
STM Concurrency Control for Multicore Embedded
Real-Time Software: Time Bounds and Tradeoffs

Mohammed El-Shambakey
ECE Dept., Virginia Tech

Blacksburg, VA 24060, USA
shambake@vt.edu

Binoy Ravindran
ECE Dept., Virginia Tech

Blacksburg, VA 24060, USA
binoy@vt.edu

ABSTRACT
We consider software transactional memory (STM) for con-
currency control in multicore embedded real-time software.
We investigate real-time contention managers (CMs) for re-
solving transactional conflicts, including those based on dy-
namic and fixed priorities, and establish upper bounds on
transactional retries and task response times. We identify
the conditions under which STM (with the proposed CMs)
is superior to lock-free synchronization.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems

Keywords
Software transactional memory, response time, real-time

1. INTRODUCTION
Embedded systems sense physical processes and control

their behavior, typically through feedback loops. Since phys-
ical processes are concurrent, computations that control them
must also be concurrent, enabling them to process multi-
ple streams of sensor input and control multiple actuators,
all concurrently. Often, such computations need to concur-
rently read/write shared data objects. Typically, they must
also process sensor input and react in a timely manner.
The de facto standard for concurrent programming is the

threads abstraction, and the de facto synchronization ab-
straction is locks. Lock-based concurrency control has sig-
nificant programmability, scalability, and compositionality
challenges [10]. Transactional memory (TM) is an alter-
native synchronization model for shared in-memory data
objects that promises to alleviate these difficulties. With
TM, programmers write concurrent code using threads, but
organize code that read/write shared objects as transac-
tions, which appear to execute atomically. Two transac-
tions conflict if they access the same object and one access

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

is a write. When that happens, a contention manager (or
CM) [8] resolves the conflict by aborting one and allowing
the other to proceed to commit, yielding (the illusion of)
atomicity. Aborted transactions are re-started, often imme-
diately. In addition to a simple programming model, TM
provides performance comparable to highly concurrent fine-
grained locking and lock-free approaches [13], and is com-
posable [9]. Multiprocessor TM has been proposed in hard-
ware, called HTM (e.g., [12]), and in software, called STM
(e.g., [16]), with the usual tradeoffs: HTM provides strong
atomicity [12], has lesser overhead, but needs transactional
support in hardware; STM is available on any hardware.

Given STM’s programmability, scalability, and composi-
tionality advantages, we consider it for concurrency control
in multicore embedded real-time software. Doing so will re-
quire bounding transactional retries, as real-time threads,
which subsume transactions, must satisfy time constraints.
Retry bounds in STM are dependent on the CM policy at
hand (analogous to the way thread response time bounds
are scheduler-dependent). Thus, real-time CM is logical.

Designing a real-time CM is straightforward. Transac-
tional contention can be resolved using dynamic or fixed pri-
orities of parent threads, resulting in Earliest-Deadline-First
(EDF) CM or Rate Monotonic Assignment (RMA)-based
CM, respectively. But what upper bounds exist for trans-
actional retries and thread response times under such CMs
and respective multicore real-time schedulers, such as global
EDF (G-EDF) and global RMA (G-RMA)? Since lock-free
synchronization overcomes some of the performance chal-
lenges (but not scalability and compositionality challenges)
of locks, how does it compare with STM? i.e., are there up-
per or lower bounds for transaction lengths below or above
which STM is superior to lock-free?

We answer these questions. We consider EDF and RMA
CMs, and establish their retry and response time upper
bounds, and the conditions under which they outperform
lock-free protocols. Our work reveals a key result: for most
cases, for G-EDF/EDF CM and G-RMA/RMA CM to be
better or as good as lock-free, the atomic section length
under STM must not exceed half of the lock-free retry loop-
length. However, in some cases, for G-EDF/EDF CM, the
atomic section length can reach the lock-free retry loop-
length, and for G-RMA/RMA CM, it can even be larger
than the lock-free retry loop-length. This means that, STM
is more advantageous with G-RMA than with G-EDF. These
results, among others, for the first time, provide a fundamen-
tal understanding of when to use, and not use, STM concur-
rency control in multicore real-time software, and constitute

the paper’s contribution.
We overview past and related efforts in Section 2. Sec-

tion 3 outlines the work’s preliminaries. Sections 4 and 5 es-
tablish response time bounds under G-EDF/EDF CM and
G-RMA/RMA CM, respectively. We compare STM with
lock-free approaches in Section 6. We conclude in Section 7.

2. RELATED WORK
Transactional-like concurrency control without using locks,

for real-time systems, has been previously studied in the con-
text of non-blocking data structures (e.g., [1]). Despite their
numerous advantages over locks (e.g., deadlock-freedom),
their programmability has remained a challenge. Past stud-
ies show that they are best suited for simple data structures
where their retry cost is competitive to the cost of lock-based
synchronization [4]. In contrast, STM is semantically sim-
pler [10], and is often the only viable lock-free solution for
complex data structures (e.g., red/black tree) [7] and nested
critical sections [13].
STM concurrency control for real-time systems has been

previously studied in [2,6, 7, 11,14,15].
[11] proposes a restricted version of STM for uniproces-

sors. Uniprocessors do not need contention management.
[6] bounds response times in distributed multiprocessor

systems with STM synchronization. They consider Pfair
scheduling, limit to small atomic regions with fixed size, and
limit transaction execution to span at most two quanta. In
contrast, we allow atomic regions with arbitrary duration.

