On Distributed Real-Time Scheduling in Networked Embedded
Systems in the Presence of Crash Failures

Binoy Ravindran', Jonathan S. Anderson', and E. Douglas Jensen?

! ECE Dept., Virginia Tech, Blacksburg, VA 24061, USA, andersoj@vt.edu, binoy@vt.edu
2 The MITRE Corporation, Bedford, MA 01730, USA, jensen@mitre.org

Abstract. We consider the problem of scheduling distributable real-time threads in networked
embedded systems that operate under run-time uncertainties including those on thread execution
times, thread arrivals, and node failure occurrences. We present a distributed scheduling algorithm
called CUA. We show that CUA satisfies thread time constraints in the presence of crash failures,
is early-deciding, has an efficient message complexity of O(fn) (where f is the number of crashes
that actually occur and n is the number of nodes), and is time-optimal with a time lower bound of
O(D+ fd+nk) (where D is the message delay upper bound, d is the failure detection bound, and &
is the maximum number of threads). In crash-free runs, the algorithm constructs schedules within
O(D + nk), and yields optimal total utility if nodes are also not overloaded. The algorithm is also
“best-effort” in that a high importance thread that may arrive at any time has a very high likelihood
for feasible completion (in contrast to classical admission control algorithms which favor feasible
completion of admitted threads over admitting new ones, irrespective of thread importance).

1 Introduction

In distributed systems, action and information timeliness is often end-to-end—e.g., a causally dependent,
multi-node, sensor to actuator sequential flow of execution in networked embedded systems that control
physical processes. Such a causal flow of execution can be caused by a series of nested, remote method
invocations. It can also be caused by a series of chained, publication and subscription events, caused due
to topical data dependencies—e.g., publication of topic .4 depends on subscription of topic B; publication
of B, in turn, depends on subscription of topic C, and so on. Designers and users of distributed systems,
networked embedded systems in particular, often need to dependably reason about — i.e., specify, manage,
and predict — end-to-end timeliness.

Many emerging networked embedded systems are dynamic in the sense that they operate in envi-
ronments with dynamically uncertain properties (e.g., [1]). These uncertainties include transient and
sustained resource overloads (due to context-dependent activity execution times), arbitrary activity ar-
rivals, and arbitrary node failures. Reasoning about end-to-end timeliness is a very difficult and unsolved
problem in such dynamic uncertain systems. Another distinguishing feature of motivating applications for
this model (e.g., [1]) is their relatively long activity execution time magnitudes—e.g., milliseconds to min-
utes. Despite the uncertainties, such applications desire the strongest possible assurances on end-to-end
activity timeliness behavior.

Maintaining end-to-end properties (e.g., timeliness, connectivity) of a control or information flow re-
quires a model of the flow’s locus in space and time that can be reasoned about. Such a model facilitates
reasoning about the contention for resources that occur along the flow’s locus and resolving those con-
tention to optimize system-wide end-to-end timeliness. The distributable thread programming abstraction
which first appeared in the Alpha OS [2] and subsequently in Mach 3.0 [3] (a subset), MK?7.3 [4], Real-Time
CORBA 1.2 [5], and Sun’s emerging Distributed Real-Time Specification for Java (DRTSJ) [6] directly
provide such a model as their first-class programming and scheduling abstraction. A distributable thread
is a single thread of execution with a globally unique identity that transparently extends and retracts
through local and remote objects.

A distributable thread carries its execution context as it transits node boundaries, including its
scheduling parameters (e.g., time constraints, execution time), identity, and security credentials. The
propagated thread context is intended to be used by node schedulers for resolving all node-local resource
contention among distributable threads such as that for node’s physical (e.g., processor, I/0) and logical
(e.g., locks) resources, according to a discipline that provides application-specific, acceptably optimal,



system-wide end-to-end timeliness. Figure 1 shows the execution of four distributable threads. We fo-
cus on distributable threads as our end-to-end control flow/programming/scheduling abstraction, and
hereafter, refer to them as threads, except as necessary for clarity.
When overloads occur, meeting
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tinction generally need not be made,

especially if all time constraints are

deadlines, as optimal algorithms exist that can meet all deadlines—e.g., EDF [7].)

