A Framework to Secure Applications with ISA Heterogeneity

Xiaoguang Wang, SengMing Yeoh, Robert Lyerly, Sang-Hoon Kim*, Binoy Ravindran
Virginia Tech, Blacksburg, USA
{xiaoguang,sengming,rlyerly,binoy}@vt.edu
*Ajou University, South Korea
sanghoonkim@ajou.ac.kr

ABSTRACT

Software security attacks are evolving from exploiting common
code vulnerabilities to exploiting micro architecture side-channels.
Traditional software diversity or code randomization techniques
diversify the code memory layout and make it difficult for potential
attackers to pinpoint the precise location of the target vulnerability.
However, those approaches may not be sufficient enough for the
new micro architecture attacks (e.g., Spectre). While some architec-
ture researchers have proposed using diverse ISA configurations
to defeat code injection or code reuse attacks, most of these works
remain in the simulation stage due to legal, licensing, and verifica-
tion costs involved in bringing a heterogeneous chip design into
physical hardware [39].

In this paper, we report our on-going work of HeterSec, a frame-
work to secure applications utilizing real world heterogeneous ISA
machines. HeterSec runs on top of the commodity x86_64 and
ARMS64 machines. It gives the process the ability to dynamically
select its underlying ISA environment. Therefore, the protected
process would hide the vulnerable targets with the diversified in-
struction set, or would detect the abnormal behavior by comparing
the execution results step-by-step from multiple ISA-diversified
instances. To demonstrate the effectiveness of such software frame-
work, we implemented HeterSec on Linux and showed its deploya-
bility by running it on a x86_64 and ARM64 machine pair, connected
using InfiniBand. We then conduct two case studies with HeterSec.
In the first case, we timely randomize the process execution path
across the ISA, which achieves similar security guarantees as the
existing architecture based solutions. In the second case, we im-
plement a multi-ISA based multi-version execution (MVX) system,
providing a stronger security guarantee than current homogeneous-
ISA MVX designs.

CCS CONCEPTS

« Computer systems organization — Heterogeneous (hybrid)
systems; « Security and privacy — Systems security; Software
and application security.

KEYWORDS

Heterogeneous ISA, secure application, operating system, runtime

1 INTRODUCTION

The battles on software security are rapidly evolving. The classic
buffer overflow and stack smashing [2] uncovered many of the
early software exploits. By leveraging a smashed return address on
the stack, attackers can redirect a program’s control flow to execute

SFMA workshop’19, March 2019, Dresden, Germany

a remote shell. Later techniques such as data execution prevention
(DEP) prevented directly executing the injected code [45]. However,
the code reuse attacks could still leverage existing code to perform
arbitrary memory operations [30, 34]. Researchers have proposed
several defense mechanisms to defeat such code reuse attacks. For
example, control flow integrity (CFI) checks the program control
flow to enforce the runtime control flow follows the control flow
obtained from the static program analysis [1, 49]. However, the
latest research on function reuse attacks show that even if the
control flow is enforced, it is still possible to reuse the existing
functions in the target program to launch an attack [15, 38].

Fundamentally, this is caused by the static nature of such defense
mechanisms which gives the attackers a time advantage to study
the target system and launch the exploit [20]. Address space layout
randomization (ASLR) as well as it’s advanced variant runtime code
re-randomization, try to break the static nature of the process by
randomizing the code layout at the initial time or on the fly, to
prevent attackers from knowing the vulnerable code locations [9,
12, 44, 47]. Although it has raised the bar and made it more difficult
for attackers to discern the precise location of a vulnerability, some
research on full function reuse attacks show that it is very hard to re-
randomize some immutable function pointers and those unchanged
pointers could still be used to launch an attack [15, 38]. Even if the
full memory address space is re-randomized, recent researches on
micro architecture attacks (such as Spectre and Meltdown [24, 27])
show that it is still possible to steal the secret data from memory
by exploiting the processor prefetching vulnerabilities [17].

