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Abstract. Formal verification of a binary can provide high software
assurance, even when the source code is unavailable. It is, however, in-
herently hard due to the low level of abstraction involved; instead of
verifying typed and structured source code, one has to verify machine
code or reconstructed assembly. This paper presents a semi-automated
methodology for formally verifying memory preservation, as well as reg-
ister preservation, over disassembled binaries. The methodology is based
on formal symbolic execution and Floyd-style verification. We show that
the methodology is compositional on the function level, which is crucial
for scalability. The methodology works for loops, recursion, and both op-
timized and non-optimized code. It can be used to expose preconditions
required for non-exceptional behavior. We demonstrate applicability by
verifying a set of functions from the HermitCore unikernel library.
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1 Introduction

Building high-assurance software greatly benefits from the usage of formal ver-
ification. Typically, formal verification shows that a given piece of source code
satisfies a certain property. In contrast, this paper considers formal verification
of binaries. Binary verification can be applied to legacy software or software
whose source code is unavailable, e.g., due to proprietary reasons. Moreover, it
significantly reduces the trusted computing base (TCB) of the verification effort.

The drawback of binary verification is the semantical gap between a binary
and its source code. The compilation process removes information such as types,
control flow structure, and data structures such as arrays. Manual proofs over
large sequences of assembly are so intricate and user-intensive that they are
practically infeasible, and a fully automated proof methodology is theoretically
impossible due to the undecidability of semantic properties over programs (Rice’s
theorem [11]). An approach is required that automates binary verification as far
as possible, but still allows user interaction.

https://ece.vt.edu/
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This paper combines interactive theorem proving with automated generation
of formal proofs. This semi-automated approach to binary verification eliminates
the need for large and intricate proofs over assembly blocks while still allowing
the user to direct the prover whenever necessary. This constrasts with fully
automated methods such as SMT solvers [1, 19]. The approach is tailored for a
specific property called memory preservation. Memory preservation shows that
the memory written to by a program is restrained to specified regions. This can
then be used to prove the absence of common memory-related issues, such as
buffer overflows or some forms of data leakage (the next section discusses memory
preservation further). To achieve scalability, the approach uses function-level
compositionality.

The methodology is applied to several functions from the HermitCore uniker-
nel library [15]. HermitCore is an operating system (OS) kernel library aiming
to provide real-time guarantees for high-performance computing. The functions
have been compiled for the x86-64 instruction set architecture (ISA) using the
GNU Compiler Collection (GCC). The functions chosen provide a variety of fea-
tures, including memory operations, loops, recursion, non-trivial data structures,
pointers, and subcalls.
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Fig. 1. Overview of methodology

Figure 1 shows an overview of the contribution’s methodology. The approach
disassembles a binary using an off-the-shelf disassembler, performs analysis on
the binary to extract data for automation, and embeds it into a theorem prover
using the symbolic execution toolchain of Roessle et al. [26], the machine model
of which is based on the work of Heule et al. [9]. Within the theorem prover,
two things need to be manually defined: an invariant and the set of regions that
the function is allowed to write to. Defining invariants manually is traditionally
a hard task, but this paper provides requirements for invariants targeted at
memory preservation. Given the manually-added invariants and regions as input,
a formal proof of memory preservation is generated largely automatically. The
methodology is implemented in Isabelle/HOL [22] for the x86-64 ISA.

2 Memory Preservation

A program that satisfies memory preservation does not write to locations outside
of pre-specified memory regions. Memory preservation is an important property
for the following reasons:
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Security. Various vulnerabilities occur in software whose memory usage is un-
bounded, such as buffer overflows or data leakage. An example of data leakage
from the past few years that had a significant affect on security was the Heart-
bleed vulnerability, wherein invalid input caused out-of-bounds memory accesses,
leaking potentially sensitive data. Memory preservation can be used as a starting
point to expose such vulnerabilities.