Deadlines cannot express both urgency and importance. Thus, we consider the time/utility function
(or TUF) timeliness model [8] that specifies the utility of completing a thread as a function of that thread’s
completion time. We specify a deadline as a binary-valued, downward “step” shaped TUF; Figure 2 shows
examples. A thread’s TUF decouples its importance and urgency—urgency is measured on the X-axis,

and importance is denoted (by utility) on the Y-axis.

When thread time constraints are expressed with fUtility
TUFs, the scheduling optimality criteria are based
on maximizing accrued thread utility—e.g., maximiz-
ing the total thread accrued utility. Such criteria are N : T
ime

called wtility accrual (or UA) criteria, and sequenc-
ing (scheduling, dispatching) algorithms that opti-
mize UA criteria are called UA sequencing algorithms
(see [9] for example algorithms).

UA algorithms that maximize total utility under downward step TUF's (e.g., [10,11]) default to EDF
during underloads, since EDF satisfies all deadlines during underloads. Consequently, they obtain the
optimum total utility during underloads. During overloads, they inherently favor more important threads
over less important ones (since more utility can be attained from the former), irrespective of thread
urgency, and thus exhibit adaptive behavior and graceful timeliness degradation. This behavior of UA
algorithms is called “best-effort” [10] in the sense that the algorithms strive their best to feasibly complete
as many high importance threads — as specified by the application through TUFs — as possible.?
Consequently, high importance threads that arrive at any time always have a very high likelihood for
feasible completion (irrespective of their urgency). Note also that EDF’s optimal timeliness behavior is a
special-case of UA scheduling.

Contributions: Assured Thread Timeliness in the Presence of Failures. In this paper, we
consider the problem of scheduling threads in the presence of the previously mentioned uncertainties,
focusing particularly on (arbitrary) node failures. Past efforts on thread scheduling (e.g., [2,12,13])
consider a paradigm broadly called independent node scheduling, where threads are scheduled at nodes
using propagated thread scheduling parameters and without any interaction with other nodes (thereby not
considering node failures during scheduling). Fault-management is separately addressed by thread integrity
protocols [14] that run concurrent to thread execution. Thread integrity protocols detect failures of the
thread abstraction, delivering failure-exception notifications [2,13]. This approach avoids the overhead
of inter-node communication, and is therefore message-efficient and tractable (solely from the thread

Fig. 2. Example Step TUF Time Constraints

3 Note that the term “best effort” as used in the context of networks actually is intended to mean “least effort.”



scheduling standpoint). However, the approach poses theoretical difficulties in establishing end-to-end
timing assurances, due to the complex (and concurrent) interaction between thread scheduling and thread
fault-management mechanisms.

We consider instead collaborative scheduling, where nodes explicitly cooperate to construct system-
wide thread schedules, anticipating node failures. Of course, doing so incurs message overhead costs, and
thus raises fundamental questions including a) what upper bounds can be established for such message
costs, and b) what are the consequent payoffs.

We answer these questions. We present an algorithm called Consensus-based Utility accrual scheduling
Algorithm (or CUA). The algorithm considers distributable threads that are subject to TUF time con-
straints. Threads may have arbitrary arrival behaviors, may exhibit unbounded execution time behaviors
(causing node overloads), and may span nodes that are subject to arbitrary crash failures. For such a
model, we consider the scheduling objective of maximizing the total thread accrued utility.

CUA is a distributed algorithm that consists of a set of node schedulers that cooperate to real-
ize the algorithm’s logic. Node schedulers invoke themselves at events of interest (e.g., thread arrival,
failure-suspicion), construct local schedules, broadcast schedules, and arrive at consensus on system-wide
schedules, despite failures. We show that CUA satisfies thread time constraints in the presence of crash
failures, is early-deciding (i.e., its decision time is proportional to the actual number of crashes), has an
efficient message complexity of O(fn) (where f is the number of crashes that actually occur and n is the
number of nodes), and is time-optimal with a time lower bound of O(D+ fd+nk) (where D is the message
delay upper bound, d is the failure detection bound, and % is the maximum number of threads). Note
that early-deciding consensus algorithms in the continuous-time synchronous model (where processes do
not execute in lock-step rounds) have an optimal time lower bound of O(D + fd) [15]. In crash-free
runs, CUA constructs schedules within O(D + nk), and yields optimal total utility if nodes are also not
overloaded. The algorithm also retains the fundamental best-effort property of UA algorithms—i.e., a
high importance thread that may arrive at any time has a very high likelihood for feasible completion.
To the best of our knowledge, this is the first algorithm to provide these properties.