[14] presents real-time scheduling of transactions and se-
rializes transactions based on deadlines. However, the work
does not bound retries and response times, nor establishes
tradeoffs against lock-free synchronization. In contrast, we
establish such bounds and tradeoffs.

[15] proposes real-time HTM. In contrast, we propose
real-time STM, and therefore do not need transactional sup-
port in hardware. In addition, the retry bound developed
in [15] assumes that the worst case conflict between atomic
sections of different tasks occurs when the sections are re-
leased at the same time. However, we show that this is not
the worst case. We develop retry and response time upper
bounds based on much worse conditions.
The past work that is closest to ours is [7], which upper

bounds retries and response times for EDF CMwith G-EDF,
and identifies the tradeoffs against locking and lock-free pro-
tocols. Similar to [15], [7] also assumes that the worst case
conflict between atomic sections occurs when the sections
are released simultaneously. In addition, we consider RMA
CM, besides EDF CM. The ideas in [7] are extended in [2],
which presents three real-time CM designs. However, no
retry bounds or schedulability analysis is presented in [2].

3. PRELIMINARIES
We consider a multiprocessor system withm identical pro-

cessors and n sporadic tasks τ1, τ2, . . . , τn. The kth instance
(or job) of a task τi is denoted τk

i . Each task τi is specified
by its worst case execution time (WCET) ci, its minimum
period Ti between any two consecutive instances, and its
relative deadline Di, where Di = Ti. Job τ j

i is released at

time rji and must finish no later than its absolute deadline

dji = rji + Di. Under a fixed priority scheduler such as G-
RMA, pi determines τi’s (fixed) priority and it is constant
for all instances of τi. Under a dynamic priority scheduler

such as G-EDF, τ j
i ’s priority, pji , is determined by its ab-

solute deadline. A task τj may interfere with task τi for
a number of times during a duration L, and this number
is denoted as Gij(L). τj ’s workload that interferes with τi
during L is denoted Wij(L).

Shared objects. A task may need to access (i.e., read,
write) shared, in-memory objects while it is executing any
of its atomic sections, which are synchronized using STM.
The set of atomic sections of task τi is denoted si. s

k
i is the

kth atomic section of τi. Each object, θ, can be accessed
by multiple tasks. The set of distinct objects accessed by τi
is θi. The set of atomic sections used by τi to access θ is
si(θ), and the sum of the lengths of those atomic sections is
len(si(θ)). s

k
i (θ) is the k

th atomic section of τi that accesses
θ. ski (θ) executes for a duration len(ski (θ)). If θ is shared by
multiple tasks, then s(θ) is the set of atomic sections of all
tasks accessing θ, and the set of tasks sharing θ with τi is
denoted γi(θ). Atomic sections are non-nested. Each atomic
section is assumed to access only one object; this allows a
head-to-head comparison with lock-free synchronization [5].
(Allowing multiple object access per transaction is future
work.) The maximum-length atomic section in τi that ac-
cesses θ is denoted simax(θ), while the maximum one among
all tasks is smax(θ), and the maximum one among tasks with
priorities lower than that of τi is s

i
max(θ).

STM retry cost. If two or more atomic sections conflict,
the CM will commit one section and abort and retry the
others, increasing the time to execute the aborted sections.
The increased time that an atomic section spi (θ) will take
to execute due to interference with another section skj (θ), is

denoted W p
i (s

k
j (θ)). The total time that a task τi’s atomic

sections have to retry is denoted RC(τi). When this retry
cost is calculated over the task period Ti or an interval L, it
is denoted, respectively, as RC(Ti) and RC(L).

4. G-EDF/EDF CM RESPONSE TIME
Since only one atomic section among many that share the

same object can commit at any time under STM, those
atomic sections execute in sequential order. A task τi’s
atomic sections are interfered by other tasks that share the
same objects with τi. The EDF CM will abort and retry
an atomic section of τi, ski (θ) due to a conflicting atomic
section of τj , s

l
j(θ), if the absolute deadline of τj is less than

or equal to the absolute deadline of τi. Hereafter, we will
use ECM to refer to a multiprocessor system scheduled by
G-EDF and resolves STM conflicts using the EDF CM.

The maximum number of times a task τj interferes with
τi is given in [3] and is illustrated in Figure 1. Here, the
deadline of an instance of τj coincides with that of τi, and
τ1
j is delayed by its maximum jitter Jj , which causes all or

part of τ1
j ’s execution to overlap within Ti. From Figure 1,

it is seen that τj ’s maximum workload that interferes with
τi (when there are no atomic sections) in Ti is:

Wij (Ti) ≤
⌊
Ti

Tj

⌋
cj +min

(
cj , Ti −

⌊
Ti

Tj

⌋
Tj

)
≤

⌈
Ti

Tj

⌉
cj (1)

For an interval L < Ti, the worst case pattern of interfer-
ence is shown in Figure 2. Here, τ1

j contributes by all its cj ,

and dk−1
j does not have to coincide with L, as τk−1

j has a

J j

j

i

1

j

2

j

3

j
k

j

k+1

j

Ti

τ

τ
τ τ τ τ τ

Figure 1: Maximum interference between two tasks,
running on different processors, under G-EDF

J j

j

i

1

j

2

j T T
k

j

k+1

j

k-1

j

L

τ

τ
τ τ τ τ τ

Figure 2: Maximum interference during an interval
L of Ti

higher priority than that of τi. The workload of τj is:

Wij (L) ≤
(⌈

L− cj
Tj

⌉
+ 1

)
cj (2)

Thus, the overall workload, over an interval R is:

Wij (R) = min (Wij (R) ,Wij (Ti)) (3)

where Wij(R) is calculated by (2) if R < Ti, otherwise, it is
calculated by (1).

