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Abstract—Distributed software transactional memory (or
DTM) is an emerging promising model for distributed concur-
rency control, as it avoids the problems with locks (e.g., dis-
tributed deadlocks), while retaining the programming simplicity
of coarse-grained locking. We consider DTM in Herlihy and Sun’s
data flow distributed execution model, where transactions are
immobile and objects dynamically migrate to invoking transac-
tions. To support DTM in this model and ensure transactional
properties including atomicity, consistency, and isolation, we
develop an algorithm called Transactional Forwarding Algorithm
(or TFA). TFA guarantees a consistent view of shared objects
between distributed transactions, provides atomicity for object
operations, and transparently handles object relocation and
versioning using an asynchronous version clock-based validation
algorithm. We show that TFA is opaque (its correctness prop-
erty) and permits strong progressiveness (its progress property).
We implement TFA in a Java DTM framework and conduct
experimental studies on a 120-node system, executing over 4
million transactions, with more than 1000 active concurrent
transactions. Our implementation reveals that TFA outperforms
competing distributed concurrency control models including Java
RMI with spinlocks, distributed shared memory, and directory-
based DTM, by as much as 13× (for read-dominant transactions),
and competitor DTM implementations by as much as 4×.
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I. INTRODUCTION

Concurrency control is difficult in distributed systems—e.g., dis-
tributed race conditions are complex to reason about. The problems
of lock-based concurrency control only exacerbate in distributed
systems. Distributed deadlocks, livelocks, lock convoying, and com-
posability are significant challenges. In addition, locks provide naive
serialization of concurrent code with partial dependency, which is a
severe problem for long critical sections. There is a trade off between
decreasing lock overhead (lock maintenance requires extra resources)
and decreasing lock contention when choosing the number of locks
for synchronization.

Transactional memory (TM) is an alternative model for accessing
shared memory objects, without exposing locks in the programming
interface, to avoid the drawbacks of locks. TM originated as a hard-
ware solution, called HTM [21], was later extended in software, called
STM [38], and in hardware/software combination, called Hybrid
TM [28]. With TM, programmers organize code that read/write shared
objects as transactions, which appear to execute atomically. Two
transactions conflict if they access the same object and one access is a
write. When that happens, a contention manager resolves the conflict

by aborting one and allowing the other to proceed to commit, yielding
(the illusion of) atomicity. Aborted transactions are re-started. Thus, a
transaction ends by either committing (i.e., its operations take effect),
or by aborting (i.e., its operations have no effect). In addition to a
simple programming model, TM provides performance comparable
to highly concurrent, fine-grained locking implementations [8].

Though TM has been extensively studied for multiprocessors [19],
relatively little effort has focused on supporting it in distributed
systems. Distributed applications introduce additional challenges over
multiprocessor ones. For example, scalability necessitates decentral-
ization of the application and the underlying infrastructure, which
precludes a single point for monitoring or management.

Distributed STM (or DTM) can be supported in any of the classical
distributed execution models, which can be broadly classified based
on the mobility of transactions or objects. In the control flow model
(e.g., [3]), objects are immobile and transactions access objects
through remote procedure calls (RPCs), and often use locks over
objects for ensuring object consistency. In contrast, in the data flow
model (e.g., [22]), transactions are immobile, and objects move
through the network to requesting transactions, while guaranteeing
object consistency using cache coherence protocols. The dataflow
model1 has been primarily used in past DTM efforts—e.g., [22], [34].
Hybrid models have also been studied (e.g., [7]), where transactions
or objects are migrated, based on access profiles, object size, or
locality.

Two strategies currently exist for handling concurrent updates on
distributed objects in DTM: a) broadcasting read/write sets to all
nodes (e.g., [24]), and b) stamping objects with a version number
to distinguish between each update (e.g., [27]) (see Section II for
past and related work). Broadcasting (transactional read/write sets, or
memory differences) in distributed systems is inherently non-scalable,
as messages transmitted grow quadratically with the number of nodes.
On the other hand, object versioning is a significant challenge in
DTM, because distributed systems are inherently asynchronous, and
using a global clock often incurs significant message overhead [32].

We develop an algorithm called Transactional Forwarding Al-
gorithm (or TFA) that ensures (distributed) transactional properties
including atomicity, consistency, and isolation in the dataflow DTM
model (Section IV). In TFA, each node maintains its own local
clock, which is asynchronously advanced (e.g., whenever any local
transaction commits), and the “happens-before” relationship [25] is
efficiently established (message-wise) between relevant events (e.g.,
write-after-write, read-after-write) for distributed transactional con-
flict detection. Additionally, the algorithm employs an early valida-

1We use “dataflow” to refer to the Herlihy and Sun immobile transaction/-
mobile object TM model [22]. In other contexts (e.g., [13]), dataflow may
refer to data-driven computations.



tion mechanism to accommodate asynchronous clocks. TFA permits
multiple non-conflicting updates to proceed concurrently, and allows
multiple concurrent threads to execute transactions at each node. By
Transaction Forwarding, we don’t mean forwarding transactions from
one node to another; instead, the idea of ”transaction forwarding”
is about advancing the timestamps on some transactions to produce
fewer conflicts in a timestamp-based concurrency control mechanism.