The rest of the paper is organized as follows: In Section 2, we discuss the models of our work and state
the algorithm objectives. Section 3 presents CUA. We establish the algorithm’s properties in Section 4.
We conclude the paper in Section 5.

2 Models

2.1 Distributable Thread Abstraction

Threads execute in local and remote objects by location-independent invocations and returns. A thread
begins its execution by invoking an object operation. The object and the operation are specified when
the thread is created. The portion of a thread executing an object operation is called a thread segment.
Thus, a thread can be viewed as being composed of a concatenation of thread segments.

A thread’s initial segment is called its root and its most recent segment is called its head. The head of
a thread is the only segment that is active. A thread can also be viewed as being composed of a sequence
of sections, where a section is a maximal length sequence of contiguous thread segments on a node. A
section’s first segment results from an invocation from another node, and its last segment performs a
remote invocation. Further details of the thread model can be found in [2,5,16].

Execution time estimates of the sections of a thread are assumed to be known when the thread arrives.
A section’s execution time estimate is the execution time estimate of the contiguous set of thread segments
that starts from the operation of the object invoked on the node (i.e., the first thread segment executed
on the node) and ends with the first remote invocation made from the node. The time estimate includes
that of the section’s normal code and its exception handler code, and can be violated at run-time (e.g.,
due to context dependence, causing processor overloads).

The sequence of remote invocations and returns made by a thread can typically be estimated by
analyzing the thread code (e.g., [17]). The total number of sections of a thread is thus assumed to be
known a-priori.

The application is thus comprised of a set of threads, denoted T = {T3,T», T5,...}. The set of sections
of a thread T; is denoted as [S},S%,..., Si].



2.2 Timeliness Model

We specify the time constraint of each thread using a TUF. A thread T;’s TUF is denoted as U; (¢).
A classical deadline is unit-valued—i.e., U;(t) = {0,1}, since importance is not considered. Downward
step TUFs generalize classical deadlines where U;(t) = {0,m}. We focus on downward step TUF's (e.g.,
Figure 2), and denote the maximum, constant utility of a TUF U, (t), simply as U;. Each TUF has an
initial time I;, which is the earliest time for which the TUF is defined, and a termination time X, which,
for a downward step TUF, is its discontinuity point. U; (t) > 0,Vt € [I;, X;] and U; (t) = 0,Vt ¢ [I;, X;], Vi.

2.3 System and Failure Models

Our system and failure models follow that of [15]. We consider a system model where a set of processing
components, generically referred to as nodes, denoted by the totally-ordered set IT = {1,2,...,n}, are
interconnected via a network. We consider a single hop network model (e.g., a LAN), with nodes inter-
connected through a hub or a switch. The system is assumed to be (partially) synchronous in that there
exists an upper bound D on the message delivery latency. A reliable message transmission protocol is
assumed; thus messages are not lost or duplicated. Node clocks are assumed to be perfectly synchronized,
for simplicity in presentation. The CUA algorithm, however, can be extended to clocks that are nearly
synchronized with bounded drift rates.

As many as finq nodes may crash arbitrarily. The actual number of node crashes is denoted as
f < fmaz- Nodes that do not crash are called correct.

Each node is assumed to be equipped with a perfect failure detector [18] that provides a list of nodes
that are deemed to have crashed. If a node ¢ belongs to such a list of node p, then node p is said to suspect
node g. The failure detection time [19] d < D is assumed to be bounded. Similar to [15], for simplicity in
presentation, we assume that D is a multiple of d. Failure detectors are assumed to be (a) accurate—i.e.,
a node suspects a node ¢ only if ¢ has previously crashed; and (b) timely—i.e., if a node ¢ crashes at
time ¢, then every correct node permanently suspects ¢ within ¢ + d.

