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1 Introduction

System-level virtualization enables, amongst other benefits, con-
solidation and multi-tenancy in a secure way [8]. As one of the
technologies powering cloud computing, it is broadly adopted in
the datacenter. However, with the cloud extending to the edge, and
the recent acceptance of system-level virtualization in portable and
control systems to consolidate real-time and not real-time software,
virtualization technologies are expanding into all computer market
segments.

Modern computer architectures are built with an increasing

number of heterogeneous processors. They include accelerators
(GPU [37], TPUs [23]), re-configurable FPGAs [17, 36], as well as
general-purpose processors. The latter category embraces current
machines with processors of the same ISA but different ISA ex-
tensions or microarchitecture (single-ISA heterogeneity), such as
ARM big LITTLE [10], Xeon/Xeon Phi [9], or Intel Sunny Cove [21].
Moreover, platforms with general-purpose processors of completely
different ISAs are becoming more popular: AMD is integrating ARM
cores in its x86 processors line, and intelligent network cards/storage
devices powered by ARM [16, 31], MIPS64 [29] or Tile [30] cores
turn an x86 machine into a hybrid ARM/MIPS/Tile-x86. Finally,
SoC combining multiple fully heterogeneous general-purpose pro-
cessors on cache coherency have been simulated [40], and proto-
typed [26]. Although the latter includes RISC-V and SPARC, the
new Intel Skylake with FPGA [22] opens the possibility to prototype
RISC-V and x86 - both including hardware support for virtualiza-
tion.
Contribution. Considering the wide adoption of virtualization and
the growing interest in heterogeneous processing, in this paper we
try to answer the question: how should platforms with heterogeneous
processors be virtualized? In fact, the systems software community
proposed OSes designs able to fully exploit such heterogeneous
platforms [1, 2, 4, 27]. However, to the best of our knowledge there
is no work on system-level virtualization in that domain. Bringing
virtualization to these platforms would enable traditional benefits
such as consolidation, fault-tolerance, and secure multi-tenancy,
etc. Moreover, it would also make such heterogeneous setups more
accessible through cloud/edge deployments. This solution could
also potentially enable new models of resource pricing for cloud
providers.

This paper focuses on heterogeneous systems built with general-
purpose (OS-capable) processors and aims at identifying the chal-
lenges of virtualizing them. We target single-ISA heterogeneous
platforms, as well as platforms with processors of completely dif-
ferent ISAs. We observe the success of the multiple-kernel OS de-
sign [1, 2, 4, 27] in managing heterogeneous platforms and reason
about porting that model to the virtualization world. We introduce
the Multihype, an hypervisor for platforms with heterogeneous
processors.

2 Motivation & Background

Why Virtualize Heterogeneous-ISA Architectures? Even for cur-
rent OS-capable heterogeneous systems implementing a single ISA

but with different extensions and microarchitecture features, virtu-
alization support is far from ideal. For example, ARM big.LITTLE [10]
is poorly supported by both Xen [3] or KVM [24] hypervisors [15,

41]. Because of microarchitectural differences (e.g., cache line sizes),

virtual CPUs cannot migrate between diverse processors (e.g., big

and little). This limits the potential of this technology by confining

its usage among identical CPUs only.

Although multiple studies targeted the virtualization of existing
CPU/GPU heterogeneous systems [14, 18, 20, 34, 38], we are un-
aware of any effort trying to virtualize OS-capable heterogeneous-
ISA platforms. Virtualizing such platforms is fundamentally dis-
tinct from CPU/GPU virtualization due to the differences in the
way GPUs and CPUs are programmed and interfaced. Virtualiz-
ing GPUs and other accelerators falls within the domain of device
virtualization. There is a specific interface/protocol between the
GPU and the CPU that needs to be virtualized or emulated. This is
very different from the software/hardware interface between the
guest OS and the VM that needs to be virtualized in the case of
system-level virtualization. Because of these differences, this work
focuses on OS-capable platforms and scopes out CPU/GPU setups.
Heterogeneity Scenarios. By virtualizing heterogeneous platforms
comes the possibility of running multiple potentially heterogeneous
virtual machines (VMs) on a single heterogeneous physical machine.
As mentioned in the introduction, enterprise servers may pair x86
CPUs together with ARM, MIPS, etc. A heterogeneous virtual ma-
chine enables a cloud provider to share between multiple tenants
all such processors — not just the x86, and providers may still apply
the classical pay-as-you-go pricing model of the cloud. This will
foster the democratization of heterogeneous-ISA hardware, amplify
the availability, affordability, performance, of the virtual machines
in the cloud, and increase the return-on-investment for the cloud
provider.