The attacks mentioned above are hard to detect or prevent. This
is because the static nature of the targeting platform is by default
not easy to change. This gives attackers time to study the target
platform features (e.g., LLC access time [24, 27, 48]), retrieve the
leaked information [36] and make the exploit [10]. Runtime ASLR
itself may not be sufficient enough to defeat this new breed of at-
tacks, such as micro architecture attacks on CPU pipeline prefetch-
ing [24, 27], or DRAM bit flipping [33]. This is caused by most
existing randomization techniques work on the same hardware
platform, giving the advanced attackers the possibility to study the
target hardware features and launch a architecture related attack.
Architecture researchers proposed a few systems that implement
heterogeneous ISA over one single chip to achieve inter-ISA pro-
gram state randomization with higher entropy [22, 40]. However,
due to a lack of real heterogeneous ISA platforms, it is extremely
hard for security researchers to leverage ISA heterogeneity to im-
plement security systems.

In this paper, we propose HeterSec, a framework that facilitates
the design and implementation of security systems over heteroge-
neous ISA. HeterSec works at the operating system and runtime
level, giving processes the ability to migrate or cross check between

SFMA workshop’19, March 2019, Dresden, Germany

two machines running on different ISA. To demonstrate the effec-
tiveness, we have built two security applications on top of HeterSec.
The first security application enables the random execution between
ISA different machines, achieving the similar security guarantee
as HIPStR [40] does. The second security application implements a
multi-version execution (MVX) ! system [25]. The traditional MVX
runs multiple variants of an application with different memory
layouts and checks the running behavior. Since all variants run
on the same hardware, the static nature of the hardware platform
will remain the same if the attacker launches a micro architecture
attack. Our heterogeneous ISA based MVX system could detect
such attacks. To the best of our knowledge, HeterSec is the first
practical system enables researchers to build security applications
on top of the real commodity heterogeneous ISA machines. Overall,
we made the following contributions:

e We proposed a software system that can manage the process
execution over heterogeneous ISA for security purpose.

e We implemented two security applications on top of such
system, namely execution randomization over multi-ISA
machines and heterogeneous-ISA based MVX.

e We showed the potential of such security system that could
defeat/detect the traditional memory vulnerability exploits
as well as the latest micro architecture attacks.

2 RELATED WORKS

In this section, we summarize the related works, describe the moti-
vation, and show the design space of our work.

Software diversity: The first category of related work is about
software diversity [26]. An important assumption for a software
attack is the attacker could have the information of the target
system [14, 35, 36, 43], or at least by chance to obtain such infor-
mation by, for example, brute forcing [10, 35]. It makes attacks
easier if the code itself and the defense mechanisms are static.
Software diversity provides uncertainty for the target system. It
breaks the static nature of the target and thus increases the cost
of an attack. For example, one of the notable software diversifi-
cation techniques is ASLR (for most cases, in the form of code
randomization) [5, 9, 12, 18, 23, 37, 44, 47]. Previous researches
demonstrated the effectiveness of code randomization at program
module level [37], page level [5], function level [23], basic block
level [12, 44], or even instruction level [18]. And some latest re-
searches further show the feasibility of ASLR at runtime, making
the code layout re-randomized for a given period of time [9, 12, 47].

Multi-version execution is another concrete technique of soft-
ware diversity. Instead of randomizing a single code instance, MVX
creates and runs multiple variants of code in memory simultane-
ously [13, 25, 29, 31, 32, 41, 42, 50]. Those variants are different in
memory layout, so that a malicious input might trigger the vul-
nerable code in one variant but likely to fail on other variants.
Such memory layout differences could be non-overlapping mem-
ory map [25, 31, 50], reverse stack growth [32], etc. Recently, re-
searchers also propose to apply MVX inside Linux kernel, to detect
kernel bug exploits [50]. However, most of the existing works focus
on defeating traditional software exploits, which are caused by the

1Some literature would also name it multi-variant execution, so the word version and
variant could be used interchangeably.

Xiaoguang Wang, et al.

vulnerable program logic [42]. After the acceptance of this paper,
by a private conversation, the authors of [42] let us know about
their work under review. Very few of the MVX system is able to
detect the inconsistent behavior caused by architecture level differ-
ences. Thus there is an emerging need to detect the new coming
architecture related attacks.