We show that TFA is opaque i.e., its correctness property, and
permits strong progressiveness i.e., its progress property (Section V).
Informally, opacity ensures transactional linearizability and consistent
memory view for committed and aborted transactions. Strong pro-
gressiveness ensures that non-conflicting transactions are guaranteed
to commit, and at least one transaction among conflicting transactions
is guaranteed to commit. We also establish a message upper bound
for TFA. In TFA, objects are acquired at commit time, while other
pessimistic approaches (e.g., [1]) acquire objects at encounter time.

We implement TFA in the HyFlow DTM framework [36], and
conduct experimental evaluations (Section VI). Our results reveal that
TFA outperforms competitor DTM implementations [5], [29] by as
much as 2−4×, and Java RMI with spinlocks and distributed shared
memory by as much as 13× (for read-dominant transactions) and
as low as 1× (for write-dominant transactions). These results were
obtained for workloads including a distributed STAMP [9] bench-
mark, other distributed applications, and distributed data structures
on a 120-node system, executing over 4 million transactions, with
more than 1000 active concurrent transactions.

II. RELATED WORK

The classical solution for handling shared memory during con-
current access is lock-based techniques [2], [23], where locks are
used to protect shared objects. Locks have many drawbacks in-
cluding deadlocks, livelocks, lock-convoying, priority inversion, non-
composability, and the overhead of lock management.

Distributed Transactional Memory. DTM models can be classified
based on the mobility of transactions and objects. Mobile transactions
(e.g., [3]) use an underlying mechanism (e.g., RPC) for invoking
operations on remote objects. The mobile object model (e.g., [22],
[34]) allows objects to move to requesting transactions, and guaran-
tees object consistency using cache coherence protocols (e.g.,[22]).
DTM models can also be classified based on the number of objects.
Some proposals allow multiple copies or replicas of objects. Object
changes can then be a) applied locally, invalidating other replicas [31],
b) applied to one object (e.g., latest version of the object [14]), which
is discovered using directory protocols (e.g., [12]), or c) applied to all
replicated objects [26]. DTM can also be classified based on system
architecture: cache-coherent DTM (cc DTM) [22], where a small
number of nodes (e.g., 10) are interconnected using message-passing
links [22], [12], and a cluster model (cluster DTM), where a group of
linked computers work closely together to form a single computer [7],
[27], [24], [10], [33]. The most important difference between the two
is communication cost. cc DTM assumes a metric-space network
between nodes, while cluster DTM differentiates between memory
access to local cluster and other remote clusters.

While these efforts focused on DTM’s theoretical properties,
several other efforts developed implementations. In [7], Bocchino et.
al. proposed a word-level cluster DTM. They decompose a set of
existing cache-coherent STM designs into a set of design choices,
and select a combination of such choices to support their design.
They show how remote communication can be aggregated with data
communication to improve scalability. However, in this work, each
processor is limited to one active transaction at a time, which limits
concurrency. Also, in their implementation, no progress guarantees
are provided, except for deadlock-freedom. In [27], Manassiev et.
al. present a page-level distributed concurrency control algorithm
for cluster DTM, which detects and resolves conflicts caused by
data races for distributed transactions. Their implementation yields
near-linear scaling for common e-commerce workloads. In their

algorithm, page differences are broadcast to all other replicas, and
a transaction commits successfully upon receiving acknowledgments
from all nodes. A central timestamp is employed, which allows only a
single update transaction to commit at a time. The use of broadcasting
object changes and a central timestamp technique yield acceptable
performance for small number of nodes (8 nodes are used in [27]).
Yet, both techniques suffer from scalability with increasing number
of nodes.

Kotselidis et. al. present the DiSTM [24] object-level, cluster DTM
framework, as an extension of DSTM2 [20], for easy prototyping of
TM cache-coherence protocols. They compare three cache-coherence
protocols on benchmarks for clusters. They show that, under the TCC
protocol [18], DiSTM induces large traffic overhead at commit time,
as a transaction broadcasts its read/write sets to all other transactions,
which compare their read/write sets with those of the committing
transaction. Using lease protocols [15], this overheard is eliminated.
However, an extra validation step is added to the sole master node.
In addition, bottlenecks are created upon acquiring and releasing the
leases, besides serializing all update transactions at the single master
node. These implementations assume that every memory location is
assigned to a home processor that maintains its access requests. Also,
a central, system-wide ticket is needed at each commit event for any
update transaction (except [7]).