2.4 Scheduling Objectives

Our primary objective is to design a thread scheduling algorithm that will maximize the total utility
accrued by all the threads as much as possible. Further, the algorithm must provide assurances on the
satisfaction of thread termination times in the presence of (up to fi..) crash failures. Moreover, the
algorithm must exhibit the best-effort property of UA algorithms (described in Section 1).

3 The CUA Algorithm

3.1 Rationale and Design

In the absence of crash failures, there is no compelling motivation for nodes to collaborate for con-
structing a system-wide schedule.* Thus, we consider crash failures and first establish the premise for
collaboration—i.e., why thread scheduling in the presence of crash failures should consider node collabo-
ration. We first define the notion of a thread’s current head node and future head nodes:

Definition 1 (Current Head Node). The current head node of a thread T; is the node where T; is
currently executing (i.e., where T;’s head is currently located).

Definition 2 (Future Head Nodes). The future head nodes of a thread T; are those nodes where T;
will make remote invocations in the future.

The crash of a node p affects other nodes in the system in three possible ways: (a) p may be the
current head node of one or more threads; (b) p may be the future head node of one or more threads;
and (c) p may be the current and future head node of one or more threads.

4 One motivation for such a collaboration would be to construct an optimized system-wide schedule — one that
can result in greater timeliness (e.g, total accrued utility) than what would be possible without collaboration.
We do not consider such a node collaboration as that is outside the scope of this work.



If p is only the current head node of one or more threads, then all nodes in the system which are
future head nodes of those threads are immediately affected, since they can now release the processor
time for scheduling those future heads and use it for scheduling other threads. If p is only the future head
node of one or more threads, all nodes in the system which are (also) future head nodes of those threads
are affected, since they can now similarly release the processor time for scheduling other threads. There
may be a set of nodes which are not future head nodes of p’s threads. Only those nodes are unaffected.

This implies that when a node p crashes, a system-wide decision must be made (by all those nodes
which are affected by p’s crash) regarding which set of threads are eligible for execution in the system—
referred to as an execution-eligible thread set—and which are not. Furthermore, this decision must be
made in the presence of failures, since nodes may crash while that decision is being made. We formulate
this problem as a consensus problem [20] with the following properties: (a) If a correct node decides an
eligible thread set 7, then some correct node proposed 7'; (b) Nodes (correct or not) do not decide different
execution-eligible sets (uniform agreement); (c) Every correct node eventually decides (i.e., termination).

Observe that the first property is stronger than the uniform validity property of the (uniform) con-
sensus problem specification. Uniform validity states that if a node decides a value, then some node
previously proposed that value. For the thread scheduling problem, this would mean that it would be
possible for correct nodes to decide on an execution-eligible thread set that was previously proposed by
a node, which later crashed. Consequently, this will result in an invalid system-wide execution-eligible
thread set. Thus, we qualify the uniform validity property with correct.

Now that a premise for node collaboration is established, we need to determine how a node can propose
a set of threads that should be eligible for execution. Since the task model is dynamic—i.e., when threads
will be created is entirely arbitrary and statically unknown, future scheduling events cannot be considered
at a scheduling event.® Thus, the execution-eligible thread set must be constructed solely exploiting the
current system knowledge. Since the primary scheduling objective is to maximize the total thread accrued
utility, and it may not be possible to meet all thread termination times due to overloads, a reasonable
heuristic for determining the execution-eligible thread set is a “greedy” strategy: Favor “high return”
threads over low return ones, and complete as many of them as possible before thread termination times.

The potential utility that can be accrued by executing a thread section on a node defines a measure of
that section’s “return on investment.” We measure this using a metric called the Potential Utility Density
(or PUD). On a node, a thread section’s PUD measures the utility that can be accrued per unit time by
immediately executing the section on the node.

Thus, each node (that is a current head node for one or more threads) examines thread sections in
its local ready queue for potential inclusion in a feasible schedule for the node in the order of decreasing
section PUDs. For each section, the algorithm examines whether that section can be completed early
enough, allowing successive sections of the thread to also be completed early enough, to allow the entire
thread to meet its termination time. We call this property, the feasibility of a section. If the section is
infeasible (due to schedule overload), it is rejected. The process is repeated until all sections are examined,
yielding a local schedule of feasible sections.