Composition. Any verification effort over software is scalable only when it is
compositional. If one targets proofs of full functional correctness over a large
suite of software, that suite needs to be decomposed into separate chunks. Sepa-
ration logic provides a frame rule that allows such decomposition [25]. This rule
intuitively states that if a program can be confined to a certain part of a state,
properties of this program carry over when the program is part of a bigger sys-
tem. Memory preservation essentially discharges the most involved part of this
frame rule when it comes to functions in a binary: it shows a function is confined
to specific regions of the memory. Being able to prove memory preservation is
thus a prerequisite for any larger proof effort over binaries.

Concurrency. Reasoning over concurrent programs is complicated due to po-
tential interactions between threads. Interactions can be intended, e.g., via IPC,
I/O, or interrupts. Shared memory can be a cause of unintended interaction be-
tween threads. By showing that the functions in two threads write to specifically
allowed regions of shared memory only, unintended interactions can be removed.

2.1 Formal Definition

The formal definition of memory preservation starts with the notion of state. In
this implementation, states are defined by a record that stores registers, flags, and
64-bit addressable byte-level memory. Moreover, a machine model is required.
Let S denote the type of states and let A denote the type of instructions. The
machine model provides a function step :: A×S 7→ (S | ⊥E). This function takes
as input an instruction and a state σ. It is a partial function, producing either
the constant ⊥E (indicating an exception) or some state σ′.

From the machine model, we manually derive a run function run until ::
(S 7→ B) × S 7→ (S | ⊥E | ⊥NT ). This partial function takes as input a state
predicate H and a state σ. Predicate H denotes the halting condition. Typically,
the halting condition instructs the run function to stop at a certain line of the
assembly, such as at a ret instruction. The run function iteratively fetches the
current instruction via the current value of the instruction pointer and uses
the machine model to execute it. Whenever an exception occurs, it stops and
returns ⊥E . If the execution were to continue forever without an exception or
reaching the halting condition (e.g. due to an infinite loop), the function returns
⊥NT . Formally, this is achieved by a standard least-fixed-point construction.

A Hoare triple denotes a pre- and postcondition for a certain program. Let P
and Q be state predicates. In our notation, {P} H {Q} denotes that, for any
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state σ, assuming precondition P and termination, run until(H,σ) produces a
non-exceptional state that satisfies postcondition Q. Note that this differs from
standard textbook Hoare triples [10,20] as it uses a halting condition instead of
an explicit program statement. Instead, the program statement is characterized
by the addresses of its initial and ending instructions, defined in P and H.

Before memory preservation can be defined, some further notations and defi-
nitions need to be introduced. A memory region [a, s] is defined by its address a
(a 64-bit word) and size s in bytes (a natural number). A memory region is
assumed not to overflow, i.e., the address plus the size is less than 264. To read
a region of memory in the state, we use the notation σ : ∗[a, s]. If it is clear from
context which state is meant, that state will be omitted. This function reads a
list of bytes from the given address, reverses it (since we are dealing with a little-
endian architecture) and converts it to a word. The following notation denotes

writing a word v to address a in state σ: σLaM
= vM. This function decomposes the

given word into bytes, reverses them and then writes it into memory. Note that
an explicit size is not necessary, since that information is enclosed in the type

of v. Similarly, operators
R
= and

F
= write to registers and flags, respectively; := is

also used for register assignment in places. Central notions concerning memory
regions are separation, enclosure, and overlapping:

Definition 1. Two regions r = [a, s] and r′ = [a′, s′] are separated, r ./ r′, if
and only if s = 0∨ s′ = 0∨ a+ s ≤ a′ ∨ a′ + s′ ≤ a. Region r = [a, s] is enclosed
by region r′ = [a′, s′], rv r′, if and only if a ≥ a′ ∧ a+ s ≤ a′ + s′. Two regions
overlap if they are not separate.

Memory preservation is defined as a Hoare triple. Assume a predicate P
that characterizes the initial state, e.g., sets the instruction pointer to the first
instruction of a function body. Moreover, let R be a set of regions that the
function is allowed to write to. Set R includes the stack frame and utilized
data sections from the binary as well as any utilized heap memory. Memory
preservation formulates that any byte not within any region in R has to remain
unchanged. This is formalized as follows.