Inspired by the recent database replication approaches [30], Car-
valho et. al. present GenRSTM [29] as a generic STM framework
based on D2STM [10]. Here, STM is replicated on distributed
system nodes, and strong transactional consistency is enforced at
commit time by a non-blocking distributed certification scheme.
GenRSTM shows good performance for upto eight replicas in [10].
However, the Atomic Broadcast (ABcast) primitive [11] that they use
limits extending the replication technique for larger number of nodes,
thereby limiting scalability.

Bieniusa et. al. present DecentSTM [5], a fully decentralized
object-based STM algorithm, which implements snapshot isolation
semantics. It relies on immutable data structures, and uses a ran-
domized consensus protocol to guarantee consistency of the mutable
parts. They host distributed global shared memory on a concept
called runtimes, which are small memory servers. Application threads
operate normally on local data, and access global shared data under
the control of the DecentSTM library.

TFA is an object-level, lock-based algorithm with lazy acquisition.
TFA is fully distributed without the need for central components,
or central clocking mechanisms. Unlike other DTM implementa-
tions [24], [27], [29], TFA doesn’t rely on message broadcasting or a
central clock [27]. This approach reduces network traffic, and enables
the algorithm to perform well for write-dominated workloads, while
yielding comparable or superior performance for read-dominated
workloads, with respect to other distributed concurrency control
models (e.g., Java RMI, distributed shared memory [31]), as we show
in Section VI.

III. SYSTEM MODEL AND PRELIMINARIES

We consider an asynchronous distributed system, similar to Herlihy
and Sun [22], consisting of a set of N nodes, N1, N2, ....., Nn, which
are fully connected using message-passing FIFO links or through
an overlay network. Each shared object has an unique identifier,
and is initially assigned to a “home” node. However, an object
may be replicated or may migrate to any node. TFA is responsible
for caching local copies of remote objects and changing object
ownership. It is also responsible for ensuring that only one writable
version of an object exists at any given time in the network. Without
loss of generality, objects export only read and write methods (or
operations). Thus, we consider them as shared registers.

Transactions are immobile, and each transaction is associated with
a certain node. Thus, a node Nx executes a transaction T , which
is a sequence of operations on objects o1, o2, ..., os, where s ≥
1. We assume that the majority of transactions are concurrent. A



transaction can have one of three status: live, committed, or aborted.
An aborted transaction is restarted as a new transaction. When a
transaction attempts to access an object, a cache-coherence protocol
(e.g., Arrow [12], Ballistic [22]) locates the current cached copy of
the object in the network, and moves it to the requesting node’s
cache. Changes to the ownership of an object occurs at the successful
commit of the object-modifying transaction.

Each node has a local clock, lc, which is advanced whenever any
local transaction commits successfully. Since a transaction runs on a
single node, it uses lc to generate a timestamp, write version (wv),
during its commit step. The current clock value is piggybacked on
all messages, recipient node updates its clock to higher value than
the received clock if its local clock value is lower.

We use a grammar similar to the one in [17], but extend it for
distributed systems. Let O = {o1, o2, ...} denote the set of objects
shared by transactions. Let T = {T1, T2, ....} denote the set of
transactions. Each transaction has an unique identifier, and is invoked
by a node (or process) in a distributed system of N nodes. We denote
the sets of shared objects accessed by transaction Tk for read and
write as read-set(Tk) and write-set(Tk), respectively.

A history H is defined as a sequence of operations, read, write,
commit, and abort, on a given set of transactions. Transactions
generate events when they perform these operations. Let the relation
≺ represent a partial order between two transactions. Transactions Ti

and Tj are said to be conflicting in H on an object Ox, if 1) Ti and
Tj are live (i.e., non-committed or non-aborted yet) in H , and 2) Ox

is accessed by both Ti and Tj , and is present in at least one of the
write-sets of Ti or Tj .

We denote the set of conflicting objects between Tk and any
other transaction in history H as conf(Tk). Let Q be any subset
of the set of transactions in a history H . We denote the union of
sets conf(Tk)∀Tk ∈ Q as conf(Q). Any operation on conf(Q)
represents a relevant transactional event to our algorithm. Using a
clock synchronization mechanism, we build a partial order between
relevant transactions; otherwise any arbitrary order of transactions
can be used to construct H .

IV. THE TFA ALGORITHM

Rationale. The problem of locating objects is outside the scope of
our work — we can use any directory or cache coherence protocol
for this (e.g., Arrow [12], Ballistic [22]). We assume a Directory
Manager module that will locate objects. The Directory Manager’s
interface includes two methods: 1) publish(x, Nc) that registers the
current node, Nc, as the owner of a newly created object Ox with
identifier x, or modifies Ox’s old owner to the called node; and 2)
locate(x), which finds the owner node of object Ox.

Each transactional memory location (e.g., word, page, or object,
according to the desired granularity) is associated with a versioned-
write-lock. A versioned-write-lock uses a single bit to indicate that
the lock is taken, while the rest of the bits hold a version number.
This number is changed by every successful transactional commit.
Each node maintains its own local clock. When a transaction starts,
it reads the current node clock, and can subsequently commit only
when all its read objects have a lower version than the one it
obtained at the start time (i.e., the objects weren’t updated by
other concurrent transactions). Upon successful commit, a transaction
stamps its modified objects with the current clock value, and advances
the node clock.