To determine section feasibility, we assign termination times for each section of a thread (derived
from the thread’s termination time) in a way that allows the thread’s termination time to be met if
each of the section termination times are met. The termination time that a section must meet to allow
the thread to meet its termination time is simply the thread termination time if the section is the last
section; otherwise, it is the latest start time of the section’s successor section minus the communication
delay upper bound. The latest start time of a section is the section’s termination time minus its estimated
execution time. Thus, the section termination times of a thread T; with k sections are given by:

- T;.tt =k
Sitt=14"" . 7 (1)
Sj+1.tt75-+1.esz 1<j<k-1

J
where S;‘-.tt denotes section S;-’S termination time, 7T;.tt denotes T;’s termination time, and S]i».ex denotes
the estimated execution time of section S;

Thus, the local schedule constructed by a node p is an ordered list of a subset of sections in p’s ready
queue that can be feasibly completed, and will likely result in high local accrued utility (due to the greedy
nature of the PUD heuristic). The set of threads, say T}, of these sections included in p’s schedule is

5 A “scheduling event” is an event that invokes the scheduling algorithm.



proposed by p as those that are eligible for system-wide execution, from p’s standpoint. However, not all
threads in T}, may be eligible for system-wide execution, because the current and/or future head nodes
of some of those threads may crash. Consequently, the set of threads that are eligible for system-wide
execution is that subset of threads with no absent sections from their respective current and/or future
head node schedules.

3.2 Algorithm Description

The CUA algorithm that we present is derived from Aguilera et. al’s time-optimal, early-deciding, uniform
consensus algorithm in [15]. A pseudo-code description of CUA on each node ¢ is shown in Algorithm 1.

Algorithm 1: CUA: Code for each node i

1: input: Of.; output: o;; // af.: unordered ready queue of node ¢’s sections; o;: schedule
2: Initialization: X; = 0;w; = 0; max; = 0;

3: 0; = ConstructLocalSchedule(o?);

4: send(o;,1) to all;

5: upon receive (0;,j) until 2D do // After time 2D, consensus begins
6: 27, = EZ @] 053

7: w; = DetermineSystemWideFeasibleThreadSet(X;);

8: upon receive (wj, j) do

9: if 7 > maz; then max; = j; wi = wjy;
10: at time (i — 1)d do
11:  if suspect j for any j:1 < j<i—1then
12: w; = DetermineSystemWideFeasibleThreadSet(X;\ o;);
13: send(w;, 1) to all;
14: at time (j — 1)d+ D for every j: 1 < j <n do
15: if trust j then decide w;;
16: UpdateSectionSet(w;, o%);
17: 0; = ConstructLocalSchedule(c?);
18: return oy;

The algorithm is invoked at a node i at the scheduling events including 1) creation of a thread at
node ¢ and 2) inclusion of a node k into node i’s suspect list by i’s failure detector.

When invoked, a node i first constructs the local section schedule by invoking ConstructLocalSchedule ()
(line 3). This procedure accepts i’s (unordered) local ready queue of sections o' and returns a sched-
ule (an ordered list) o;. The node then sends this schedule (0;,4) to all nodes (line 4). This message
contains a header that indicates that consensus will start within 2D time units of the sender’s message
transmission—i.e., one D for the sender’s message and one D for the recipients to respond (line 5). Re-
cipients are expected to immediately respond by constructing their local section schedules and sending
them to all nodes. When node ¢ receives a schedule (o, j), it includes that schedule into a schedule set
Y (line 6). Thus, after 2D time units, all nodes have a schedule set containing all schedules received.

A node i then determines its consensus decision (i.e., system-wide execution-eligible thread set) by
calling procedure DetermineSystemWideFeasibleThreadSet (). This procedure accepts i’s schedule set
Y; and determines that subset of threads with no absent sections from their respective (current head
and/or future head) node schedules in X;. Node ¢ uses a variable w; to maintain its consensus decision.
Node ¢ now starts the consensus process.

The algorithm divides real-time in consecutive rounds of duration d each, where node i’s round (or
round 7) corresponds to the time interval [(i —1)d, id). At the beginning of round 4, node ¢ checks whether
it suspects any of the nodes with a smaller node ID. If so, it sends (w;, ) to all nodes (line 11). Note that
for i = 1, node ¢ will send (o7, 1) to all nodes (if ¢ does not crash), since no nodes have an ID lower than
1. Also, note that the messages sent in a round could be received in a higher round since D > d.