Definition 2. Let R be a set of regions, let P be a precondition and let H
denote a halting condition. A piece of assembly provides memory preservation if
and only if, for any address a and byte-value v0:

(∀r ∈ R · r ./ [a, 1]) =⇒ {P ∧ ∗[a, 1] = v0} H {∗[a, 1] = v0} (1)

3 Blocks

This section describes how to prove memory preservation over blocks of assembly.
A block is defined as a sequence of assembly instructions whose behavior can be
described using only state transitions and branches. A block always terminates
and has no loops.
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3.1 Symbolic Execution

The main proof technique applied is symbolic execution, which uses rewrite rules
to establish the semantics of a block. Since we do symbolic execution within
Isabelle/HOL, each rewrite rule is formally proven correct. Rewrite rules essen-
tially allow lifting the level of abstraction. For example, the next subsection
defines rewrite rules for writing into memory. Instead of unfolding the write
function – which contains details on byte-level little-endian memory – the write
function is kept abstract: the fact that writing decomposes a value into a byte
list and reverses it is invisible in the rewritten state.

An inherent difficulty caused by symbolic execution is the alias problem.

Consider the following symbolic state: σLa M
= v, a′

M
= v′M. Two values have been

written into memory, first value v to address a and then value v′ to address a′.
The addresses are however completely symbolic, meaning that it is unknown
whether regions [a, |v|] and [a′, |v′|] overlap or not (|x| meaning the size of value
x). If they do not overlap, then this is indeed the most concise symbolic repre-
sentation of the current state. In that case, reading from address a will simply
return value v. However, problems occur when the regions do overlap. Consider,
e.g., a = a′ and |v| = |v′|. In that case, the most concise symbolic representation

is actually σLaM=v′M. Reading from address a will then return v′ instead of v. This
becomes more complicated when the regions do overlap but the addresses are
not equal or the sizes of the values are different, such as when writing multi-byte
objects into a byte array and vice versa.

3.2 Rewriting of Memory Accesses

Symbolic execution of a block of assembly will result in a symbolic state with a

series of memory writes: σLa0
M
=v0, a1

M
=v1, . . .M. In order to read from such a state,

the alias problem must be solved: if it is unknown whether any of the written
regions overlap, then reading from memory cannot be resolved deterministically.
To solve the alias problem, rewrite rules are formulated that ensure that the
symbolic state always satisfies the following form: any two regions written to
memory are separate. This is an invariant over the form of the symbolic state,

e.g., it prevents a state of the form σLa0
M
= v0, a0

M
= v0M. Given this invariant,

reading a region r = [a, s] can be achieved by looping over the written regions
r0, r1, . . . one by one. If a region rn is found such that r v rn, then a value can
be read. Any region rn such that r ./ rn can be ignored. It might be possible
that no single written region encloses region r completely, but a set of written
regions encloses it. In that case, that set of regions can be merged into one region.
Subsequently, that new region encloses region r and can thus be used to resolve
the read.

Writing to memory. In order to preserve the region separation invariant,
writing a region into memory can require region merging, defined as follows.
Let r0 be the region to be written and let r1 be a region already in memory.
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If the regions overlap, the state after having written region r0 will contain one
region that is the result of overwriting region r1 with r0. To define that merged
region, we use list functions tk(n, x) and dr(n, x) (for taking/dropping the first n
elements of list x) and list appending (@). The merged region is defined as

mrg([a1, v1], [a0, v0])
def
= [min(a0, a1), r′], where

r′ = tk(max(0, a0 − a1), v0) @ v0 @

dr(a0 + |v0| < a1 + |v1| ? a0 + |v0| − a1 : |v1|, v1) (2)

Rewrite Rule 3 shows the rewrite rule used whenever a new region is written
into memory. That rule preserves the necessary invariant. The right hand side
underlines the redexes in the rewritten statement (note this notation is only
used for this particular rewrite rule). That is, after application of this rewrite
rule, non-underlined parts will not be rewritten any further. For this rule only,

we use an alternative notation for writing to memory: e.g., σLa0
M
= v0, a1

M
= v1M

is equivalent to w(a1, v1,w(a0, v0, σ)), and we also have r0 = [a0, |v0|] and r1 =
[a1, |v1|].