Clocks are asynchronously advanced, which invalidates the commit
procedure that compares transaction starting times (relative to node
local clocks) and object versions (relative to different node clocks). To
solve this problem, we develop a transaction “forwarding” mechanism
which, at certain situations, shifts a transaction to appear as if it
started at a later time (unless it is already doomed due to conflicts
in the future). This technique helps in detecting doomed transactions
and terminates them earlier, and handles the problem of asynchronous
clocks.

Algorithm Overview. Figures 1–4 describe TFA’s main procedures.
When a transaction begins, it reads the current clock value of the
node on which it is executing (Figure 1). Let us call this clock value
“write version” (wv). During execution, a transaction will maintain
the read-set and the write-set as mentioned before. However, read and
write operations may involve access to remote objects. Whenever a
remote object is accessed, a local object copy is created and cached at
the current node till the transaction terminates. A transaction makes
object modifications to a local copy of the object. At a read operation,
the Bloom Filter [6] is used to check if the read-object appears in
the write-set. If so, the last value written by the current transaction
is retrieved.

An object may be accessed locally or remotely. Access of local
objects is preceded by a post-read validation step to check if the
object version < wv; otherwise the transaction is aborted. In contrast,
as remote objects use different clocks (clocks of their owner nodes),
such a straightforward validation cannot be done. Providing clock
versioning for validation of remote objects, without affecting per-
formance through additional synchronization messages, is the main
challenge in the design of TFA.

Recall that each node has a local clock that works asynchronously
according to its local events and can be advanced only when needed.
We present a novel mechanism, called Transaction Forwarding,
which efficiently provides early validation of remote objects and guar-
antees a consistent view of memory, in the presence of asynchronous
clocks.

Transaction forwarding. By this, we imply that a transaction,
which started at time wv needs to advance its starting time to wv’,
where wv’ > wv. To apply such a step to a transaction, none of
the objects of the transaction’s read-set must have changed their
version to a higher value than wv; otherwise, the transaction is
aborted as one of its read-set objects has been changed by another
transaction, producing a higher version number than the original wv.
To ensure this, an early commit-validation procedure is performed. If
the validation succeeds, then we are sure that no intermediate changes
have happened to read-set objects, and the transaction can safely
change its starting time to wv’.

Figures 2–3 illustrate Transaction Forwarding, which works as
follows:
• The sender node (transaction node) sends a remote read request

to the object owner node. The current node clock value, called
lc, is piggybacked on this message.

• Upon receiving the message at receiver node (object owner
node), a copy of the object is sent back, and the current clock
value rc is included in the reply. In addition, the incoming clock
value lc is extracted and compared against the current clock
value rc. If rc < lc, then rc is advanced to the value of lc;
otherwise nothing is changed.

• When the sender node receives the reply, validation is done
as follows: if rc ≤ wv, then the object can be read safely;
otherwise, the current clock value, lc, is advanced to the value
rc, and the transaction is forwarded to rc.

When a transaction completes, we need to ensure that it reads a
consistent view of objects (Figure 4). This is done as follows:

1) Acquire the lock for each object in write-set in any appropriate
order to avoid deadlocks. As some (or all) of these objects may
be remote, a lock request is sent to the owner node. The owner
node will try to acquire the lock. If the lock cannot be acquired,
the owner will spin till it is released or the owner will lose object
ownership. If the lock cannot be acquired for any of the objects,
the transaction is aborted and restarted.

2) Revalidate the read-set. This ensures that a transaction sees a
consistent view of objects. Upon successful completion of this
step, a transaction can proceed to commit safely.

3) Increment and get local clock value lc, and write the retrieved
clock value in the version field of the acquired locks. For
local objects, changes to the object can be safely committed



Require: Transaction trans, Node node
Ensure: Initialize transaction.

1: trans.node = node
2: trans.wv = node.clock

Fig. 1. Transaction::Init

Require: Transaction trans, ObjectID id
Ensure: Open shared object for current transaction.

1: Node owner = findObjectOwner(id)
2: Object obj = node.RetrieveObject(trans.node, id)
3: if obj.remote then
4: if trans.node.clock < obj.owner.clock then
5: trans.node.clock = obj.owner.clock
6: end if
7: if trans.wv < obj.owner.clock then
8: for all obj in transaction.readSet do
9: if obj.version > trans.wv then

10: return rollback()
11: end if
12: end for
13: trans.wv = obj.owner.clock
14: end if
15: else
16: if obj.version > trans.wv then
17: return rollback()
18: end if
19: end if
20: return obj

Fig. 2. DirectoryMgr::OpenTransactional

Require: Node requester, ObjectId id
Ensure: Send a copy of object identified by given id and owned by

current node to the requester node.