Each node ¢ maintains a variable max; that contains the ID of the largest-ID node from which it has
received a consensus proposal (max; is initialized to zero). When a node i receives a proposed execution-
eligible thread set (wj,j) that is sent from another node j with an ID that is larger than maz; (i.e.,
Jj > maz;), then 7 updates its consensus decision to thread set w; and maz; to j (line 9).



At times (j — 1)d + D for j = 1,...,n, node ¢ is guaranteed to have received potential consensus
proposals from node j. Thus, at these times, ¢ checks whether j has crashed; if not, ¢ arrives at its
consensus decision on the thread set w; (line 15).6

Node i then updates its ready queue o’ by removing those sections whose threads are absent in the
consensus decision w;. The updated ready queue is used to construct a new local schedule ¢;, which is
returned by the algorithm. The head section of this schedule is subsequently dispatched for execution.

3.3 Constructing Section Schedules

We now describe the algorithm ConstructLocalSchedule (). To describe this algorithm, we first define
a few auxiliary functions. Since this algorithm is not a distributed algorithm per se, we drop the suffix
i from notations o’ (input unordered list) and o; (output schedule), and refer to them as o, and o,
respectively. Similarly, sections are referred to as S;, for i« = 1,2,..., except when reference to their
distributable threads is needed.

e sortByPUD (o) returns a schedule ordered by non-increasing section PUDs. If two or more sections
have the same PUD, then the section(s) with the largest execution time estimate will appear before any
others with the same PUD.

e Insert(S;,o,I) inserts section S; in the ordered list ¢ at the position indicated by index I; if entries
in o exists with the index I, S; is inserted before them. After insertion, S;’s index in o is I.

e Remove (S;,0,I) removes section S; from ordered list o at the position indicated by index [I; if .S; is
not present at the position in o, the function takes no action.

Algorithm 2: Algorithm ConstructLocalSchedule()

1: input: o,; output: o;
2: Initialization: t := tey,, 0 := 0;
3: for each section S; € o, do
4: if Si_,.tt + D + Si.ex > Si.tt then
// If j=1, then S; ;.tt =0
5: abort (.5;);
else
6: L S;.PUD = U; (t—f—Si.e:r) /Si.ea:;

7: Otmp :=sortByPUD(o,);

8: for each section S; € otmp from head to tail do
9: if S;.PUD > 0 then

10: Insert(S;, o, S;.tt);

11: if ScheduleFeasible(o )=false then

12: L Remove (S;, o, S;.tt);

13: else break;

14: return o;

Algorithm 2 describes the local section scheduling algorithm. When invoked at time ¢, the algorithm
first checks the feasibility of the sections. If the earliest predicted completion time of a section is later
than its termination time, it can be aborted (line 4). Otherwise, the algorithm calculates the section’s
PUD (line 6).

The sections are then sorted by their PUDs. In each step of the for-loop from line 8 to 13, the section
with the largest PUD is inserted into o, if it can produce a positive PUD. The schedule ¢ is maintained in
the non-decreasing order of section termination times. Thus, a section S; is inserted into o at a position
that corresponds to .S;’s termination time (S;.t¢) in ¢’s non-decreasing termination time order.

After inserting a section S;, the schedule o is tested for feasibility (line 11; Algorithm 3). If o becomes
infeasible, S; is removed. After examining all sections, the ordered list ¢ is returned.

5 If node 4 receives a proposed execution-eligible thread set (wj,j) from another node j at times (i — 1)d or
( —1)d+ D, we assume that the node executes line 8 before it executes line 10 or line 14 (similar to [15]).