4.1 Retry Cost of Atomic Sections

Claim 1. Under ECM, a task Ti’s maximum retry cost
during Ti is upper bounded by:

RC (Ti) ≤
∑
θ∈θi

((∑
τj∈γi(θ)

(⌈Ti

Tj

⌉ ∑
∀slj(θ)

len
(
slj(θ)

+ smax(θ)
)))

− smax(θ) + simax(θ)

)
(4)

Proof. Consider two instances τa
i and τ b

j , where dbj ≤
dai . When a shared object conflict occurs, the EDF CM
will commit the atomic section of τ b

j while aborting and

retrying that of τa
i . Thus, an atomic section of τa

i , s
k
i (θ),

will experience its maximum delay when it is at the end of
its atomic section, and the conflicting atomic section of τ b

j ,

slj(θ), starts, because the whole ski (θ) will be repeated after

slj(θ).
Validation (i.e., conflict detection) in STM is usually done

in two ways [12]: a) eager (pessimistic), in which conflicts are
detected at access time, and b) lazy (optimistic), in which
conflicts are detected at commit time. Despite the validation
time incurred (either eager or lazy), ski (θ) will retry for the
same time duration, which is len(slj(θ)+ski (θ)). Then, s

k
i (θ)

can commit successfully unless it is interferred by another
conflicting atomic section, as shown in Figure 3.
In Figure 3(a), slj(θ) validates at its beginning, due to

early validation, and a conflict is detected. So τa
i retries

multiple times (because at the start of each retry, τa
i vali-

dates) during the execution of slj(θ). When τ b
j finishes its

atomic section, τa
i executes its atomic section.

In Figure 3(b), τa
i validates at its end (due to lazy val-

idation), and detects a conflict with τ b
j . Thus, it retries,

and because its atomic section length is shorter than that of
τ b
j , it validates again within the execution interval of slj(θ).
However, the EDF CM retries it again. This process contin-
ues until τ b

j finishes its atomic section. If τa
i ’s atomic section

length is longer than that of τ b
j , τ

a
i would have incurred the

same retry time, because τ b
j will validate when τa

i is retry-
ing, and τa

i will retry again, as shown in Figure 3(c). Thus,
the retry cost of ski (θ) is len(s

k
i (θ) + slj(θ)).

If multiple tasks interfere with τa
i or interfere with each

other and τa
i (see the two interference examples in Figure 4),

then, in each case, each atomic section of the shorter dead-
line tasks contributes to the delay of spi (θ) by its total length,
plus a retry of some atomic section in the longer deadline
tasks. For example, slj(θ) contributes by len(slj(θ) + spi (θ))
in both Figures 4(a) and 4(b). In Figure 4(b), syk(θ) causes

a retry to slj(θ), and swh (θ) causes a retry to syk(θ).
Since we do not know in advance which atomic section

will be retried due to another, we can safely assume that,
each atomic section (that shares the same object with τa

i)
in a shorter deadline task contributes by its total length, in
addition to the maximum length between all atomic sections
that share the same object, len(smax(θ)). Thus,

W p
i

(
skj (θ)

)
≤ len

(
skj (θ) + smax (θ)

)
(5)

Thus, the total contribution of all atomic sections of all
other tasks that share objects with a task τi to the retry
cost of τi during Ti is:

RC (Ti) ≤
∑
θ∈θi

∑
τj∈γi(θ)

(⌈Ti

Tj

⌉ ∑
∀slj(θ)

len
(
slj(θ)

+ smax(θ)
))

(6)

Here,
⌈

Ti
Tj

⌉∑
∀slj(θ)

len
(
slj (θ) + smax (θ)

)
is the contribu-

tion of all instances of τj during Ti. This contribution is
added to all tasks. The last atomic section to execute is
spi (θ) (τi’s atomic section that was delayed by conflicting
atomic sections of other tasks). One of the other atomic sec-
tions (e.g., snm(θ)) should have a contribution len(snm(θ) +
simax(θ)), instead of len(snm(θ)+ smax(θ)). That is why one
smax(θ) should be subtracted, and simax(θ) should be added
(i.e., simax(θ)− smax(θ)). Claim follows.