1: if this.clock < requester.clock then
2: this.clock = requester.clock
3: end if
4: return LocalObjects.get(id)

Fig. 3. Node::RetrieveObject

Require: Transaction trans
Ensure: Commit transaction if valid and rollback otherwise.

1: for all obj in transaction.writeSet do
2: obj.acquireLock()
3: end for
4: for all obj in transaction.readSet do
5: if obj.version > trans.wv then
6: return rollback()
7: end if
8: end for
9: trans.node.clock ++

10: for all obj in transaction.writeSet do
11: obj.commitValue()
12: obj.setVersion(trans.node.clock)
13: obj.releaseLock()
14: if obj.remote then
15: DirectoryManager.setOwner(obj, trans)
16: end if
17: end for

Fig. 4. Transaction::Commit
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Fig. 5. An execution of a distributed transaction under TFA.

to the main copy, while for remote objects, we simply publish
the current node as the new owner of the object using the
DirectoryManager publish service.

4) For local objects in the write-set, release the acquired locks by
clearing the write-version lock bit. The remote locks need not
be released, as changing the ownership handles this implicitly.

An aborted transaction releases all acquired locks (if any), clears
its read and write sets, and restarts again by reading new wv.

Example. Figure 5 illustrates an example of how TFA operates
in a network of three asynchronous nodes, N1, N2, and N3. Initial
values of the respective node clocks are 10, 20, and 5. Lines between
the nodes represent requests and replies, and stars represent object
access. Any changes in the clock values are due to successfully
committed transactions. Such clock changes are omitted from the
figure for simplicity.

Transaction T1 is invoked by node N1 with a local clock value, lc,
of 10. Thus, T1wv equals 10. Afterwards, T1 reads the value of local
object X, finds its version number 7 < T1wv , and adds it to its read-
set. The remote object Y is then accessed for read. N1 sends an access
request to N2 (Y’s owner node) with its current clock value lc. Upon
receiving the request at N2 at time 27 (according to N2’s clock), N2

replies with the object value and its local clock. N1 processes the
reply and finds that it has to advance its local clock to time 27. In
addition, transaction forwarding needs to be done. T1wv is therefore
set to 27. Furthermore, early commit-validation is done on the read-
set to ensure that this change will not hide changes happened to any
object in the read-set since the transaction started (at any time tA).

Subsequently, T1 accesses object Z located at node N3, and
includes its local clock value to the request. After N3 replies with a
copy of the object and its local time, N3 detects that its time lags
behind N1’s time. Thus, N3 will advance its time to 30 (the last
detected clock value from N1). Note that in this case, N1 will not
advance its clock, nor will do transaction forwarding, as it has a
leading clock value.

Now, T1 requests object U at node N2. Assume that N2’s clock
value is still 27 since the last request, while N1 advances its clock
due to other transactions’ commit. Now, N2 will advance its clock
to 31 upon receiving object U’s access request.

Eventually, T1 completes its execution and does the commit-
validation step by acquiring locks on objects in its write-set (i.e.,
U), and validating versions of objects in its read-set (i.e., X, Y,
and Z). Upon successful validation, N1’s local clock is incremented
atomically and its old value is written to U’s versioned-lock. N1 is
published as the new owner of the write-set objects.

Several points are worth noting in this example:
• Clocks need not be changed, unless there is a significant event

like transaction commit or remote object access. By using those
events to stamp object versions, we can determine the last object
modification time relative to its owner node.

• The process of advancing clock at nodes N1, N3, and finally
at N2 builds a chronological relationship between significant
events at participating nodes, and those that occur only when
needed and just for the nodes of concern. For example, if any



of T1’s read-set objects has been changed at any arbitrary time
tB , as shown in Figure 5, it does not cause a conflict to T1.
However, if this change occurs after Ry’s request, it will be
easily detected by T1 as a conflict. As T1 advances its time at
N2, any further object changes at N2, say, at time tC , will write
a version number higher than the recorded communication event
time. Similarly, advancing the clock at N3 upon Rz’s request
enables T1 to detect further changes to Z at any later time tD .

• Validating all read-set objects during transaction-forwarding is
required to detect the validity of increasing wv to the new clock
value. To illustrate this, consider any other transaction that starts
and finishes successfully at time tA. This transaction can modify
object X by increasing its version to 8 instead. If wv is simply
changed, such a conflict will not be detected.

• Early validation is the most costly step in TFA, especially when
it involves remote read-set objects. However, early validation
can detect conflicts at an earlier time and save further processing
or communication. Further, as we show in the next section, the
worst case analysis of early validation reveals that it is propor-
tional to the number of concurrent committed transactions.

V. ALGORITHM PROPERTIES

Correctness. A correctness criterion for TM, called opacity [16],
has been proposed as a safety property for TM implementations that
suits the special nature of memory transactions. Opacity requires that:
1) committed transactions appear to execute sequentially, in real-time
order, and 2) no transaction observes the modifications to shared state
done by aborted or live transactions. In addition, all transactions,
including aborted and live ones, must always observe a consistent
state of the system.