w(a0, v0,w(a1, v1, σ)) ≡

{
w(a1, v1,w(a0, v0, σ)) if r0 ./ r1

w(mrg(r1, r0), σ) otherwise
(3)

In order to admit this rule to the Isabelle/HOL logic, it needs to be formally
proven correct. The proof is based on two lemmas. First, writing separate blocks
is commutative. Second, the merge function is correct: the produced region is
the result of two sequential and overlapping memory writes.

Reading from memory. Let r = [a, s] be a region to be read in a state with
a series of memory writes. Rewrite Rule 4 provides a rule for this case.

σLa1
M
= v1M : ∗[a, s] ≡

{
tk(s,dr(a− a1, v1)) if [a, s]v [a1, |v1|]
σ : ∗[a, s] if [a, s] ./ [a1, |v1|]

(4)

If an enclosing region has been found, the read can occur. A separate region can
be ignored. However, the rule is incomplete: the memory might contain a written
region that overlaps with r but does not enclose it. Two cases can arise. First,
it can be the case that the set of overlapping regions is still not sufficient to
enclose region r. In that case, no further rewriting is possible. This corresponds
to a case where memory that has not been written to is read. The second case
occurs when there is a set of overlapping regions enclosing region r. In that case,
those regions have to be merged before Rule 4 can be applied. The proof of
Rewrite Rule 4 is among other things based on correctness of the functions that
a.) split a word value into a byte list, b.) reverse that list, and c.) concatenates
that byte list back to a word value.
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3.3 Reasoning over Memory Regions

The previous subsection showed that we need to reason over separation and
enclosure of memory regions. Given assumptions on the memory layout, it needs
to be automatically inferred whether two regions overlap or not. We first detail
how to formulate these assumptions, and then show what steps are needed to
set up automatic inference of memory region properties.

Without any assumptions, the memory model is a simple flat function from
64-bit words to bytes. Symbolic execution then places the data sections of a
binary in some part of the memory and places the stack frame in some other
part of the memory. Naturally, these should not overlap. We use function

⊗
to formulate such assumptions. This function takes as input a set of regions
annotated with a unique ID. This ID allows reasoning over (in)equality of regions:
without an ID, it is impossible to decide whether two regions of the same size
are equal.

Definition 3. Let R be a set of pairs of unique IDs and regions. Set R is sep-
arated if and only if all of its regions are separated:⊗

(R)
def
= ∀(i0, r0), (i1, r1) ∈ R · if i0 = i1 then r0 = r1 else r0 ./ r1 (5)

Typically, set R contains large regions, such as the stack frame. The rewrite
rules typically concern small regions, such as the region of a local variable within
the stack frame. We thus need rules that infer properties over small regions from
larger ones.

r0 ./ r1 ≡ r1 ./ r0 (6)

r0 v r2 ∧ r1 v r3 ∧ r2 ./ r3 =⇒ r0 ./ r1 (7)

r v r (8)

r0 v r1 ∧ r1 v r0 =⇒ r0 = r1 (9)

r0 v r1 ∧ r1 v r2 =⇒ r0 v r2 (10)

r0 ./ r1 ∧ r0.size 6= 0 ∧ r1.size 6= 0 =⇒ r0 6v r1 (11)⊗
(R) ∧ (i0, r0), (i1, r1) ∈ R ∧ i0 6= i1 =⇒ r0 ./ r1 (12)

Fig. 2. Rewrite rules for properties over memory regions.