Claim 2. Claim 1’s retry bound can be minimized as:

RC(Ti) ≤
∑
θ∈θi

min(Φ1,Φ2) (7)

where Φ1 is calculated by (4) for one object θ (not the sum
of objects in θi), and

Φ2 =

(∑
τj∈γi(θ)

(⌈Ti

Tj

⌉ ∑
∀slj(θ)

len
(
slj(θ)

+s∗max(θ)
)))

− s̄max(θ) + simax(θ) (8)

i

j

j validates here

i validates

multiple times

τ

τ

τ

τ

(a) Early validation

i retries

multiple times

i

j

i validates

and retries

j validates

here successfully

τ

τ

τ

τ

τ

(b) Lazy validation with
len(ski (θ)) ≤ len(slj(θ))

i

j

i validates

and must retry

j validates

here successfully

Ti starts after

Tj finishes

τi

τj

τ

τ

τ

τ

(c) Lazy validation with
len(ski (θ)) > len(slj(θ))

Figure 3: Retry of ski (θ) due to slj(θ)

i

j

k

h

τ

τ

τ

τ

(a) Other atomic sections in-
terfere only with spi (θ)

i

j

k

h

τ

τ

τ

τ

(b) All atomic sections interfere with
each other and spi (θ)

Replaced in calculations by smax(θ)

Replaced in calculations by simax(θ)

Figure 4: Retry of spi (θ) due to other atomic sections

where s∗max is the maximum atomic section between all tasks,
except τj, accessing θ. s̄max(θ) is the second maximum atomic
section between all tasks accessing θ.

Proof. (4) can be modified by noting that a task τj ’s
atomic section may conflict with those of other tasks, but
not with τj . This is because, tasks are assumed to arrive
sporadically, and each instance finishes before the next be-
gins. Thus, (5) becomes:

W p
i

(
skj (θ)

)
≤ len

(
skj (θ) + s∗max(θ)

)
(9)

To see why s̄max(θ) is used instead of smax(θ), the maximum-
length atomic section of each task that accesses θ is grouped
into an array, in non-increasing order of their lengths. smax(θ)
will be the first element of this array, and s̄max(θ) will be the
next element, as illustrated in Figure 5, where the maximum
atomic section of each task that accesses θ is associated with
its corresponding task. According to (9), all tasks but τj will
choose sjmax(θ) as the value of s∗max(θ). But when τj is the
one whose contribution is studied, it will choose skmax(θ),
as it is the maximum one not associated with τj . This way,
it can be seen that the maximum value always lies between
the two values sjmax(θ) and skmax(θ). Of course, these two
values can be equal, or the maximum value can be associ-
ated with τi itself, and not with any one of the interfering
tasks. In the latter case, the chosen value will always be
the one associated with τi, which still lies between the two
largest values.
This means that the subtracted smax(θ) in (4) must be

replaced with one of these two values (smax(θ) or s̄max(θ)).
However, since we do not know which task will interfere with
τi, the minimum is chosen, as we are determining the worst
case retry cost (as this value is going to be subtracted), and
this minimum is the second maximum.

j

k

h

i

Sjmax(θ)
Skmax(θ)
Shmax(θ)

Simax(θ)τ

τ
τ
τ

Figure 5: Values associated with s∗max(θ)

Since it is not known a-priori whether Φ1 will be smaller
than Φ2 for a specific θ, the minimum of Φ1 and Φ2 is taken
as the worst-case contribution for θ in RC(Ti).

4.2 Upper Bound on Response Time
To obtain an upper bound on the response time of a task

τi, the term RC(Ti) must be added to the workload of other
tasks during the non-atomic execution of τi. But this re-
quires modification of the WCET of each task as follows. cj
of each interfering task τj should be inflated to accommo-
date the interference of each task τk, k ̸= j, i. Meanwhile,
atomic regions that access shared objects between τj and τi
should not be considered in the inflation cost, because they
have already been calculated in τi’s retry cost. Thus, τj ’s
inflated WCET becomes:

cji = cj −

 ∑
θ∈(θj∧θi)

len (sj(θ))

+RC(Tji) (10)

where, cji is the new WCET of τj relative to τi; the sum

J j

j

i

1

j

2

j

3

j
k

j

k+1

j

Ti

δ

μ

τ

τ
τ τ τ τ τ

Figure 6: Atomic sections of job τ1
j contributing to

period Ti

of lengths of all atomic sections in τj that access object θ is∑
θ∈(θj∧θi)

len(sj(θ)); and RC(Tji) is the RC(Tj) without

including the shared objects between τi and τj . The calcu-
lated WCET is relative to task τi, as it changes from task to
task. The upper bound on the response time of τi, denoted
Rup

i , can be calculated iteratively, using a modification of
Theorem 6 in [3], as follows:

Rup
i = ci +RC(Ti) +

 1

m

∑
j ̸=i

Wij(R
up
i)

 (11)

where Rup
i ’s initial value is ci +RC(Ti).

Wij(R
up
i) is calculated by (3), and Wij(Ti) is calculated

by (1), with cj replaced by cji, and changing (2) as:

Wij(L) = max

(⌈

L−
(
cji+

∑
θ∈(θj∧θi)

len(sj(θ))

)
Tj

⌉
+ 1

)
cji⌈

L−cj
Tj

⌉
.cji + cj −

∑
θ∈(θj∧θi)

len(sj(θ))

(12)
(12) compares two terms, as we have two cases:
Case 1. τ1

j (shown in Figure 2) contributes by cji. Thus,
other instances of τj will begin after this modified WCET,
but the sum of the shared objects’ atomic section lengths
is removed from cji, causing other instances to start ear-
lier. Thus, the term

∑
θ∈(θi∧θj)

len(sj(θ)) is added to cji to

obtain the correct start time.
Case 2. τ1

j contributes by its cj , but the sum of the
shared atomic section lengths between τi and τj should be
subtracted from the contribution of τ1

j , as they are already
included in the retry cost.
It should be noted that subtraction of the sum of the

shared objects’ atomic section lengths is done in the first case
to obtain the correct start time of other instances, while in
the second case, this is done to get the correct contribution
of τ1

j . The maximum is chosen from the two terms in (12),

because they differ in the contribution of their τ1
j s, and the

number of instances after that.