Theorem 1: TFA ensures opacity.
Proof: To prove the theorem, we have to show that TFA satisfies

opacity’s three conditions. We start with the real-time order condition.
We say that a transaction Tj reads from transaction Ti, if Ti writes a
value to any arbitrary object Ox, and then commits successfully, and
later Tj reads that value. Let us assume that M transactions commit
successfully and violate the real-time order by mutually reading from
each other in a circular way: T1 ≺ T2 ≺ T3....... ≺ TM ≺ T1. For
this to happen, T2 must read from T1, T3 must read from T2, and so
on. This means that T1 must read from TM , and commit before TM ,
which yields a contradiction, as a transaction’s local changes are not
visible till the commit phase.

The second opacity condition is guaranteed by the write-buffer
mechanism of the algorithm: a transaction makes its changes locally
through transaction-local copy, and exposes changes only at commit
time, after locking all write-set objects.

Opacity’s last condition ensures consistent state for both live and
aborted transactions. By consistent state, we mean that, for a given set
of objects O modified by some transaction Tk, if Tk was committed
successfully, then any other transaction will see either the old values
of all objects or the new values of all objects. If Tk was aborted,
then any other transaction will see the old values of all objects O.
As the abort case is already covered by the second opacity condition,
we will prove the successful commit case.

Let us define the operator ⇐old (or ⇐new) between two transac-
tions to indicate that the first transaction reads old (or new) values of
objects changed by the second transaction. We can easily construct
such a relation if the event of reading an arbitrary object Ox can be
defined relative to the commit event of the other transaction.

Consider the simplest case of two conflicting transactions, shown
in Figure 6(a). Here, Tj reads the old value of Ox, before Ti modifies
both Ox and Oy , and commits successfully. Thus, Tj ⇐old Ti. Later,
if Tj retrieves the new value of Oy , then it violates consistency, as
Tj ⇐new Ti. At this point, the clock value of N1 is larger than
Tjwv , due to the synchronization point at t1. This causes an early-
validation, and the conflict on Ox will be detected and Tj is aborted
before entering the inconsistent state.

N1

N2 Rx

Wx Wy

Ry
Inconsistent
State

Ti

Tj

t1

(a) Simple inconsistent state.

N3
Rx Wy

t1

t2

t3

t5

t4

j

Ti

Tk

Tj

Tk

Tn

tiwv

Nn WL

......

N1

N2

Rx

Wx

RL
Inconsistent 
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(b) Inconsistent state with more than two trans-
actions.

Fig. 6. Possible opacity violation scenarios.

Now, we will generalize this for any number of transactions (see
Figure 6(b)). Assume that we have n transactions, Ti, Tj , ... , Tn,
running on n different nodes N1, N2, ... Nn, respectively. At time
t1, Ti accesses Ox located at N2, and then Tj modifies Ox and
commits at time t2. Tk reads the new value of Ox at time t3, and
then modifies any other object Oy and commits at time t3. Similarly,
the rest of the transactions follow the same access pattern, implicitly
constructing the happens-before relationship. At time t5, Tn reads the
new value of OL. Therefore, we can say that Ti ⇐old Tj , Tn ⇐new

Ti, and Tn−1 ⇐new Tn. Since the last two relations imply that
Ti ⇐new Tj indirectly through Tk, .... , Tn, it contradicts the first
relation, violating data consistency. This situation is not permitted
by TFA, and it is clear that Tiwv ≺ t1. Since we will have clock
synchronization at t1 between N1 and N2, we can say that t1 ≺ t2,
and similarly, t2 ≺ t3, etc. The point of interest is t5, for which the
clock value of Nn > Tiwv . Now, transaction forwarding will occur
and early validation will detect the conflict on OL. Thus, Ti will not
proceed to an inconsistent state and will be aborted immediately. The
theorem follows.

Progress Property. Strong Progressiveness was recently pro-
posed [17] as a progress property for TM. A TM system is said to
be strongly progressive if 1) a transaction that encounters no conflict
is guaranteed to commit, and 2) if a set of transactions conflicts on
a single transactional object, then at least one of them is guaranteed
to commit.

Note that applying just Lamport clocks in designing DTM is not
sufficient to achieve strong progressiveness, and may infact, lead
to poor performance. This because, the process of advancing the
clock in Lamport is done at every message (i.e., at each interaction
between nodes). In contrast, in TFA, it is done only when one of the
transactions in the involved nodes commits successfully. Thus, under
TFA, many messages are exchanged without affecting the clock on
both sides. Moreover, TFA allows a transaction started at an absolute
time t1, to read an object changed at absolute time t2, where t2 > t1.
Due to transaction forwarding, transactions can detect false positives
due to other object changes or other transactions’ executions. This has
an impact in distributed environments, wherein transactional lifetime
is significantly longer than that in non-distributed settings.