Algorithm 3: Algorithm ScheduleFeasible()

1: input: o; output: true or false;
: Initialization: CumEzxecTime = 0;

2
3: for each section Sji- € o do ' _ _

4: CumEgzecTime = CumEzecTime + S;_y.tt + D + Sj.ex; // If j=1, then S;_1.tt=0
5 if CumFEzecTime > S;-.tt then return false;

6

: return true;

Algorithm 3 determines the feasibility of a schedule o. A schedule ¢ is feasible if the predicted
completion time of each section S; in o, denoted S;.ct, does not exceed S;’s termination time S;.tt
(line 5). S;.ct is the time at which S; is released on its node plus the sum of the execution times of all
sections that occur before S; in ¢ and 5;’s execution time S;.ex. Note that except for current thread head
nodes, Algorithm 1 is invoked before sections are actually released on future thread head nodes. Thus,
we calculate a section S;’s release time as the termination time of S;’s predecessor (i.e., Sji-fl.tt) plus the
message delay upper bound D, since that is the latest time by which S; must be released on its node.

Algorithm 2 therefore seeks to include those sections in the schedule that are likely to result in high
total utility (due to the greedy nature of the PUD heuristic). Further, since the invariant of schedule
feasibility is preserved throughout the examination of sections, the output schedule is always a feasible
schedule. Thus, during underloads, schedule o will always be feasible in line 11 (Algorithm 2), the al-
gorithm will never reject a section, and will produce a schedule which is the same as that produced by
EDF (where deadlines are equal to section termination times). Consequently, this schedule will meet all
section termination times during underloads.

During overloads, the algorithm will reject one or more sections to construct a feasible schedule. Due
to the algorithm’s greedy nature, the rejected sections are less likely to contribute a total utility that is
larger than that contributed by the accepted sections.

Asymptotic Complexity. The cost of Algorithm 2 is dominated by the for-loop (line 8 to 13) which
iterates at most k times for a ready queue with k sections. The cost of this loop is dominated by
Algorithm 3, which costs O(k) to test the feasibility of a schedule with k sections. Thus, Algorithm 2’s
asymptotic cost is O(k?).

4 Algorithm Properties

We first describe CUA’s timeliness property under crash-free runs:

Theorem 1. If all nodes are underloaded and no nodes crash (i.e., fmaz = 0), CUA meets all thread
termination times, yielding optimum total utility.

Proof. From the discussion in Section 3.3, if a node is underloaded, Algorithm 2 will meet all section
termination times at the node. Thus, if all nodes are underloaded and f,,4. = 0, all section termination
times are met. If all sections of a thread meet their termination times, then the thread will meet its
termination time by virtue of Equation 1. Theorem follows.

Theorem 2. CUA achieves (uniform) consensus (i.e., uniform validity, uniform agreement, termina-
tion) on the system-wide execution-eligible thread set in the presence of up to fmax failures.

Proof. This is self-evident from the algorithm description and follows from [15].
Theorem 3. CUA’s time complexity is O(D + fd + nk) and message complezity is O(fn).

Proof. If the maximum number of sections at a node is k, then ConstructLocalSchedule costs O(k?).
Procedure DetermineSystemWideFeasibleThreadSet will cost O(nk) to examine at most n schedules
sent by n nodes, with each schedule containing at most k sections. Thus, lines 3-7 of Algorithm 1 has an
actual time cost of 2D + &1, where §; measures the actual cost of O(k?) + O(nk). These steps will involve
n messages, one for each schedule sent by a node in line 4.

Lines 8-15 has an actual time cost of D+ fd and will involve (f 4+ 1)n messages [15]. Line 12, executed
at most f times adds computational cost O(fnk), and UpdateSectionSet will remove at most k sections



in its schedule, costing O(k), and ConstructLocalSchedule costs O(k?), resulting in a combined actual
cost of a constant, say ds.

Thus, Algorithm 1 has an actual time cost of 2D + §; + D + fd + 62, or 3D 4+ 6 + fd, and will involve
n+ (f + 1)n, or (f + 2)n messages. The corresponding asymptotic costs are O(D + fd + nk) and O(fn),
respectively (for n > k and f > 2). When f = fi,42, the algorithm thus constructs schedules in at least
3D + 6+ frmazd time, or O(D + fraz(d+nk)). When fi,q. = 0 (i.e. crash-free), the algorithm constructs
schedules in time 3D + 4§, or O(D + nk).

From Theorems 2 and 3, we obtain the algorithm’s early-deciding property:

Theorem 4. CUA is a time-optimal, early-deciding algorithm that achieves consensus on the system-
wide execution-eligible thread set.