4.2.1 Tighter Upper Bound
To tighten τi’s response time upper bound, RC(τi) needs

to be calculated recursively over duration Rup
i , and not di-

rectly over Ti, as done in (11). So, (7) must be changed to
include the modified number of interfering instances. And if
Rup

i still extends to Ti, a situation like that shown in Figure
6 can happen.
To counter the situation in Figure 6, atomic sections of τ1

j

that are contained in the interval δ are the only ones that
can contribute to RC(Ti). Of course, they can be lower, but
cannot be greater, because τ1

j has been delayed by its max-
imum jitter. Hence, no more atomic sections can interfere

during the duration [d1j − δ, d1j].
For simplicity, we use the following notations:

• λ1 (j, θ) =
∑

∀slj(θ)∈[d1j−δ,d1j]
len
(
sl

∗
j (θ) + smax (θ)

)
• χ1 (i, j, θ) =

⌊
Ti
Tj

⌋∑
∀slj(θ)

len
(
slj (θ) + smax (θ)

)
• λ2 (j, θ) =

∑
∀slj(θ)∈[d1j−δ,d1j]

len
(
sl

∗
j (θ) + s∗max (θ)

)
• χ2 (i, j, θ) =

⌊
Ti
Tj

⌋∑
∀slj(θ)

len
(
slj (θ) + s∗max (θ)

)
Here, sl

∗
j (θ) is the part of slj (θ) that is included in the inter-

val δ. Thus, if slj(θ) is partially included in δ, it contributes
by its included length µ.

Now, (7) can be modified as:

RC (Ti) ≤
∑
θ∈θi

min

((∑

τj∈γi(θ)
λ1 (j, θ) + χ1 (i, j, θ)

)
−smax (θ) + simax (θ)

)
((∑

τj∈γi(θ)
λ2 (j, θ) + χ2 (i, j, θ)

)
−s̄max (θ) + simax (θ)

)
(13)

Now, we compute RC(L), where L does not extend to the
last instance of τj . Let:

• υ (L, j) =
⌈

L−cj
Tj

⌉
+ 1

• λ3 (j, θ) =
∑

∀slj(θ)
len
(
slj (θ) + smax (θ)

)
• λ4 (j, θ) =

∑
∀slj(θ)

len
(
slj (θ) + s∗max (θ)

)
Now, (7) becomes:

RC (L) ≤
∑
θ∈θi

min

{(∑
τj∈γi(θ)

(υ (L, j)λ3 (j, θ))
)

−smax (θ) + simax (θ){(∑
τj∈γi(θ)

(υ (L, j)λ4 (j, θ))
)

−s̄max (θ) + simax (θ)

(14)
Thus, an upper bound on RC(τi) is given by:

RC(Rup
i) ≤ min

{
RC(Rup

i)

RC(Ti)
(15)

where RC(Rup
i) is calculated by (14) if Rup

i does not ex-
tend to the last interfering instance of τj ; otherwise, it is
calculated by (13). The final upper bound on τi’s response
time can be calculated as in (11) by replacing RC(Ti) with
RC(Rup

i).

5. G-RMA/RMA CM RESPONSE TIME
As G-RMA is a fixed priority scheduler, a task τi will

be interfered by those tasks with priorities higher than τi
(i.e., pj > pi). Upon a conflict, the RMA CM will com-
mit the transaction that belongs to the higher priority task.
Hereafter, we use RCM to refer to a multiprocessor sys-
tem scheduled by G-RMA and resolves STM conflicts by
the RMA CM.

5.1 Maximum Task Interference
Figure 7 illustrates the maximum interference caused by a

task τj to a task τi under G-RMA. As τj is of higher priority
than τi, τk

j will interfere with τi even if it is not totally
included in Ti. Unlike the G-EDF case shown in Figure 6,
where only the δ part of τ1

j is considered, in G-RMA, τk
j can

contribute by the whole cj , and all atomic sections contained
in τk

j must be considered. This is because, in G-EDF, the

worst-case pattern releases τa
i before d1j by δ time units, and

τa
i cannot be interfered before it is released. But in G-RMA,
τa
i is already released, and can be interfered by the whole
τk
j , even if this makes it infeasible.

J j

j

i

1

j

2

j T T
k

j

k+1

j

k-1

j

L

Tiτ

τ
τ τ τ τ τ

Figure 7: Max interference of τj to τi in G-RMA

Thus, the maximum contribution of τ b
j to τa

i for any dura-

tion L can be deduced from Figure 7 asWij(L) =
(⌈

L−cj
Tj

⌉
+ 1
)
cj ,

where L can extend to Ti. Note the contrast with ECM,
where L cannot be extended directly to Ti, as this will have a
different pattern of worst case interference from other tasks.