Hardware related attacks: Recently, several attacks have sur-
faced targeting the microarchitecture of modern processors, lever-
aging race conditions brought about by advanced optimization fea-
tures such as out-of-order execution [27], and speculative execution
[24]. Since these attacks are reliant of hardware microarchitecture,
they are capable of breaking security guarantees provided by par-
avirtualization and containerization. One key piece these attacks
hinge on is the usage of cache side-channel timing to leak secrets
by using them as an index into an oracle array. By observing the
latency differences between hot and cold cache lines over multiple
executions an attacker can then discern the values and exfiltrate
secret data.

This Evict+Time method relies on architecture specific intrinsics
such as _mm_c1flush() on Intel x86_64 to perform a cache evic-
tion [19, 48]. While ARMv38 does have instructions to evict cache
lines such as DC IVAC, these can be trapped or disabled at Execu-
tion Level 0 [3]. Cache timing differences between systems would
also make the attack more difficult in a heterogeneous system as
microarchitectural state is not migrated between systems.

In addition to these microarchitecture attacks, hardware mem-
ory attacks such as Rowhammer have successfully been exploited
to gain kernel access [33]. By accessing Dynamic Random Access
Memory (DRAM) rows repeatedly attackers successfully cause bit
flips in adjacent rows, enabling sandbox security guarantees to be
bypassed. However, in order to access specific DRAM rows repeat-
edly, a cache miss needs to first occur. This is done via the same
Intel intrinsic function mentioned previously, _mm_c1flush(). The
same thought process of adding entropy via heterogeneous migra-
tion also applies here as this attack relies on consistent accesses to
the same DRAM rows in order to trigger the bit flip.

ISA Heterogeneity: Another category of the related work in-
cludes a variety of applications on heterogeneous ISA. The ISA het-
erogeneity has been well studied and broadly used in many parallel
programming scenarios [11, 21, 28]. For example, GPUs are gener-
ally used to accelerate HPC workloads [28], machine learning [11]
and even Al inference [21]. On mobile devices, heterogeneous pro-
cessors are used to provide a good balance between performance
and power consumption (e.g., ARM big.LITTLE [4]). In addition,
recent researches also show some interesting use cases of ISA het-
erogeneity helps to improve energy efficiency and security [6, 8, 40].
For example, one of the most related work of our paper is HIPStR,
which implements a heterogeneous-ISA multi-core processor based
on the gem5 simulator [40]. The authors showed that the ISA di-
versity could significantly increase the entropy to defeat a branch
of code reuse attacks, such as ROP, JIT-ROP and several evasive
variants [30, 34, 36, 40]. Different from the architecture simulation,
we built HeterSec on the real world commodity software/hardware
stack, and we also show the possibility of broader use cases which
benefit from the ISA heterogeneity.

A Framework to Secure Applications with ISA Heterogeneity

©)

[X86_64 Variant

{ ARM64 Metadata | { X86_64 Metadata |

HeterSec MVX

G N

HeterSec MVX

HeterSec Address Space

\
Process Runtime

i
|
|
| | Secure Application !
| J
|
|
|

Process Runtime
i

(System Resource | | PerProcess
____Service ___| \Synchronized Page Table)
L HeterSec Linux ARM64J- (HeterSec Linux X86_64)
O OO |l«e—>| AN A
ARM64 Multi-Core InfiniBand X86_64 Multi-Core

Figure 1: The overview of HeterSec with two security appli-
cation scenarios. The dotted line indicates the modification
over existing software stack.

3 DESIGN
3.1 System overview

HeterSec aims at securing the process execution by utilizing the
ISA heterogeneity, for example, randomizing the process execu-
tion environment over heterogeneous machines. To achieve that,
HeterSec provides a HeterSec execution environment. Specifically, it
allows the protected process to be executed on machines running
with different ISAs as if it runs on a single machine. Figure 1 shows
an overview of HeterSec with our multiple modifications on an
existing computer system stack. The modifications include both the
kernel and the userspace process as shown in dotted line. Figure 1
also shows two secure application scenarios on top of HeterSec.
In the first scenario, HeterSec timely switches the underlying ISA
for the protected application, increases the entropy of the possible
program states, and bewitches the attackers from knowing the un-
derlying hardware details. In the second scenario, HeterSec launches
multiple variants of the program, monitors the variants’ execution
of system calls, and raises an alert on any execution differences
caused by a potential attack.

