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ABSTRACT
In this paper, we consider minimizing the system-level en-
ergy consumption through dynamic voltage scaling for em-
bedded devices, while a) allowing concurrent access to shared
objects through lock-free synchronization b) meeting (m, k)-
constraint, and c) completing as many high importance tasks
as possible. We present a scheduling algorithm called Lock-
Free Utility accrual Algorithm (or MK-LfUA) to meet these
goals. At offline stage, we statistically determine task exe-
cution time, and set the optimal CPU speed that will mini-
mize system-level energy consumption. At run-time, the al-
gorithm dynamically adjusts the CPU speed to compensate
for slack time, while taking into account the speed transi-
tion overhead. Our simulation studies on the Intel PXA271
processor model illustrate MK-LfUA’s superiority over past
work by 15-25%.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems ; D.4.1 [Operating
Systems]: Process Management—Scheduling

Keywords
Lock-free, dynamic voltage scaling, real-time scheduling, (m, k)

1. INTRODUCTION
Embedded wireless sensor networks (WSNs) are increas-

ingly being envisioned for a number of applications such as
surveillance, target tracking, environment monitoring etc,.
In target tracking applications [8], embedded sensor nodes
deployed in a surveillance field periodically generate physi-
cal measurements of a target, and continuously report the
measurements to a sink node or a local cluster head, which
aggregates data to identify/classify the target. When there
are multiple targets (intruders), concurrent and periodical
aggregation tasks will run on the sink node or the local clus-
ter head. Not all aggregation task instances must meet their
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deadlines due to the limited CPU and memory resources.
Furthermore, to avoid loosing the target during any window
of time, it is desirable that the distribution of task deadline-
misses be bounded.

The (m, k) model [7] allows the specification of such soft
real-time requirements. In this model, each periodic real-
time task is associated with an (m, k) (0 ≤ m ≤ k) con-
straint, which means that at least m out of k consecutive
jobs of the task must meet their deadlines. If the (m, k)
constraints cannot be met (e.g., due to transient overloads),
then the deadlines of as many high importance tasks as pos-
sible must be met, where task importance is specified using
the utility dimension of time/utility functions (TUFs) [9].
TUFs allow the specification of task importance that is de-
coupled from task urgency–e.g., the most important task
may be the most urgent; the most important may be the
least urgent.

We consider minimizing the system-level energy consump-
tion of an embedded node, and not just the CPU’s energy
consumption. We use Martin’s empirically-derived system-
level energy consumption model [10] to do so. In this model,
the system-level energy consumption per cycle does not scale
quadratically to the CPU frequency. Instead, a polynomial
is used to represent the complex relation between energy
consumption and core voltage and frequency, to account for
components that consume constant energy and for compo-
nents that consume energy that is only scalable to frequency
(i.e., voltage). In addition, most commercial embedded sen-
sor nodes (e.g., Intel iMote) use DVS-enabled processors
(e.g., PXA271).

Many embedded real-time softwares involve concurrent
accesses to shared data objects, resulting in contention for
those objects. For example, two aggregation tasks may op-
erate on same local database table records to trace identical
intruders. Thus, correct synchronization of task behaviors
is necessary. Mechanisms that resolve such contention can
be classified into: (1) lock-based (e.g., [13]) and (2) non-
blocking schemes (e.g., [5],[1]). Lock-based schemes have
several disadvantages such as reduced concurrency, poten-
tial for deadlocks, and need for a-priori knowledge of lock
ceilings.

The alternative, non-blocking synchronization, includes
lock-free and wait-free synchronization. These methods over-
come the disadvantages of locks. For example, for the single-
writer/multi-reader problem, wait-free protocols (e.g., [4])
typically use multiple buffers to avoid conflicts for the shared
object. In contrast, lock-free protocols (e.g., [1, 5]) allow
readers to concurrently read while the writer is writing, but



readers retry their read if read/write conflicts are detected.
Since a reader’s worst-case number of retries depends upon
the worst-case number of times the reader is preempted by
the writer, the additional execution-time overhead incurred
for the retries is bounded by the number of preemptions.