5.2 Retry Cost of Atomic Sections
Claim 3. Under RCM, a task τi’s retry cost over dura-

tion L, which can extend to Ti, is upper bounded by:

RC (L) ≤
∑
θ∈θi

(∑
τ∗
j

((⌈
L− cj
Tj

⌉
+ 1

)
π (j, θ)

)
− smin

max (θ) + simax (θ)

)
(16)

where:
• τ∗

j = {τj |(τj ∈ γi(θ)) ∧ (pj > pi)}
• π(j, θ) =

∑
∀slj(θ)

len
(
slj (θ) + sjmax (θ)

)
• smin

max(θ) = min∀τ∗
j
{sjmax(θ)}

Proof. The worst case interference pattern for RCM is
the same as that for ECM for an interval L, except that, in
RCM, L can extend to the entire Ti, but in ECM, it cannot,
as the interference pattern of τj to τi changes. Thus, (14)
can be used to calculate τi’s retry cost, with some modifi-
cations, as we do not have to obtain the minimum of the
two terms in (14), because τj ’s atomic sections will abort
and retry only atomic sections of tasks with lower priority
than τj . Thus, smax(θ), s

∗
max(θ), and s̄max(θ) are replaced

by smin
max(θ), which is the minimum of the set of maximum-

length atomic sections of tasks with priority lower than τj
and share object θ with τi. This is because, the maximum
length atomic section of tasks other than τj differs according
to j. Besides, as τi’s atomic sections can be aborted only by
atomic sections of higher priority tasks, not all τj ∈ γ(θ) are
considered, but only the subset of tasks in γ(θ) with priority
higher than τi (i.e., τ

∗
j). Claim follows.

5.3 Upper Bound on Response Time
The response time upper bound can be computed using

Theorem 7 in [3] with a modification to include the effect of
retry cost. The upper bound is given by:

Rup
i = ci +RC(Rup

i) +

 1

m

∑
j ̸=i

Wij(R
up
i)

 (17)

where Wij(R
up
i) is calculated as in (12), cji is calculated by

(10), and RC is calculated by (16).

6. STM VERSUS LOCK-FREE
We now would like to understand when STM will be bene-

ficial compared to lock-free synchronization. The retry-loop
lock-free approach in [5] is the most relevant to our work.

6.1 ECM versus Lock-Free

Claim 4. For ECM’s schedulability to be better or equal
to that of [5]’s retry-loop lock-free approach, the size of smax

must not exceed one half of that of rmax, where rmax is the
maximum execution cost of a single iteration of any lock-free
retry loop of any task. With low number of conflicting tasks,
the size of smax can be at most the size of rmax.

Proof. Equation (15) can be upper bounded as:

RC (Ti) ≤
∑
τj∈γi

∑
θ∈θi

⌈Ti

Tj

⌉ ∑
∀slj(θ)

(2.smax)

 (18)

where slj (θ), simax (θ), s∗max (θ), and s̄max (θ) are replaced
by smax, and the order of the first two summations are re-
versed by each other, with γi being the set of tasks that
share objects with τi. These changes are done to simplify
the comparison.

Let
∑

θ∈θi

∑
∀slj(θ)

= β∗
i,j , and αedf =

∑
τj∈γi

⌈
Ti
Tj

⌉
.2β∗

i,j .

Now, (18) can be modified as:

RC (Ti) = αedf .smax (19)

The loop retry cost is given by:

LRC (Ti) =
∑
τj∈γi

(⌈
Ti

Tj

⌉
+ 1

)
.βi,j .rmax

= αfree.rmax (20)

where βi,j is the number of retry loops of τj that accesses the
same object as that accessed by some retry loop of τi, and

αfree =
∑

τj∈γi

(⌈
Ti
Tj

⌉
+ 1
)
.βi,j . Since the shared objects

are the same in both STM and lock free, βi,j = β∗
i,j . Thus,

STM achieves equal or better schedulability than lock-free if
the total utilization of the STM system is less than or equal
to that of the lock-free system:∑

τi

ci + αedf .smax

Ti
≤

∑
τi

ci + αfree.rmax

Ti

∴ smax

rmax
≤

∑
τi
αfree/Ti∑

τi
αedf/Ti

(21)

Let ᾱfree =
∑

τj∈γi

⌈
Ti
Tj

⌉
.βi,j , α̂free =

∑
Tj∈γi

βi,j , and

αfree = ᾱfree + α̂free. Therefore:

smax

rmax
≤

∑
τi
(ᾱfree + α̂free)/Ti∑

τi
αedf/Ti

=
1

2
+

∑
τi
α̂free/Ti∑

τi
αedf/Ti

(22)

Let ζ1 =
∑

τi
α̂free/Ti and ζ2 =

∑
τi

(αedf

2

)
/Ti. The

maximum value of ζ1
2.ζ2

= 1
2
, which can happen if Tj ≥ Ti ∴

Ti/ Tj

smax/rmax

1

0.5

Figure 8: Effect of
⌈

Ti
Tj

⌉
on smax

rmax

⌈
Ti
Tj

⌉
= 1. Then (22) = 1, which is its maximum value.

Tj ≥ Ti means that there is a small number of interferences
from other tasks to τi, and thus low number of conflicts.
Therefore, smax is allowed to be as large as rmax.
The theoretical minimum value for ζ1

2.ζ2
is 0, which can

be asymptotically reached if Tj ≪ Ti, ∴
⌈

Ti
Tj

⌉
→ ∞ and

ζ2 → ∞. Thus, (22) → 1/2.
βi,j has little effect on smax/rmax, as it is contained in

both the numerator and denominator. Irrespective of whether
βi,j is going to reach its maximum or minimum value, both
can be considered constants, and thus removed from (22)’s
numerator and denominator. However, the number of in-

terferences of other tasks to τi,
⌈

Ti
Tj

⌉
, has the main effect

on smax/rmax. This is illustrated in Figure 8. Claim fol-
lows.