Figure 2 shows such rules. These rewrite rules are able to infer, from the as-
sumptions over larger regions, the properties separation and non-enclosure over
smaller regions. However, they can not sufficiently infer enclosure. Often, the
only way to prove enclosure is to unfold its definition. This introduces two in-
equalities over words (see Definition 1). Such inequalities can be solved using the
Isabelle/HOL tool unat arith, which is a solver for arithmetic bit-vector equa-
tions [6]. This tool is augmented with several heuristics and auxiliary lemmas
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to facilitate proofs of enclosure. These proofs are time-consuming and can sig-
nificantly clutter the proof effort. Therefore, we introduce the concept of parent
regions. A parent region is a member of set R, and is thus a region annotated
with an ID. The parent region for each memory region occurring in an assembly
block must be manually established. For example, local variables have as par-
ent region the stack frame, whereas constants have as parent frame some data
section. The following notation is used to link a memory region r0 to a parent
region r1 with ID i: parent(r0, i, r1). The parent regions are thus manually de-
fined. Given that information, the proof of enclosure is done automatically, and
only once. The established enclosure properties are then used in the inference
based on the rules in Fig. 2.

As a concrete example, consider a two-byte array starting at address 10 and
having ID 5. The region for this array would be [10, 2], with ID formulation
(5, [10, 2]). If we take the two bytes of the array as child regions, the region
relations would be parent([10, 1], 5, [10, 2]) and parent([11, 1], 5, [10, 2]).

4 Loops

When using symbolic execution to analyze code, loops pose a significant prob-
lem. First, they result in significant path explosion. There exist methodologies
to reduce the number of paths to execute when using loops [23, 27]. However,
these are not formally verified and therefore not usable within Isabelle/HOL.
Second, deciding the looping condition on a symbolic state may produce non-
determinism, which can cause symbolic execution itself to loop infinitely.

We instead apply a method similar to Floyd verification [7]. This style of
verification assumes that, for each loop, at least one instruction is annotated
with a state predicate. In this way, blocks lie between annotated state pairs.
If, for each annotated state, the succeeding annotated state satisfies its state
predicate, a Hoare triple can be inferred for the program as a whole. Floyd-style
verification allows breaking up a larger program with loops into smaller blocks,
each of which is verifiable using symbolic execution.

A Floyd invariant is a function I :: L 7→ ((S 7→ B) | ⊥). For each program
location L it can optionally provide a state predicate. We use loc(σ) to get
the location of the given state (e.g., the current instruction pointer). Notation
I(σ) applies the Floyd invariant to the current state, i.e., I(σ) = I(loc(σ)) 6=
⊥ ∧ I(loc(σ), σ).

Definition 4. A Floyd invariant I holds if and only if, for any state σ,

I(σ) −→ σ′ 6= ⊥E ∧ (σ′ = ⊥NT ∨ I(σ′)), (13)

where σ′ = run until((λσ · I(loc(σ)) 6= ⊥), σ).

If the Floyd invariant holds in the current state σ, then running to the next
annotated location does not produce an exception. If it terminates, the produced
state σ′ satisfies the Floyd invariant.

The following theorem states that a Floyd invariant can be used to prove a
property over the program as a whole:
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Theorem 1. Assume that Floyd invariant I holds and provides an annotation
for locations l0 and lf (the initial and final location). Let halting condition H
stop at location lf , i.e., H(σ) −→ loc(σ) = lf . Then {I(l0)} H {I(lf )}.

Intuitively, Floyd style verification allows a program to be modeled as a
control flow graph (CFG). In that CFG, each arrow can be seen as an implication.

5 Composition

Compositionality is crucial for scalability. It is required for two different reasons.
First, at the level of function calls, compositionality should ensure that when a
function is called, a previous verification effort over that function can be reused,
without opening up the function body. Second, compositionality can drastically
improve scalability within a function body as well. Consider the following pseu-
docode, which sequentially executes an if-statement and some program P :

if b then x else y; P

The assembly code corresponding to this code can be verified using symbolic
execution. This would first consider the case where b is true, execute x and
subsequently symbolically execute program P . Then it would consider the case
where b is false, execute y and then P . Program P is thus symbolically executed
twice. Without compositionality, programs with if-statements may require cer-
tain parts to be executed a number of times exponentially in the number of
if-statements. With compositionality, program P needs to be symbolically exe-
cuted only once.