To support ISA-switching, HeterSec retrofits the HeterSec ad-
dress space to embed metadata of both ISAs. The metadata contains
the current program state and the resource mapping of each ISAs.
It runs on top of the HeterSec distributed operating system. The
HeterSec distributed operating system kernel maintains a synchro-
nized page table for each protected process. The page tables are
synchronized during each ISA switch, giving the HeterSec process a
unique view of the underlying memory. The secure application will
be loaded by the HeterSec loader. It controls the HeterSec runtime
which activates the corresponding security purpose.

The HeterSec has a concept of dominating OS, also referred to
as the master OS. The master OS is the OS where we launch the
HeterSec process. Correspondingly, we call the OS that works as
the counterpart a follower OS. The master HeterSec OS exports
the system resources to the follower OS. Such system resources
are often unique for each process, for example, the opened file de-
scriptors, sockets, or event poll descriptors. For safety reasons, the

SFMA workshop’19, March 2019, Dresden, Germany

HeterSec has to make sure that only one copy of such resources is
maintained across OSes. All the software systems above mentioned
are running on the ISA different machines, with fast network con-
nection. In the following of this section, we will break down each
component and describe the design details.

3.2 HeterSec address space

HeterSec address space contains all the necessary information to
run a process across ISA. For example, the ISA specific instructions
and the ISA independent data. It might also carry some additional
information, such as the program state for execution relocation.
The types of information are decided by each individual security ap-
plication. For example, the cross-ISA randomized execution would
require most of the information embedded as metadata. Because
it needs the program state (e.g., the variables on stack) to be syn-
chronized across ISAs during each execution relocation. Security
application, such as multi-ISA MVX, requires less information in
metadata as it only has to execute the ISA specific instructions. The
data and the opened descriptors will be synchronized by the operat-
ing system runtime. The HeterSec address space is virtually spread
across the ISAs. Depend on the security application, the update on
one node would be reflected on the counterpart node immediately,
postponed or discarded. The synchronization is performed with
the help of the underlying HeterSec distributed kernel.

3.3 HeterSec distributed kernel

The HeterSec distributed kernel could be considered as a special
implementation of the multikernel system [7]. Instead of running on
amulti-core NUMA machine, HeterSec runs on a heterogeneous ISA
multi-domain “machine”, with each computing domain connected
with fast network connection. HeterSec does not maintain the
global state for all OSes, instead it maintains some HeterSec process
specific states and synchronizes them on demand. To be compatible
with existing software stacks, the HeterSec distributed operating
system is designed as several kernel extensions and is built based on
the Linux kernel. There are three major components that facilitate
HeterSec process running on heterogeneous ISA machines: the per
process page table handler, secure applications, and the system
resource sharing service.

The first component is a per process page table synchronization
handler. HeterSec provides a synchronized page table for each Het-
erSec process. The state would be synchronized across the x86_64
and ARM64 machines on demand. Before the process is started as
a HeterSec protected process, the secure application (a kernel mod-
ule) have to be loaded and pass the security policy to the process
runtime. The runtime then decides the process execution behavior,
for example, random execution across ISA or concurrent execution
with cross-ISA lockstep state checking. In short, based on the run-
time security policy, the page table synchronization handler would
selectively synchronize the data pages, stack pages, or only several
shared pages for lockstep checking. In current design, HeterSec
leverages a dedicated kernel thread to handle the synchronization
requests. It maintains a simple read-duplicate write-invalidate pro-
tocol for the shared pages [46].

Another important component for HeterSec is the system re-
source sharing service. HeterSec maintains a single view of the

SFMA workshop’19, March 2019, Dresden, Germany

HeterSec Process

| |

€--
| <—-

] | Virtual descriptor table
Virtually shared Of /deviptsio
1] /dev/pts/0
memory page | [-
5[/www/indexhtml (1] @
o/ | @
®
Syscall @)
read(5, buf, ...)
RPC stub | —@_{ Stub
Master OS Follower OS

Figure 2: HeterSec virtual descriptor table. This figure shows
when the HeterSec process is accessing a remote descriptor
on follower OS side.

system resource from HeterSec process’s perspective. That means
for each HeterSec process, there will be only one set of the net-
work sockets, opened file descriptors, etc. Unfortunately, system
resources such as file descriptors, sockets and event descriptors,
are by default not allowed to share across the machine boundary.
One partial solution could be using a Network File System (NFS)
to share and synchronize the file systems across the OS. However,
there might be some files that are OS related, e.g., a shared library
is often in different ELF format between ISA different OSes. To
address this problem, HeterSec combines an implementation of sys-
tem resource Remote Procedure Call (RPC) and a virtual descriptor
table (VDT).