Theorem 2: TFA is strongly progressive. (Proof is available
in [37])

Cost Measures. As we mentioned before, the most costly operation
in TFA is the early validation which occurs whenever transaction
forwarding is needed. Although early validation forces validation
of the read-set, which can be expensive due to the presence of
remote objects, we prove that this operation is not frequent. This
is essentially because, transaction forwarding will not occur unless



a clock difference has been detected. However, the clock cannot be
changed unless some other transactions commit successfully. Thus,
the likelihood of safely committing transactions outweigh the number
of early validation operations. We now establish an upper bound for
these costs.

Theorem 3: For a given set of concurrent transactions Q executing
on N nodes, the upper bound on the number of possible early
validation steps is O(committed(Q)2), where committed(Q) is
the subset of successfully committed transactions.

Proof: Assume we have a set of Q concurrent transactions.
From the definition of early validation, we can’t have early validation
till one of the transaction commits successfully. At worst case, a
transaction T ∈ Q, and assume all other transactions in Q will
issue object read/write request to the node of T , so we will at
most have |Q| − 1 early validation. Repeating that for all other
concurrent transactions, then we will have at most

∑
i=1..|Q|(|Q|−i)

early validation, which can be approximated to |Q|2, given that all
transactions trigger early validation to each others, and all of them
commit successfully.

Using normal broadcasting (e.g., [29]), O(Q) messages are needed
for each committed transaction (to broadcast), which implies a
message cost of O(Q2). Besides, with broadcasting, a transaction
needs to broadcast its changes to all nodes, irrespective of whether
those changes are relevant to the execution of transactions at remote
nodes. In contrast, under TFA, messages are exchanged only between
conflicting transactions and on objects of interest.

Note that, Theorem 3 presents the worst-case bound on early
validation steps. In Section VI, we show that the number of early
validation steps, on average, is significantly less than the worst-case
bound.

Lemma 1: For any transaction accessing Os objects, the number
of possible early validation steps is O(|Os|).

Proof: Early validation by definition occurs whenever some
object is accessed for the first time within a transaction. So, the
maximum number of early validations is the number of objects
accessed by transaction |Os|.

Lemma 2: The worst case number of messages in an early vali-
dation step is N .

Proof: During early validation, it is required to validate all
objects in transaction read-set. Read-set objects can be distributed
over network. Hence, at worst case, these objects can’t be distributed
on nodes > N . As we aggregate the validated objects ids, so we will
require at most to N different message for all nodes to validate all
read-set objects.

Lemma 3: The upper bound on the number of messages in an
early validation step for a single transaction accessing Os objects is
O(min(committed(Q), |Os|) ∗ |N |).

Proof: From Lemma 2 and Lemma 1, we conclude that early
validation can happen due to committed concurrent transaction and
based on accessed objects within current transaction, so the minimum
of those factors will determine the number of possible early validation
events per this transaction. Hence, we can calculate the total number
of messages for all early validations during transaction lifetime.

VI. EXPERIMENTAL EVALUATION

We implemented TFA in the HyFlow DTM framework [36] for
experimentally evaluating its performance. HyFlow is a pluggable
framework for DTM. Its instrumentation engine modifies class code
at runtime, adds new fields, and modifies annotated methods to
support transactional behavior. Further, it generates callback func-
tions that work as “hooks” for Transaction Manager events such as
onWrite, beforeWrite, beforeRead, etc.

We developed a set of distributed applications as benchmarks
to evaluate TFA against competing models. Our benchmark suite
includes a distributed version of the Vacation benchmark from the
STAMP benchmark suite [9], two monetary applications (Bank and
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Fig. 7. Throughput of Bank benchmark under TFA and GenRSTM: (a-b) 4
threads per node, (c-d) 8 threads per node.

Loan), and three distributed data structures (Queue, Linked list, and
Binary Search Tree) as microbenchmarks. Three versions of the
benchmarks were implemented. The first version uses Java RMI,
and locks to guard critical sections. We used read-write locks,
which permit greater concurrency. A random timeout mechanism
was used to handle deadlocks and livelocks. In the microbenchmark
implementations, we used a fine-grained, handcrafted lock-coupling
implementation [4], which acquires locks in a “hand-over-hand”
manner. The second version uses atomic transactions using the TFA
implementation, GenRSTM, and Decent STM. The third version is
based on a distributed shared memory (DSM) implementation using
the Home directory protocol, like Jackal [31], which uses the single-
writer/multiple-readers pattern.

We conducted the experiments on a network comprising of 120
nodes, each of which is an Intel Xeon 1.9 GHz processor, running
Ubuntu Linux, and interconnected by a network with 1ms end-to-
end link delay. Each node runs eight concurrent threads, with each
thread invoking 50-200 sequential transactions (in total, around one
thousand concurrent transactions). In a single experiment, we thus
executed 200,000 transactions, and measured the throughput for each
concurrency model, for each benchmark.