The notion of Hoare triples as defined in this paper (see Section 2.1) uses a
halting condition. Standard composition [10, 20] does not apply to this kind of
Hoare triples. Consider a run obtained by halting condition H ′. It is possible
to break this run into two, by first running until a halting condition H, and
then until H ′. This requires that H ′ is stronger than H, i.e., H ′ implies H. This
ensures that the run first stops at H before it stops at H ′.

Theorem 2. Hoare triples are compositional with respect to stronger halting
conditions:

{P} H {Q} {Q} H ′ {R} ∀σ · H ′(σ) −→ H(σ)
(14)

{P} H ′ {R}
Consider the block of assembly associated with the pseudocode example.

Let lf denote the final location, and let lP denote the initial location of pro-
gram P . Theorem 2 can be used by instantiating H with halting at either lo-
cation lf or lP , and H ′ with halting at lf . Assuming programs x and y do not
contain goto’s, condition H ′ is actually equivalent to halting at lP . Since H ′ is
stronger than H, compositionality is then possible.

Generally, compositionality over function calls requires a proof that the stack
pointer remains unchanged after execution of a function call. Consider a function
body of function f starting in a text section at location l0. The function is called
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from a different text section by call f at location lcall . This means the return
address is lcall + 5 (the size of the call instruction is 5). After execution of the
instruction call f, the program is at location l0 and the stack pointer has some
value rsp0. In order to apply compositionality to function calls, the pre- and
postcondition have to meet the following requirements. The precondition must
imply that the return address is pushed on the stack (which has been done by
call): ∗[rsp0, 8] = lcall + 5 ∧ rsp = rsp0.

The postcondition must imply that after ret, the net effect of the function
body is that the stack pointer has been incremented by 8: rsp = rsp0 +8∧ loc =
lcall + 5. Note that call has decremented it with 8, so this implies the net effect
from the point of view of the caller is that the stack pointer has been unchanged.
Also, the postcondition shows that the location has been set back to right after
the call.

Besides the stack pointer, modern calling conventions have other callee-saved
registers, such as rbp and r12-r15. It is generally assumed that the net effect
of a function call does not touch these registers. Consider a situation in which
rbp contains an address, to which a value is written after a function call. In
order to prove memory preservation, it must be known that rbp is preserved.
Generally, this is easy to prove by strengthening the pre- and postcondition with
a conjunct rbp = rbp0. The proof is generally not complicated, since these callee-
saved registers are pushed onto the stack at the beginning of the functional calls,
and popped at the end.

6 Case Study: HermitCore

A relatively recent trend in the field of virtualization is the usage of unikernels:
programs designed for specific tasks that are compiled with all the kernel code
necessary to run the programs on a hypervisor or even bare metal without an in-
termediary OS [17]. Unikernels allow an application to include only the necessary
parts of the OS, increasing security by reducing the attack surface. HermitCore
is such a unikernel [15]. It is designed for the x86-64 ISA and is written in C
with some inline assembly. HermitCore is an interesting target for verification,
as it aims to provide a high-speed and real-time environment for cloud software.
In order to demonstrate the applicability of our methodology, we verified a sub-
set of HermitCore’s library functions. These functions contain loops, recursion,
structs, unions, pointers, and function calls. Generally, both non-optimized and
optimized versions have been verified. The proofs and all associated code are
available at https://doi.org/10.6084/m9.figshare.7356110.v2.

Machine Model. The machine model must provide a step function that pro-
vides semantics for instructions. We have used the machine model of Roessle et
al. [26], which is built upon the work of Heule et al. [9]. Heule et al. used machine
learning to derive semantics by executing instructions on an actual x86-64 ma-
chine. Their semantics have been validated against the Intel reference manual.
The formal model is obtained by embedding these semantics into Isabelle/HOL.

https://doi.org/10.6084/m9.figshare.7356110.v2
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Table 1. Summary of functions analyzed