Several studies [1, 35, 40] demonstrated the benefits of hetero-
geneous-ISA platforms in terms of performance, or power con-
sumption at different integration scale. For example, by enabling
the software to runtime migrate between heterogeneous cores for
applications potentially exhibiting multiple phases [35, 40], where
the affinity goes towards a different ISA per phase. It is foreseen
that heterogeneous-ISA machines in the cloud (and cloud-edge)
will introduce a new flexible resource offer and pricing model. For
example, in elastic scenarios where reactivity is critical [33], a user
may decide to rent a VM on slow and cheap cores. However, in case
of a workload spike, the user would like a VM to quickly migrate
on-demand to faster and more expensive cores — which is possible
with heterogeneous-ISA machines, but requires an hypervisor.

Finally, virtualizing heterogeneous-ISA hardware enables the
classical features of virtualization: heterogeneous VMs will benefit
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Figure 1: The multihype design, in which multiple hypervi-
sors instances, each managing a set of physical CPUs of the
same ISA, abstracts a heterogeneous ISA machine hardware
to create multiple, potentially heterogeneous, VMs.

from consolidation, checkpoint/restart, migration, sandboxing, VM
introspection, etc.

Heterogeneity and Multiple-kernel OSes. So far, the problem of
executing applications among heterogeneous ISA processors has
been considered by the OS community [1, 2, 4, 27, 32] that came up
with the multiple-kernel OS design. A multiple-kernel OS instanti-
ates different OS kernels on different cores, or group of homoge-
neous cores. In a heterogeneous processing platform, to support
multiple ISAs, the address space of each kernel instance is different
- e.g., at minimum the code section of each instance includes ma-
chine instructions for a specific ISA. The multikernel [4] is the most
popular multiple-kernel design, and it has influenced a plethora of
OS works [1, 2, 27, 32]. The multikernel is based on the idea that
kernel instances do not use shared memory. Instances are "shared
nothing", therefore they don’t share any part of their address space
and communicate only via message-passing. For this reason, OS
services, which may be spawned on multiple kernel instances, are
implemented as distributed services — based on distributed proto-
cols.

3 The Multihype Design & Architecture

Scope and Assumptions. In our design, CPU virtualization is pro-
vided through direct-execution [8]. Existing solutions [5, 6] based
on emulation suffer from slowdowns that are unacceptable in pro-
duction. Thus, we assume hardware (full) virtualization support for
all processing units composing a heterogeneous platform. Anyhow,
hardware virtualization technologies are available in most modern
processors, including emerging ISAs, such as RISC-V [7].

Note that while paravirtualization can help with non-virtualizable
architectures [8], it drifts away from the pure virtualization concept
of providing the same machine interface to the software running
atop an hypervisor, by extending such machine interface with addi-
tional APIs — the hypercalls. Therefore, a paravirtualized hypervisor
maybe though such as a microkernel [19], thus it can be extended
to handle heterogeneity by means of the multikernel design.

The Multihype. We define a multihype as a hypervisor built with
different hypervisor instances. Each instance is compiled for a given
ISA/microarchitecture and runs on a core or set of cores of the same
ISA, ISA extensions, and microarchitecture — i.e., a processor is-
land. These instances communicate with each other to maintain
a consistent state for each running VM. VMs are virtual versions
of the physical host. This involves creating heterogeneous virtual
CPUs as well as different pseudo-physical address spaces from the
physical CPUs and memory on the host. A fundamental feature
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here is that the multihype can create a VM with heterogeneous
VCPUs. An illustration of this design is presented in Figure 1. Note
that in theory the multihype can also apply emulation (Dynamic
Binary Translation) to create a homogeneous-ISA VM on top of
a heterogeneous host, although the benefits of such a setup are
unclear. Our design does not make assumptions about how proces-
sors running different hypervisor’s instances are interconnected
— it can be anything, including Ethernet, PCle, coherency bus, etc.
Therefore, the multihype does not define a sharing model between
hypervisor instances, nor a communication model, such as message-
passing or shared memory. Moreover, our design is not specific to
type 1 or 2 hypervisors, and instances can either run bare metal or
be hosted in a modified host OS such as a multikernel.

The main features of a multihype design are: 1) inter-hypervisor
communication; 2) presenting the same machine interface than
the virtualized physical machine, including virtual CPUs, memory,
devices, and eventual features emulation, including CPU instruc-
tion extensions, DSM with different consistency properties when
share memory is not present, and virtual devices; and 3) providing
booting, termination, memory, scheduling, and attestation services
seamlessly across hypervisors. A multihype can run VMs composed
of both homogeneous- and heterogeneous-ISA processors. In the
latter case, we obviously assume the use of a guest OS supporting
heterogeneity, such as potentially adapted versions of Barrelfish [4],
Popcorn [2].

Communication between hypervisor instances is fundamental
in order to share resources and coordinate to manage VMs. When
shared memory is available, it is preferred for performance reasons.
Without shared memory, message passing is the paradigm of choice.
Although in our experience [1, 2] multihype should be built from
the same portable code-base, this is not a strict requirement — but
it helps in fixing a communication format.