Contributions. Given such a model, our goal is to min-
imize the system-level energy consumption while meeting
the (m, k)-constraint as much as possible and allowing con-
current access to shared objects through lock-free synchro-
nization. We present an algorithm called Lock-Free Utility
accrual Algorithm (or MK-LfUA). We adopt statistical task
execution time in this algorithm and derive the optimal fre-
quency that will minimize the system’s energy consumption
with the (m, k)-constraint and lock-free shared data. We
also show how to dynamically adjust the CPU speed when
there are slack time and speed transition overheads. Our
simulation studies on the PXA271 processor model (used in
Intel iMote2 sensor nodes) and using parameters of WSN-
target tracking applications illustrate MK-LfUA’s superior-
ity over past algorithms (that solve a subset of MK-LfUA’s
problem space) on energy consumption by 15-25%.

MK-LfUA can be applied to embedded applications, like
data aggregation in wireless sensor networks. In a local clus-
ter head or a sink node, there are usually concurrent ag-
gregation tasks with soft real-time requirements and shared
objects. MK-LfUA can schedule these tasks with energy-
efficiency and with maximized accrued utility (or benefits).

Paper Structure. In Section 2, we outline our models and
formulate the scheduling problem. Section 3 describes how
to set the optimal CPU speed and the trade-off of lock free
in offline stage. We present online scheduling algorithm in
Section 4. In section 5, we ensemble both offline scheduling
and online scheduling in MK-LfUA algorithm. We report
our simulation results in Section 6. The paper concludes in
Section 7.

2. MODELS AND OBJECTIVES

2.1 System and Task Model
The application is assumed to consists of a set of tasks

T = {T1, T2, ..., Tn}. Each task contains an infinite sequence
of periodically arriving instances called jobs. Each task Ti is
characterized by the tuple [Di, Ui, Pi, Ci, V ar(Ci), (mi, ki, ρi)].
Di is the deadline of each job of Ti and Ui is the utility
achieved when Ti meets its deadline Di. The relative impor-
tance of the task with respect to other tasks can be modeled
using this utility parameter. Pi is the task period. Pi = Di.

DVS real-time scheduling is dependent on the prediction
of task execution time demands. Ci and V ar(Ci) represent
the mean and variance of Ti’s execution time, respectively,
at the maximum CPU speed. We estimate the statistical
properties (e.g., mean, variance) of the demand rather than
the worst-case demand (WCET) for three reasons: (1) many
embedded real-time applications exhibit a large variation in
their actual workload. Thus, the statistical estimation of
the demand is much more stable and hence more predictable
than that of the actual workload; (2) worst-case workload
information is usually a very conservative prediction of the
actual workload, which results in resource over-supply and
exacerbates the power consumption.

We assume that the mean and variance of task execu-
tion times are finite and determined through measurement-
based (offline) profiling mechanisms. The tuple (mi, ki, ρi)

(0 < mi < ki) specifies the requirement that at least mi

job deadlines out of ki consecutive jobs must be met with ρi

probability.
Jobs may concurrently read or write shared data objects,

causing the multi-writer/multi-reader (MWMR) problem [5].

2.2 Energy Consumption Model
We consider Martin’s system-level energy consumption

model to derive the energy consumption at a given CPU
speed [10]. In this model, when operating at a frequency
f , a component’s dynamic power consumption is denoted as
Pd. Pd of CPU is given by S3 × f3, where S3 is a constant.
Besides the CPU, other system components also consume
energy. Pd of those that must operate at a fixed voltage
(e.g., main memory) is given by S1 × f , while Pd of those
that consume constant power with respect to the frequency
(e.g., display devices) can be represented as a constant S0.
In practice, the quadratic term S2×f2 is also included to ac-
count for potential variations in DC-DC regulator efficiency
across the range of output power, CMOS leakage currents,
and other second order effects [10].

Summing the power consumption of all components, the
system-level energy consumption of a task Ti becomes Ei =
(ci ·fm/f)(S3×f3 +S2×f2 +S1×f +S0), where ci denotes
Ti’s expected execution time at the maximum frequency fm.
The normalized CPU speed at frequency fi is Si = fi

fm
.