Functions Count SLOC Insts†Loops Recursion Pointer args Globals Subcalls -O3

dequeue_* 3 46 159 3 3 3
buddy_* 5 67 225 1 1 1 3 3 3
task_list_* 3 43 128 3 3
vring_* 3 19 80 1 3
string.h 8 81 280 8 8
syscall.c 23 293 857 5 19 7 17
tasks.c 10 122 396 2 3 9 4
spinlock.h 8 89 254 2 8 2 6
Total 71 760 2379 18 1 46 21 33 12

† Non-optimized count

It has been tested against an actual x86-64 machine, increasing the model’s re-
liability. It provides a formalization of large parts of the x86-64 ISA, including
several modern instruction sets. Concurrency is not modeled.

Functions Analyzed. The selected functions (see Table 1) include function-
ality pertaining to a generic circular queue or ring buffer (the dequeue_* func-
tions), the internals of HermitCore’s kmalloc setup (the buddy_* functions), task
management lists used by HermitCore’s scheduler (task_list_*), and functions
concerning virtual I/O (vring_*). We also verified standard string and memory
related functions: memcpy, memcmp, memset, strlen, strcpy, strncpy, strcmp,
and strncmp. This verification effort affirmed the well-known fact that some of
those functions require an extra precondition, i.e., that the given string is null-
terminated; failure to use null-terminated strings and/or using output buffers of
too small a size can result in buffer overflows. Additional functions that were ver-
ified consist of some providing syscall support, more task- and scheduler-related
functions, and functions for manipulating spinlocks.

Figures 3a and 3b show the CFGs for two of those functions, dequeue_push
and buddy_large_avail. The former pushes a value onto a generic array-based
queue while the latter checks for the smallest available reused memory block for a
given allocation size. The former, lacking any loops, requires only pre- and post-
conditions (though additional invariants may be added). In contrast, the latter
function requires a loop invariant in addition to the pre- and postconditions.

Discussion on Usability. In order to apply the method to a function in a bi-
nary, three steps require user interaction: a) defining a Floyd invariant, b) defin-
ing set R, and c) proving. Traditionally, defining invariants over software is a
complicated matter. However, by restricting ourselves to memory preservation,
invariants become significantly easier.

Section 5 provides requirements that define common parts of the invariants.
For loops, one simply has to annotate each jump with a state predicate as in
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129 :
∗[a, 1] = v0 ∧ rsp = rsp0 ∧
rbp = rbp0 ∧ rdi = deqptr ∧
∗[rsp0, 8] = ret addr

ret addr :
∗[a, 1] = v0 ∧

rsp = rsp0 + 8 ∧
rbp = rbp0

. . .

(a) dequeue_push

0 :
∗[a, 1] = v0 ∧ rsp = rsp0 ∧

rbp = rbp0 ∧ ∗[rsp0, 8] = ret addr

21 :

∗[a, 1] = v0 ∧ rsp = rsp0 − 8 ∧
rbp = rsp0 − 8 ∧

∗[rsp0 − 8, 8] = rbp0 ∧
∗[rsp0, 8] = ret addr

rsp := rsp− 8
rbp := rsp

ret addr :
∗[a, 1] = v0 ∧

rsp = rsp0 + 8 ∧
rbp = rbp0

rbp := ∗[rsp, 8]
rsp := rsp + 16

(b) buddy_large_avail

Fig. 3. Example Floyd invariants

Fig. 3b. However, for recursion the invariant becomes more complicated. Gen-
erally, it has to be shown that both the stack and frame pointers are preserved
throughout the recursion. Moreover, it has to be shown that return addresses
are pushed correctly. A second interaction in defining a Floyd invariant is finding
the right precondition. Such preconditions need not be derived from a reference
manual or from source code annotations; instead, users can run symbolic exe-
cution until non-determinism occurs. At that point, Isabelle/HOL provides the
exact condition under which exceptional behavior happens. It is then up to the
user to strengthen the precondition based on that condition. This means that
the proof methodology may expose implicit or undocumented preconditions.