Figure 2 shows the how the system resource RPC works with
the virtual descriptor table. Before starting the process, the security
application will specify a white list of files that should be loaded
locally. During the HeterSec process’s running time, the follower
OS would build up a virtual descriptor table. For each table entry,
it specifies whether the descriptor is in local node, is in remote
master node or has to be simulated. The simulation happens when
executing multiple versions of code, therefore, some descriptors
might only have to be created once. For example, we do not want
to create two sockets for a same connection request on HeterSec
MVX. For those system resource requests that have to be handled
on master OS, a RPC alike mechanism is provided. The RPC stub
on master OS handles the RPC request, sets up the buffer value on
a virtually shared page, and returns the result back. Note that the
virtually shared page is synchronized by the HeterSec kernel, as
mentioned above.

3.4 An early prototype

We describe our early implementation of HeterSec prototype. Based
on that, we implement two security applications which exploit the
ISA heterogeneity.

We implement a prototype of HeterSec on a x86_64 and an
ARMS64 machine pair, connected using a Mallanox ConnectX-3 In-
finiBand. To enable the HeterSec address space, we leverage an
open source popcorn compiler [6] to embed all the ISA related
metadata into the executable. Such information includes the ISA
specific instructions, the state relocation mapping, as well as the
migration/cross-checking points. The state relocation mapping is

Xiaoguang Wang, et al.

used at each migration point, which translates the currently run-
ning states (e.g., register states, stack slots, etc.) from one ISA to
another. The popcorn compiler was built on LLVM, and all the ISA
specific code instrumentation was implemented as several backend
passes [6]. The synchronized page table handler is implemented
in kernel virtual memory subsystem. The updates on HeterSec
protected process space would be synchronized across machine
boundary, by hooking the vma and pte operations [16]. Based on
the above mentioned prototype, we implement two security appli-
cations:

Code randomization with ISA switching: The first security
application is a heterogeneous-ISA based code randomization sys-
tem. Unlike most of the existing runtime code randomization tech-
niques, HeterSec randomizes the code execution with runtime
switchable ISA. From the process’s perspective, it runs on top of a
dynamic hardware environment, with explicit ISA diversity. There-
fore, it would be very hard for an attacker to prepare the exploit
workload, for example, finding the correct ROP gadget chain, or
accurately measuring the side-channel.

When the process executes at a potential ISA switching point, the
runtime will randomly decide which ISA the process will execute
on in next step. Those ISA switching points are similar to the
randomizing points in existing code re-randomization works [9, 47],
except that existing randomization techniques update the code
pointer references while HeterSec updates the ISA related states
(e.g., stack slots, register set). A per process virtual descriptor table is
used to give the process a unique view of the system resources, even
if the process is executed on the follower OS. We have supported
several compute and memory bound workloads as well as an I/O
bound workload like Nginx web server.

MVX with ISA diversity: The second security application is a
heterogeneous-ISA based multi-version execution system. Similar
to a traditional MVX system, the HeterSec MVX also has one leading
variant and one (or several) follower variant(s).? The leader runs
with full access to system resources, while the follower can only
conduct computational and memory related operations. Since all
the system resource accesses are from the system call interface,
most MVX systems do the state comparison at each system call
entry and return. HeterSec MVX follows the same principle.

Specifically, the runtime on follower OS will verify whether the
resource access should be simulated or passed through. For system
calls tagged for passthrough, the follower OS serves the HeterSec
process as usual. For those system calls that access the per process
resources (e.g., opened file descriptors, sockets, etc.), the HeterSec
runtime would simulate those accesses by synchronizing the system
call effects from the master OS. HeterSec MVX also implements
a ring buffer (located in the virtually shared page) to pass those
events in a FIFO queue based manner (e.g., the syscall return values,
or the modifications of data structures).