6.2 RCM versus Lock-Free

Claim 5. For RCM’s schedulability to be better or equal
to that of [5]’s retry-loop lock-free approach, the size of smax

must not exceed one half of that of rmax for all cases. How-
ever, the size of smax can be larger than that of rmax, de-
pending on the number of accesses to a task Ti’s shared ob-
jects from other tasks.

Proof. Equation (16) is upper bounded by:∑
(τj∈γi)∧(pj>pi)

(⌈
Ti − cj

Tj

⌉
+ 1

)
.2.βi,j .smax (23)

Consider the same assumptions as in Section 6.1. Let

αrma =
∑

(τj∈γi)∧(pj>pi)

(⌈
Ti−cj

Tj

⌉
+ 1
)
.2.βi,j . Now, the

ratio smax/rmax is upper bounded by:

smax

rmax
≤
∑

Ti
αfree/t (Ti)∑

Ti
αrma/t (Ti)

(24)

The main difference between RCM and lock-free is that
RCM is affected only by the higher priority tasks, while lock-
free is affected by all tasks (just as in ECM). Besides, RCM is
still affected by 2.βi,j (just as in ECM). The subtraction of cj
in the numerator of (23) may not have a significant effect on
the ratio of (24), as the loop retry cost can also be modified
to account for the effect of the first interfering instance of

task Tj . Therefore, αfree =
∑

τj∈γi

(⌈
Ti−cj

Tj

⌉
+ 1
)
βi,j .

Let tasks in the denominator of (24) be given indexes k in-
stead of i, and l instead of j. Let tasks in both the numerator
and denominator of (24) be arranged in the non-increasing

priority order, so that i = k and j = l. Let αfree in (24) be
divided into two parts: ᾱfree that contains only tasks with
priority higher than τi, and α̂free that contains only tasks
with priority lower than τi. Now, (24) becomes:

smax

rmax
≤

∑
τi
(ᾱfree + α̂free)/Ti∑

τk
αrma/Tk

=
1

2
+

∑
τi
α̂free/Ti∑

τk
αrma/Tk

(25)

For convenience, we introduce the following notations:

ζ1 =
∑
τi

∑
(τj∈γi)∧(pj<pi)

(⌈
Ti−cj

Tj

⌉
+ 1
)
βi,j

Ti

=
∑
Ti

α̂free/Ti

ζ2 =
∑
τk

∑
(τl∈γk)∧(pl>pk)

(⌈
Tk−cl

Tl

⌉
+ 1
)
βk,l

Tk

=
1

2

∑
τk

αrma/Tk

τj is of lower priority than τi, which means Dj > Di. Un-

der G-RMA, this means, Tj > Ti. Thus,
⌈

Ti−cj
Tj

⌉
= 1 for

all τj and ζ1 =
∑

τi
(
∑

(τj∈γi)∧(pj<pi)
(2.βi,j))/Ti. Since ζ1

contains all τj of lower priority than τi and ζ2 contains all
τl of higher priority than τk, and tasks are arranged in the
non-increasing priority order, then for each τi,j , there exists
τk,l such that i = l and j = k. Figure 9 illustrates this,
where 0 means that the pair i, j does not exist in ζ1, and
the pair k, l does not exist in ζ2’ (i.e., there is no task τl that
will interfere with τk in ζ2), and 1 means the opposite.

j 1 2 · · · n
i
1 0 1 · · · 1

2 0 0
. . .

...
...

...
...

. . . 1
n 0 0 · · · 0

l 1 2 · · · n
k
1 0 0 · · · 0

2 1 0
...

...
...

. . .
. . . 0

n 1 · · · 1 0

Figure 9: Task association for lower priority tasks
than Ti and higher priority tasks than Tk

Thus, it can be seen that both the matrices are transposes
of each other. Consequently, for each βi,j , there exists βk,l

such that i = l and j = k. But the number of times τj
accesses a shared object with τi may not be the same as the
number of times τi accesses that same object. Thus, βi,j

does not have to be the same as βk,l, even if i, j and k, l
are transposes of each other. Therefore, we can analyze the
behavior of smax/rmax based on the three parameters βi,j ,

βk,l, and
⌈

Tk−cl
Tl

⌉
. If βi,j is increased so that βi,j → ∞,

∴ (25) → ∞. This is because, βi,j represents the number of
times a lower priority task τj accesses shared objects with
a higher priority task τi. While this number has a greater
effect in lock-free, it does not have any effect under RCM,
because lower priority tasks do not affect higher priority
ones. Hence, smax is allowed to be much greater than rmax.