Thus, the energy consumption at a given CPU speed Si is:

E(Si) = ci ·
(

C3 · S2
i + C2 · Si + C1 +

C0

Si

)
(1)

where C3 = S3 · f3
m, C2 = S2 · f2

m, C1 = S1 · fm, and
C0 = S0 are system-dependent parameters, and Smin ≤
Si ≤ Smax = 1.0. We can see that E(Si) is a convex func-
tion. By Descartes’ Rule of Signs, there is only one value, de-
noted Slow that minimizes E(Si) (in Figure 1(a), Slow ≈ 0.5
for energy setting E1).

2.3 Scheduling Objectives
Given these models, our scheduling objectives are to min-

imize the system-level energy consumption (through CPU
speed scaling) and maximize the total utility that is accrued
from task completions, under the constraints of (a) allowing
concurrent shared object accesses through lock-free synchro-
nization; (b) meeting the (m, k) constraints with at least the
probability ρi; and (c) ensuring that the total CPU utiliza-
tion due to all scheduled tasks is less than 1.0.

This problem is NP-hard because it subsumes the problem
of scheduling to maximize total task accrued utility without
(m, k) constraints, which has been shown to be NP-hard
in [6]. Thus, MK-LfUA is a heuristic algorithm.

3. OFF-LINE SCHEDULING

3.1 Bounding Task Execution Time
For a random variable X with mean µ and finite non-zero

variance σ2, for any λ >
√

3/8, by Vysochanski-Petunin:

P (|X − µ| ≥ λσ) ≤ 4

9λ2
(2)

Thus, we can construct 3σ limits to bound X with a prob-
ability 95% (λ = 3) and 4σ limits to bound X with a prob-
ability 99% (λ = 4).



We now probabilistically estimate Ti’s actual execution
time, denoted ci, using the desired probability ρi for meeting
(mi, ki). ci is thus bounded as:

P [|ci − Ci| < λ · V ar(Ci)] ≥ ρi (3)

where λ =
⌈√

4
9·(1−ρi)

⌉
. For example, for ρi = 95% (λ = 3),

ci will be bounded within [Ci − 3V ar(Ci), Ci + 3V ar(Ci)]
with a probability of at least 95%.

Given the tuple (mi, ki, ρi) (0 < mi < ki) for a task Ti,
its estimated execution time demand is computed as ci =

Ci +
⌈√

4
9·(1−ρi)

⌉
· V ar(Ci). For example, if ρi = 95%, ci =

Ci+3V ar(Ci). By doing this, we can satisfy the requirement
regarding ρi probability .

For the requirement of (mi, ki) in the tuple, it is satisfied
by the online scheduling algorithm in Section 4.

3.2 Optimal Offline CPU Speed
We first discuss how to set the optimal CPU speed, de-

noted Sopt, to minimize the system-level energy consump-
tion in offline stage.

Since determining the sufficient schedulability condition of
tasks with (m, k)-constraint is NP-hard [12], it is difficult to
optimally decide the CPU speed to meet (m, k)-constraint.
So we consider the offline CPU speed for scheduling all jobs
in the system with lock-free synchronization.

Similar to [5, 1], we assume that all accesses to lock-free
objects require the same time, denoted s time units.

Recall the definition of Slow in Section 2.2. Now,

Proposition 1. If
∑n

j=1

(cj+s)

Pj ·Slow
≤ 1, then all jobs are

schedulable and Sopt = Slow.

Proof. From [1], the sufficient schedulability condition

under EDF with lock-free is
∑n

j=1

(cj+s)

Pj
≤ 1 for maximal

CPU speed (1.0). When CPU speed is Slow, the execution
time for a job becomes Tj is (cj + s)/Slow. Considering the
convex feature of energy function, the proposition holds.

Theorem 1. When
∑n

j=1

cj+s

Pj
< 1, all jobs are schedu-

lable, and all tasks have the same optimal speed Sopt =∑n
i=1

ci+s
Pi

if Sopt ≥ Smin.