To prevent false positive introduced by the different libraries
across machines, the HeterSec compiler compiles the application
source code and links the object files with the musl library gener-
ated from the same source. Therefore, the system call sequences
are almost the same among the ISA-different binaries, except for
a few thread initialization functions like set_tid_address(int

2For the sake of simplicity, we use one leader and one follower in this paper description.

A Framework to Secure Applications with ISA Heterogeneity

*tidptr). In this case, we just avoid the comparison for such sys-
tem call executions. We have successfully supported an unmodified
lighttpd web server running on top of HeterSec MVX system.

4 DISCUSSION

The approach of diversifying the underlying ISA environment dur-
ing the process execution is quite challenging. It is not only caused
by the lack of such commodity hardware, but also due to very few
software system supported to exploit ISA difference in security
purpose. HeterSec was proposed and designed under such scenario.
Address space across node: HeterSec implements a shared
address space that spreads across the nodes. Such address space
synchronization is maintained by the software, especially the ker-
nels. It would be much convenient if the memory could be syn-
chronized across the ISA (or machine node) by hardware. We have
seen a branch of the new coming new hardware techniques, such
as RDMA over InfiniBand. So it might be possible to utilize those
features to speed up some cross-node synchronization or compari-
son operations. Descriptors and their handlers are another issues
that we realized in implementing such system. Currently, we are
using a virtual descriptor table to synchronize and simulate the
distributed system resource. And it might be easier for HeterSec if
the descriptors could be managed in a global and unified form.
Possible attacks: HeterSec hides the underlying architecture en-
vironment from attackers by dynamically switching the ISA. How-
ever, there might be some possible attack surfaces. For example, the
current HeterSec implementation does not support runtime code
re-randomization. Currently, HeterSec leverages the ISA switching
to disturb some attack presumptions, such as the known gadget
chain or timing information. While it is possible to re-randomize
the code by using dynamic binary instrumentation (DBI) or page
table based re-randomization during the program state relocation.

5 CONCLUSION

We reported the design and implementation of our on-going work
of HeterSec, a framework to improve application security with ISA
heterogeneity. HeterSec provides an environment to enable Heter-
Sec process to select its underlying ISA, thus it adds an additional
layer of dynamic and software diversity. HeterSec was built with
several compiler and kernel extensions to facilitate process running
on heterogeneous hardware in a security enhanced manner. The
two security applications built on HeterSec show that it is feasi-
ble to leverage the existing heterogeneous hardware to improve
application security.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their insightful
comments. This work is supported in part by ONR under grant
N00014-18-1-2022.

REFERENCES

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009. Control-Flow
Integrity Principles, Implementations, and Applications. ACM Transactions on
Information and System Security (TISSEC) 13, 1 (2009), 4.

[2] One Aleph. 1996. Smashing the stack for fun
http://www.shmoo.com/phrack/Phrack49/p49-14 (1996).

[3] ARM 2018. The ARMv8-A Architecture Reference Manual. ARM.

and profit.

[10

[11

[12

[13

[14

~
£,

[23

[24]

[26

SFMA workshop’19, March 2019, Dresden, Germany

ARM Limited (or its affiliates). Accessed: 2019-01-14. ARM BIG.LITTLE. https:
//www.arm.com/why-arm/technologies/big-little.

Michael Backes and Stefan Nurnberger. 2014. Oxymoron: Making Fine-grained
Memory Randomization Practical by Allowing Code Sharing. Proc. 23rd Usenix
Security Sym (2014), 433-447.

Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony Carno,
Ho-Ren Chuang, Vincent Legout, and Binoy Ravindran. 2017. Breaking the
boundaries in heterogeneous-ISA datacenters. In ACM SIGPLAN Notices, Vol. 52.
ACM, 645-659.

Baumann, Andrew and Barham, Paul and Dagand, Pierre-Evariste and Harris,
Tim and Isaacs, Rebecca and Peter, Simon and Roscoe, Timothy and Schiipbach,
Adrian and Singhania, Akhilesh. 2009. The multikernel: a new OS architecture for
scalable multicore systems. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles. ACM, 29-44.