βi,j

smax/rmax

0.5

(a)

βk,l

smax/rmax

0.5

(b)

Figure 10: Change of smax/rmax: a) smax
rmax

versus βi,j

and b) smax
rmax

versus βk,l

Although the minimum value for βi,j is 1, mathematically,
if βi,j → 0, then (25) → 1/2. Here, changing βi,j does not
affect the retry cost of RCM, but it does affect the retry
cost of lock-free, because the contention between tasks is
reduced. Thus, smax is reduced in this case to a little more
than half of rmax (“a little more”because the minimum value
of βi,j is actually 1, not 0).
The change of smax/rmax with respect to βi,j is illustrated

in Figure 10(a). If βk,l → ∞, then (25) → 1/2. This is
because, βk,l represents the number of times a higher priority
task τl accesses shared objects with a lower priority task τk.
Under RCM, this will increase the retry cost, thus reducing
smax/rmax. But if βk,l → 0, then (25)→ ∞. This is due
to the lower contention from a higher priority task τl to a
lower priority task τk, which reduces the retry cost under
RCM and allows smax to be very large compared with rmax.
Of course, the actual minimum value for βk,l is 1, and is
illustrated in Figure 10(b).
The third parameter that affects smax/rmax is Tk/Tl. If

Tl ≪ Tk, then
⌈

Tk−cl
Tl

⌉
→ ∞, and (25) → 1/2. This is due

to a high number of interferences from a higher priority task
τl to a lower priority task τk, which increases the retry cost
under RCM, and consequently reduces smax/rmax.
If Tl = Tk (which is the maximum value for Tl asDl ≤ Dk,

because τl has a higher priority than τk), then
⌈

Tk−cl
Tl

⌉
→ 1

and ζ2 =
∑

τk

∑
(τl∈γk)∧(pl>pk)

2βk,l

tk
. This means that the

system will be controlled by only two parameters, βi,j and
βk,l, as in the previous two cases, illustrated in Figures 10(a)
and 10(b). Claim follows.

7. CONCLUSIONS
Under both ECM and RCM, a task incurs 2.smax retry

cost for each of its atomic sections due to a conflict with
another task’s atomic section. Retries under RCM and lock-
free are affected by a larger number of conflicting task in-
stances than under ECM. While task retries under ECM and
lock-free are affected by all other tasks, retries under RCM
are affected only by higher priority tasks.
STM and lock-free have similar parameters that affect

their retry costs—i.e., the number of conflicting jobs and
how many times they access shared objects. The smax/rmax

ratio determines whether STM is better or as good as lock-
free. For ECM, this ratio cannot exceed 1, and it can be 1/2
for higher number of conflicting tasks. For RCM, for the
common case, smax must be 1/2 of rmax, and in some cases,

smax can be larger than rmax by many orders of magnitude.
Our work raises several questions. For example, what are

the typical range of values for the different parameters that
affect the retry cost (and hence the response time)? How
tight is our retry and response time bounds in practice? Can
real-time CMs be designed for other multiprocessor real-time
schedulers (e.g., partitioned, semi-partitioned), and those
that dynamically improve application timeliness behavior?
These are important directions for further work.

Acknowledgments
This work is supported in part by US National Science Foun-
dation under grants CNS 0915895, CNS 1116190, CNS 1130180,
and CNS 1217385.

8. REFERENCES
[1] J. Anderson, S. Ramamurthy, and K. Jeffay. Real-time

computing with lock-free shared objects. In RTSS,
pages 28–37, 1995.

[2] A. Barros and L. Pinho. Managing contention of
software transactional memory in real-time systems.
In IEEE RTSS, Work-In-Progress, 2011.

[3] M. Bertogna and M. Cirinei. Response-time analysis
for globally scheduled symmetric multiprocessor
platforms. In RTSS, pages 149–160, 2007.

[4] B. B. Brandenburg et al. Real-time synchronization on
multiprocessors: To block or not to block, to suspend
or spin? In RTAS, pages 342–353, 2008.

[5] U. C. Devi, H. Leontyev, and J. H. Anderson. Efficient
synchronization under global EDF scheduling on
multiprocessors. In ECRTS, pages 75–84, 2006.

[6] S. Fahmy, B. Ravindran, and E. D. Jensen. On
bounding response times under software transactional
memory in distributed multiprocessor real-time
systems. In DATE, pages 688–693, 2009.

[7] S. F. Fahmy. Collaborative Scheduling and
Synchronization of Distributable Real-Time Threads.
PhD thesis, Virginia Tech, 2010.

[8] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a
theory of transactional contention managers. In
PODC, pages 258–264, 2005.

[9] T. Harris, S. Marlow, et al. Composable memory
transactions. In PPoPP, pages 48–60, 2005.

[10] M. Herlihy. The art of multiprocessor programming.
In PODC, pages 1–2, 2006.

[11] J. Manson, J. Baker, et al. Preemptible atomic regions
for real-time Java. In RTSS, pages 10–71, 2006.

[12] A. McDonald. Architectures for Transactional
Memory. PhD thesis, Stanford University, June 2009.

[13] B. Saha, A.-R. Adl-Tabatabai, et al. McRT-STM: a
high performance software transactional memory
system for a multi-core runtime. In PPoPP, pages
187–197, 2006.

[14] T. Sarni, A. Queudet, and P. Valduriez. Real-time
support for software transactional memory. In
RTCSA, pages 477–485, 2009.

[15] M. Schoeberl, F. Brandner, and J. Vitek. RTTM:
Real-time transactional memory. In ACM SAC, pages
326–333, 2010.

[16] N. Shavit and D. Touitou. Software transactional
memory. In PODC, pages 204–213, 1995.