A multihype may provide support for heterogeneous ISA proces-
sors in terms of emulating specific functionalities of instructions.
This may also include hypervisor services such as distributed shared
memory for hypervisor instances that cannot rely on shared mem-
ory interconnects.

Finally, a multihype runs a minimal set of coordinated services
on each hypervisor instance: memory management, VCPU schedul-
ing, and interrupt management. Such services are written in order
to exploit messaging and/or shared memory to communicate be-
tween different instances!. All other services (VM creation/deletion,
migration, paravirtualized drivers, etc.) are coordinated and imple-
mented either by one or a set of privileged VMs [11], such as Xen’s
domain 0 for type 1 hypervisor deployments, or by the host for
type 2 systems.

Virtual CPU Migration. A multihype will be able to migrate a set
of heterogeneous VCPUs from one heterogeneous physical machine
to another. However, we believe a multihype has further poten-
tial on which we can tap in. VCPU/VM migration across compute
units of heterogeneous ISAs would be highly beneficial in some
scenarios, for example when elasticity is needed. However, it is
challenging because it would require heterogeneity support from
the guest OS itself. While it is possible for processes to perform such

! The authors have another submission pending which explains how multiple-kernel
or multiple-hypervisor may communicate on shared memory
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migration as demonstrated by the Popcorn Linux OS and Compiler
Framework [1], adopting the same mechanism for the kernel is
not possible due to the architecture-specific characteristics of the
kernel state.

We rather propose to solve this migration issue by extracting the

essential part of a VM execution, i.e. the application state, and re-
initializing a fresh kernel for the target ISA. Translation to the target
ISA can be applied to the architecture-specific application state, for
example in a similar manner as defined in Popcorn Linux [1], then
restored in the freshly booted kernel. Obviously, instead of a freshly
booted kernel, a pre-booted image (VM fork [25]) can be resumed
in order to speed up the described migration process. Note that it is
likely that this process will require substantial communication be-
tween the guest and hypervisor to bridge the semantic gap, and we
do not exclude the development of dedicated hypercalls/upcalls. We
believe that for infrequent migrating VM this approach is superior
to ISA emulation.
Implementation Sketch. We are building a prototype implement-
ing the multihype model within the popular KVM hypervisor [24].
There is currently no real-world SoC with heterogeneous-ISA CPUs.
Existing work either rely on simulation [13, 40] or FPGA [26] proto-
types; and we were still not able to put our hands on the Intel’s Xeon
Gold 6138P processor. Our implementation will then execute on a
custom setup composed of two separate machines: a x86-64 (AMD
Epyc 7451) and an ARM server (Cavium ThunderX). The servers
are interconnected via Dolphin PXH810 PCle 3 8x adapters [39]
providing sub-microsecond shared memory as well as DMA trans-
fers. This setup is just a scaled up version of any x86 machine with
an intelligent SSD or NIC [16, 29-31] plugged in.

Because such a setup is composed of physically separated ma-
chines, our implementation of multihype may resemble a distributed
hypervisor. Communication between hypervisor instances are lever-
aged to distribute memory (through a DSM implementation), VC-
PUs of different ISAs, interrupts, as well as devices. As a result,a VM
has the illusion of running on a shared-memory heterogeneous-ISA
machine. Such a virtual model, virtualizing CPUs through direct-
execution, probably present better performance than any existing
prototype of future shared-memory heterogeneous-ISA platforms
such as software models [13, 40] or FPGA implementations [26].
This model can be used for research concerning heterogeneous
OS on such platforms which real-world implementations are not
available yet.

As a first step we plan to develop an implementation capable
of consolidating multiple heterogeneous VMs from a physical het-
erogeneous setup. We propose to adapt and run Popcorn Linux [1]
as the guest OS on these VMs. As a second step, we will focus on
VCPU migration among heterogeneous processing units. Applica-
tion state and the non architecture-specific part of the kernel state
related to an application (such as file descriptors) can be extracted
with Checkpoint-Restart In Userspace [12] (CRIU). If using Linux
for heterogeneous VCPU migration ends up being too challenging,
we plan to fall back on simpler guest OSes, namely unikernels [28].

4 Conclusion

Computer architectures are increasingly populated by heteroge-
neous ISA general-purpose processors. At the same time, virtualiza-
tion technologies are being adopted more broadly — not just in the
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data center. Both heterogeneity and virtualization are taking over
different markets from server to embedded. Thus, we considered
the problem of how a VM for a set of heterogeneous processors
should look like and be built. We propose the multihype design
together with an initial sketch of its implementation. The multihype
applies ideas from the multiple-kernel OS design into hypervisor
design.
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