Proof. From Theorem 3, CUA decides in time proportional to f. From Theorem 2, the algorithm achieves
consensus on the system-wide execution-eligible thread set. From [15], no early-deciding algorithm (in
the continuous-time synchronous model, where processes do not execute in lock-step rounds) has a time
bound lower than D + fd. Theorem follows.

We now establish CUA’s timeliness property in the presence of failures.

Theorem 5. If n— f nodes (i.e., correct nodes) are underloaded, then CUA meets the termination times
of all threads in its (consensus decision of ) execution-eligible thread set.

Proof. From Theorem 4, n — f nodes arrive at the same decision on the system-wide execution-eligible
thread set, say 7. If these nodes are under-loaded, then CUA meets the termination times of all threads
in 7, per Theorem 1.

To establish the algorithm’s best-effort property (Section 1), we first define the concept of a Non
Best-effort time Interval (or NBI):

Definition 3. Consider a distributable thread scheduling algorithm A. Let a thread T; be created at a
node at a time t with the following properties: (a) T; and all threads in A’s execution-eligible thread set at
time t are not feasible (system-wide) at t, but T; is feasible just by itself; and (b) T; has the highest PUD
among all threads in A’s execution-eligible thread set at time t. Now, A’s NBI, denoted N Bl 4, is defined
as the duration of time that T; will have to wait after t, before it is included in A’s execution-eligible
thread set. Thus, T; is assumed to be feasible at t + N BI 4.

We now describe the NBI of CUA and other distributable thread scheduling UA algorithms including
DASA [11], LBESA [10], and AUA [13] under crash-free runs. Note that DASA, LBESA, and AUA are
thread scheduling algorithms that belong to the independent node scheduling paradigm (i.e., they make
their scheduling decisions using propagated thread scheduling parameters and without collaborating with
other nodes). Since we focus on crash-free runs, the presence of a thread integrity protocol that these
algorithms use for thread fault-management can be ignored.

Theorem 6. Under crash-free runs (i.e., fmaz = 0), the worst-case NBI of CUA is 3D+ 3, DASA’s and
LBESA’s is 8, and that of AUA is +o0.

Proof. CUA will examine T; at t, since the arrival of a new thread is a scheduling event. Since T; has
the highest PUD and is feasible system-wide, the algorithm will arrive at a consensus decision on an
execution-eligible thread set that includes 7T; in time 3D + § when f,,4, = 0, per Theorems 2 and 3.

DASA and LBESA will examine T; at ¢t (at the node where T; was created), since a thread arrival is
also a scheduling event for them. Further, since T; has the highest PUD and is feasible, they will include
T;’s first section in their feasible (local) schedules at ¢, yielding a worst-case NBI of §, the time constant
involved for the algorithm to arrive at the local decision. This cost ¢ will be the same as that of CUA,
since DASA’s and LBESA’s asymptotic computational costs are the same as that of CUA (i.e., O(k?)).

AUA will examine T; at t, since a thread arrival at any time is also a scheduling event under it.
However, AUA is a TUF/UA algorithm in the classical admission control mould (e.g., [21]) and will
reject T; in favor of previously admitted threads, yielding a worst-case NBI of 4oc0.
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5 Conclusions and Future Work

We presented a distributed real-time scheduling algorithm called CUA. The algorithm considers dis-
tributable threads with TUF time constraints, arbitrary thread arrival behaviors, thread execution over-
run behaviors causing overloads, and arbitrary crash failures. We showed that CUA satisfies thread time
constraints in the presence of crash failures, is early-deciding, has an efficient message complexity of
O(fn), and is time-optimal with a time lower bound of O(D + fd+ nk). In crash-free runs, the algorithm
constructs schedules within O(D + nk), and yields optimal total utility if nodes are also not overloaded.
We also showed that the algorithm has a tightly bounded non-best-effort time interval, which implies that
a high importance thread that may arrive at any time has a very high likelihood for feasible completion.

Our work just scratched the surface of a very rich problem space, and so many directions exist for
immediate and long-term study. Example directions include considering asynchronous models (e.g., [22,
23]), allowing synchronization dependencies between threads (e.g., due to mutually exclusive sharing of
non-processor resources), considering ad hoc network infrastructures (e.g., mobile, wireless networks),
and developing non-deterministic (e.g., probabilistic) timing assurances.
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