Bhat, Sharath K and Saya, Ajithchandra and Rawat, Hemedra K and Barbalace, An-
tonio and Ravindran, Binoy. 2016. Harnessing energy efficiency of heterogeneous-
ISA platforms. ACM SIGOPS Operating Systems Review 49, 2 (2016), 65-69.
David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed
Okhravi. 2015. Timely rerandomization for mitigating memory disclosures. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 268-279.

Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, and Dan Boneh.
2014. Hacking Blind. In Security and Privacy (SP), 2014 IEEE Symposium on. IEEE,
227-242.

Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

Yue Chen, Zhi Wang, David Whalley, and Long Lu. 2016. Remix: On-demand
live randomization. In Proceedings of the Sixth ACM Conference on Data and
Application Security and Privacy. ACM, 50-61.

Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack
Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. 2006. N-Variant
Systems: A Secretless Framework for Security through Diversity.. In USENIX
Security Symposium. 105-120.

Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. 2015. Readactor:
Practical Code Randomization Resilient to Memory Disclosure. In 36th IEEE
Symposium on Security and Privacy (Oakland).

Stephen J Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen,
Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and Michael
Franz. 2015. It’s a TRaP: Table randomization and protection against function-
reuse attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. ACM, 243-255.

Daniel, P and Marco, Cesati and others. 2007. Understanding the Linux kernel.
John Demme, Robert Martin, Adam Waksman, and Simha Sethumadhavan. 2012.
Side-channel vulnerability factor: A metric for measuring information leakage.
In Computer Architecture (ISCA), 2012 39th Annual International Symposium on.
IEEE, 106-117.

Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W Davidson.
2012. ILR: Where’d My Gadgets Go?. In Security and Privacy (SP), 2012 IEEE
Symposium on. IEEE, 571-585.

Intel 2018. Intel 64 and IA-32 Architectures Software Developers Manual. Intel.
Jajodia, Sushil and Ghosh, Anup K and Swarup, Vipin and Wang, Cliff and Wang,
X Sean. 2011. Moving Target Defense: Creating Asymmetric Uncertainty for Cyber
Threats. Vol. 54. Springer Science & Business Media.

Hyeran Jeon, Yinglong Xia, and Viktor K Prasanna. 2010. Parallel exact inference
on a CPU-GPGPU heterogenous system. In Parallel Processing (ICPP), 2010 39th
International Conference on. IEEE, 61-70.

Gaurav S Kc, Angelos D Keromytis, and Vassilis Prevelakis. 2003. Countering
code-injection attacks with instruction-set randomization. In Proceedings of the
10th ACM conference on Computer and communications security. ACM, 272-280.
Chongkyung Kil, Jinsuk Jim, Christopher Bookholt, Jun Xu, and Peng Ning. 2006.
Address Space Layout Permutation (ASLP): Towards Fine-grained Randomization
of Commodity Software. In Computer Security Applications Conference, 2006.
ACSAC’06. 22nd Annual. IEEE, 339-348.

Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-
tion. In 40th IEEE Symposium on Security and Privacy (S&P’19).

Koen Koning, Herbert Bos, and Cristiano Giuffrida. 2016. Secure and Efficient
Multi-Variant Execution using Hardware-Assisted Process Virtualization. In
2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 431-442.

Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. 2014. SoK:
Automated Software Diversity. In Proceedings of the 2014 IEEE Symposium on
Security and Privacy (SP ’14).

https://www.arm.com/why-arm/technologies/big-little
https://www.arm.com/why-arm/technologies/big-little

SFMA workshop’19, March 2019, Dresden, Germany

[27]

[28

[29]

[30]

[32]

(33

[34]

[35

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al. 2018.
Meltdown: Reading kernel memory from user space. In 27th USENIX Security
Symposium (USENIX Security 18). 973-990.

Mittal, Sparsh and Vetter, Jeffrey S. 2015. A survey of CPU-GPU heterogeneous
computing techniques. ACM Computing Surveys (CSUR) 47, 4 (2015), 69.

Pierre Olivier, Antonio Barbalace, and Binoy Ravindran. 2016. Multi-Variant
Execution atop a Decomposed Hypervisor on Emerging Heterogeneous-ISA
Multicore. EuroSys’16 (Poster).

Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-
oriented Programming: Systems, Languages, and Applications. ACM Transactions
on Information and System Security (TISSEC) 15, 1 (2012), 2.

Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. 2009. Orchestra:
intrusion detection using parallel execution and monitoring of program variants
in user-space. In Proceedings of the 4th ACM European conference on Computer
systems. ACM, 33-46.

Salamat, Babak and Gal, Andreas and Franz, Michael. 2008. Reverse stack exe-
cution in a multi-variant execution environment. In Workshop on Compiler and
Architectural Techniques for Application Reliability and Security. 1-7.

Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM rowhammer bug
to gain kernel privileges. Black Hat 15 (2015).

Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
Into-Libc without Function Calls (on the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security.

Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the Effectiveness of Address-space Randomization.
In Proceedings of the 11th ACM Conference on Computer and Communications
Security (CCS °04). 298-307.

Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-in-time Code Reuse: On the
Effectiveness of Fine-grained Address Space Layout Randomization. In Security
and Privacy (SP), 2013 IEEE Symposium on. IEEE, 574-588.

PaX Team. 2003. PaX Address Space Layout Randomization (ASLR).

Victor van der Veen, Dennis Andriesse, Manolis Stamatogiannakis, Xi Chen,
Herbert Bos, and Cristiano Giuffrdia. 2017. The dynamics of innocent flesh on
the bone: Code reuse ten years later. In Proceedings of the 2017 ACM SIGSAC

Xiaoguang Wang, et al.

Conference on Computer and Communications Security. ACM, 1675-1689.
Ashish Venkat, Harsha Basavaraj, and Dean Tullsen. 2019. Composite-ISA Cores:
Enabling Multi-ISA Heterogeneity Using a Single ISA. In 25th IEEE International
Symposium on High Performance Computer Architecture. IEEE.

Ashish Venkat, Sriskanda Shamasunder, Hovav Shacham, and Dean M Tullsen.
2016. Hipstr: Heterogeneous-isa program state relocation. In ACM SIGARCH
Computer Architecture News, Vol. 44. ACM, 727-741.

Stijn Volckaert, Bart Coppens, and Bjorn De Sutter. 2016. Cloning your gadgets:
Complete ROP attack immunity with multi-variant execution. IEEE Transactions
on Dependable and Secure Computing 13, 4 (2016), 437-450.

Alexios Voulimeneas, Dokyung Song, Fabian Parzefall, Yeoul Na, Per Larsen,
Michael Franz, and Stijn Volckaert. 2019. DMON: A Distributed Heterogeneous
N-Variant System. In Submission.

Xiaoguang Wang and Yong Qi. 2017. Secure the commodity applications against
address exposure attacks. In Computers and Communications (ISCC), 2017 IEEE
Symposium on. IEEE, 450-456.

Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhigiang Lin. 2012. Bi-
nary Stirring: Self-randomizing Instruction Addresses of Legacy x86 Binary Code.
In Proceedings of the 2012 ACM Conference on Computer and Communications
Security (CCS ’12).

Wikipedia. Accessed: 2019-01-14. Data Execution Prevention. http://en.wikipedia.
org/wiki/Data_Execution_Prevention.

Wikipedia. Accessed: 2019-02-14. MSI Protocol. https://en.wikipedia.org/wiki/
MSI_protocol.

David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake,
Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis, Junfeng Yang,
and William Aiello. 2016. Shuffler: Fast and Deployable Continuous Code Re-
Randomization.. In OSDI. 367-382.

Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack.. In USENIX Security Symposium, Vol. 1.
22-25.

Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries. In
Proceedings of the 22Nd USENIX Conference on Security (SEC’13).

Sebastian Osterlund, Koen Koning, Pierre Olivier, Antonio Barbalace, Herbert
Bos, and Cristiano Giuffrida. 2019. kMVX: Detecting Kernel Information Leaks
with Multi-variant Execution. In ASPLOS.

http://en.wikipedia.org/wiki/Data_Execution_Prevention
http://en.wikipedia.org/wiki/Data_Execution_Prevention
https://en.wikipedia.org/wiki/MSI_protocol
https://en.wikipedia.org/wiki/MSI_protocol

	Abstract
	1 Introduction
	2 Related works
	3 Design
	3.1 System overview
	3.2 HeterSec address space
	3.3 HeterSec distributed kernel
	3.4 An early prototype

	4 Discussion
	5 Conclusion
	Acknowledgments
	References

