 tasks. Task’s execution time ei is uniformly distributed
in different ranges, [0.5, 5], [1, 10], [1.5, 15], or [2, 20] ms. As
Theorem 3.4 and 3.6 imply, task’s execution time cost is a
primary element that affects the utilization inflation. Task’s
period is set by ei/ui, where ui is task’s utilization demand.
ui is uniformly distributed in the range (0.0, 0.2] and thus, the
total utilization demand without shared objects never exceeds
the capacity of processors. Each data was gained with 5,000
samples.
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Fig. 6. LNREF-scheduled Synchronization Overhead for NPA-assisted
Mechanism : Varying Tasks’ Execution Time Costs
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Fig. 7. LNREF-scheduled Synchronization Overhead for NPA-assisted
Mechanism : Varying Number of Shared Objects

Figure 6 shows that the higher shared-object access time
cost and the lower task’s execution time cost cause higher
increase in total utilization. It suggests that the shared-object
access time cost is an important element to select between



lock-free and queue-lock shared objects under LNREF. In ad-
dition, it also implies that the selected shared object becomes
more appropriate as tasks have more execution time costs since
it makes the synchronization overhead negligible.

Figure 7 illustrates the increase in total utilization with
varying shared-object access time cost and number of objects.
As expected, the more objects are shared, the higher synchro-
nization overhead does rise. It is also observed in Figure 7
that there is a number, more shared objects than which does
not have any impact on performance as Theorem 3.4 and 3.6
indicate.

Note that the comparison results in this section show the
worst case of both sharing mechanisms. Thus, the actual
performance comparison by real implementation could be
different.

V. CONCLUSIONS

We consider lock-based, lock-free, and wait-free synchro-
nization methods for both LNREF. We first show the wait-
free synchronization (which is appropriate for only bounded
number of jobs) does not incur significant time costs, but only
space costs, which helps to maintain the fairness notion of
LNREF. Further, we establish the minimum (optimal) required
space costs for LNREF with the space-optimal wait-free syn-
chronization algorithm. In contrast to wait-free, lock-based and
lock-free synchronization allow unbounded number of jobs
and overloads. We introduce non-preemptive area to bound the
time cost of lock-based and lock-free synchronization under
LNREF, and derive feasible conditions for satisfying utility
lower bounds. Further, we observe the tradeoff between lock-
based and lock-free synchronization for LNREF, i.e., lock-free
object sharing is likely to be superior to lock-based sharing
when simple objects are considered, whereas lock-based object
sharing is likely to be superior when more complicated objects
are considered.
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