Competitor DTM implementations. We first evaluate the perfor-
mance of TFA and compare it with two competitor DTM implementa-
tions: GenRSTM [29] and DecentSTM [5]. GenRSTM is an example
DTM, which relies on broadcasting using group communication.
GenRSTM replicates data access nodes, and its replication manager
is notified of events reflecting the internal state of the local STMs.
On the other hand, DecentSTM implements a sophisticated, fully
decentralized snapshot algorithm, which minimizes aborts. Unlike
TFA, DecentSTM is a multiversion algorithm. Thus, it keeps a history
of object states to allow conflicting transactions to proceed as long
as it can see a consistent snapshot of memory.

Figure 7 shows the throughput of TFA and GenRSTM for the
Bank benchmark under different number of threads (4 and 8 threads)
per node, and read/write transaction percentages. The y-axis shows
the number of nodes (or replicas), while x-axis shows the throughput
(committed transactions/second). In this experiment, GenRSTM was
found to crash after 25 nodes, so we terminate the comparison at this
number of nodes.

As Figure 7 shows, GenRSTM outperforms TFA at small number
of nodes (2-7), while TFA outperforms it at higher number of nodes.
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Fig. 8. Throughput of DecentSTM and TFA: (a-c) Bank benchmark, (d-f)
Loan benchmark

For write-dominant transactions, TFA performs much better, because
of the overhead introduced by GenRSTM for broadcasting changes
to all other replicas.

Figure 8 compares the performance of TFA with DecentSTM. In
DecentSTM, each application thread works as a distributed entity,
so no inter-thread optimization is introduced in its implementation.
In contrast, TFA allows multiple threads per node, which reduces
the validation and clocking overheads. For the sake of fairness, we
limited this experiment to a single thread per node. As mentioned
earlier in Section II, DecentSTM introduces the concept of runtimes
that work as distributed shared memory containers to reduce the
network contention. Figure 8 shows the throughput of TFA and
DecentSTM using different number of runtimes, and for a range of
read/write transaction percentages. We observe from Figure 8 that
TFA consistently outperforms DecentSTM. This is precisely due to
the higher overhead of DecentSTM’s snapshot isolation algorithm
(relative to TFA). The snapshot algorithm in DecentSTM incurs
relatively larger overhead because it requires searching the history
of objects to find a valid snapshot. Besides, in DecentSTM, objects
are centrally maintained at runtimes, which incurs high contention
and communication cost. It is worth noting that, the variance of the
nodal throughput under GenRSTM is around 29 to 836, while that
under both TFA and DecentSTM is within the 0.06 to 13.6 range.
This means that, TFA and DecentSTM are more fair than GenRSTM,
ensuring a uniform execution of transactions over the whole system.

Due to space limitations, results under other benchmarks are
skipped here; they can be found in [37].

Classical distributed programming models. Figure 9 shows the
relative throughput speedup achieved by TFA over other concurrency
models on the benchmarks. The confidence intervals of the data-
points of the figure are in the 5% range. We observe that TFA
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Fig. 9. TFA algorithm speedup for a distributed benchmark suit over 120
nodes.

outperforms all other models: the speedup ratio ranges between
1× and 13×. For the Linked List and Binary Search Tree mi-
crobenchmarks, at different read percentages (10%, 50%, and 90%),
DSM shows higher throughput than RMI with the lock-coupling
implementation. In contrast to RMI with locks, DSM’s multiple-
reader pattern permits concurrent operations to proceed, while fine-
grained locks serialize node traversals. In Queue, the contention is
distributed over both ends. We used read locks with RMI to permit
concurrent contains calls, which improves RMI/locks’s throughput.
TFA outperforms both approaches by 1× to 13.6× speedup for
most workloads. TFA yields a higher speedup for read-dominant
transactions (e.g., Queue, Linked List, and Binary Search Tree) due
to the low number of conflicts/retries, especially on the Binary Search
Tree where transactions operate on different branches. For other
benchmarks such as Bank, Loan, and Vacation, RMI outperforms
DSM by 40-250%, while TFA achieves 1.6× to 7× speedup over
both of them.

In [35], we report extensively on performance under different
conditions and under variable number of nodes and threads per
node. Our experiments show that TFA performs better at high
contention situations and with large number of nodes (e.g., when
object concurrent access probability is higher than 12%).



VII. CONCLUSIONS

We presented TFA, a fully distributed, scalable cc DTM that
ensures both opacity and strong progressiveness. It outperforms
other distributed concurrency control models and competitor DTM
implementations, with acceptable number of messages and low net-
work traffic. Locality of reference enables TFA to scale well with
increasing number of calls per object. In addition, TFA permits
remote objects to move toward group of nodes that access them
frequently, reducing communication costs. Our implementation shows
that DTM, in general, provides comparable performance to classical
and modern distributed concurrency control models, and exports a
simpler programming interface, while avoiding data-races, deadlocks,
and livelocks.

The TFA implementation is publicly available at www.hyflow.org.
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