The proof effort consists of defining parent relations and running symbolic
execution. After symbolic execution, it must be proved that the resulting state
satisfies the invariant. In most of the cases, those proofs could be handled by
Isabelle/HOL using standard off-the-shelf tools. The exception is again recur-
sion. The proof that the stack and frame pointers preserve their values requires
interactive theorem proving with a large focus on word arithmetic.

7 Related Work

Going back to the late 80’s and early 90’s, Yu and Boyer [3, 28] provided se-
mantics and mechanized reasoning for a subset of instructions of the MC68020
microprocessor in the Boyer-Moore theorem prover (Nqthm) [2], a precursor to
ACL2 [12]. This work also utilized symbolic execution and even covered many of
the same string functions we did, such as strcpy and strcmp. Similarly, Clut-
terbuck and Carré performed formal verification of low-level code using SPACE-
8080 [5], a verifiable subset of the Intel 8080 ISA that is analyzable and formally
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verifiable using the Southampton Program Analysis Development Environment
(SPADE) [4]. Another usage of SPADE for verification of assembly was in the
correctness proof of fuel control code for a Rolls-Royce jet engine [24].

Decompilation into logic allows formal verification of assembly and machine
code [21]. Developed in the HOL4 theorem prover, that work uses operational
semantics of machine code to lift programs into a functional form, which can
then be used in a Hoare logic framework for program analysis. It has been
successfully used with machine models of the ARM ISA. This work builds upon
decompilation to derive highly automated proofs for a specific property.

Matthews et al. [18] used the theorem prover ACL2 [12] to target a simple
machine model called TINY as well as Java virtual machine (JVM) bitcode
using the M5 operational model. Both of these assembly-style languages feature
a stack for handling scratch variables rather than a register file as x86, ARM,
and most other mainstream ISAs do. They utilize symbolic execution of code
annotated with invariants on specific instructions. While they proved functional
correctness, they did not show effective scalability due to the restricted models
and small amount of code verified.

In contrast to the bottom-up approach presented in this paper, top-down
approaches have been studied extensively. The CompCert project [16] provides
a compiler that has been verified to produce assembly or machine code with
the same semantics as the source, thus removing them from the TCB. A top-
down approach requires verification of the original source code as well. One
such verification project is AutoCorres [8], part of the seL4 verified microkernel
project [13]. This tool parses C code into a shallowly-embedded monadic repre-
sentation. It produces proofs of the semantic equivalence between the original
code and the monadic version and can be used to prove properties via Hoare
logic. Another top-down project is CakeML [14], a full-toolchain project for proof
synthesis and in-logic execution. It utilizes a subset of Standard ML modeled
with big-step operational semantics.

8 Conclusion

Formal verification of binaries can produce highly reliable claims over software.
By eliminating trust in a compiler or in the semantics of a source language, the
TCB is drastically decreased. It is, however, fundamentally a harder problem
than source code verification.

This paper targets formal verification of memory usage in x86-64 binaries,
showing that functions in a binary restrict themselves to certain regions of mem-
ory. It aims to automate verification as much as possible while still allowing
user interaction wherever necessary. This semi-automated methodology requires
setting up an invariant, which traditionally is a hard problem in itself. Require-
ments for memory preservation invariants are provided. For recursive functions,
more involved invariants are required, plus interactive theorem proving to show
preservation of the stack and frame pointers. Invariants include preconditions
necessary for excluding exceptional behavior. Such preconditions are exposed by
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applying the methodology to a binary, instead of deriving them from documents
or source code annotations.

The approach was applied to functions of HermitCore, a unikernel OS. We
formally proved memory preservation for functions with loops, recursion, C
structs and unions, and dynamic memory operations. Both optimized and non-
optimized versions were verified.

Major additions to our framework would be handling of concurrency and
related instruction variants. Additionally, proper modeling of virtual machine
and hypervisor calls in logic would allow verification of a wider range of functions
from the HermitCore library.

Acknowledgments. We thank the reviewers for their insightful comments,
which have significantly improved the paper. This work is supported in part by
ONR under grant N00014-17-1-2297 and NAVSEA/NEEC under grant N00174-
16-C-0018.

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
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