Proof. Since all task power consumption functions from
Section 2.2 are convex and identical, the optimal speeds to
minimize system-level energy consumption for all tasks are

same. When
∑n

j=1

cj+s

Pj
< 1, the total CPU Utilization

≤ 1.0 for maximum CPU Speed 1.0, so all tasks are schedu-
lable. When we set Sopt =

∑n
i=1

ci+s
Pi

≥ Smin, the total

CPU utilization becomes 1.0 and the system-level energy
consumption is minimized due to convex energy consump-
tion functions from Section 2.2.

Note: if
∑n

j=1

cj+s

Pj
< Smin, then one needs to use Smin.

Proposition 2. If
∑n

j=1

cj+s

Pj
> 1, then all tasks need to

be scheduled with a maximum CPU speed Sopt = 1.0.

Thus, we determine the CPU speed to be set offline as

either Smin, or
∑n

j=1

cj+s

Pj
, or the maximum speed 1.0 (per

Proposition 2).
We define the function of obtaining the optimal CPU

speed as Get OptimalSpeed() in Algorithm 1.

Algorithm 1: Get_OptimalSpeed()

input: Task set T, access time s for lock-free object;1:

output: Sopt;

U =
∑n

j=1

Cj+s

Pj
;2:

for ∀ CPU Speed Si do3:

Slow = min{E(Si)};5:5:

if U ≤ Slow then7:7:
Sopt = Slow;8:

else if U < 1 then9:
Sopt = U ;10:

else if U > 1 then11:
Sopt = 1.0;13:13:

return Sopt;14:

3.3 Tradeoff of Lock-Free
Lock-free is blocking-free but suffers from retries. Lock-

based doesn’t have retries but suffers from blocking, besides
deadlocks and priority inversion problems. To understand
the tradeoffs, we compare lock-free and lock-based object
sharing by comparing task sojourn times, similar to [5]. A
task’s sojourn time is the time between the task’s arrival
and its completion, and thus includes the task’s execution
time, retry time, and interference.

Since a job’s worst-case number of retries depends upon
the worst-case number of times the job is preempted, the
additional execution-time overhead incurred for the retries
is bounded by the number of preemptions.

Theorem 2. (Lock-Free Retry Bound under (m, k)). With
MK-LfUA, the total number of retries for mandatory job Ji,
is at most:

N∑

j=1,j 6=i

⌈⌈
Pi

Pj

⌉
· mj

kj

⌉
(4)

Proof. Retries for mandatory job Ji is bounded by the
number of preemptions. With MK-LfUA algorithm (de-
scribed in Section 5), the number of retries for mandatory
job Ji in the interval [t, t + Pi] (assume t is the release time
of Ji) is bounded by the number of other mandatory jobs
with higher execution eligibility than Ji in this time inter-
val. The maximum number of releases of task Tj(j 6= i)
within [t, t + Pi] is dPi/Pje, and the mandatory jobs of Tj

is
⌈⌈

Pi
Pj

⌉
· mj

kj

⌉
in this interval. Thus, the total number of

retries is bounded by

N∑

j=1,j 6=i

⌈⌈
Pi

Pj

⌉
· mj

kj

⌉
.

Let ui denote the computation time for accessing non-
shared objects and I denote the worst-case interference time
for a job. The worst-case sojourn time of a job under lock-
based is ui + I + r · mi + r · min(mi; ni) [14], where mi

is the number of shared objects accessed by job Ji and ni

is the number of jobs that could block Ji. On the other
hand, the worst-case sojourn time of a job under lock-free is

ui + I + s ·mi + s · f , where f =

N∑

j=1,j 6=i

⌈⌈
Pi

Pj

⌉
· mj

kj

⌉
.

Theorem 3. Let jobs be scheduled by MK-LfUA. Now, if
{

s
r

< 2·mi
f+mi

, mi ≤ ni

s
r

< mi+f
mi+ni

, mi > ni



then the sojourn time of job Ji with lock-free objects is shorter
than that with lock-based objects.

Proof. Let A denote r ·mi+r ·min(mi, ni) and B denote
s ·mi +s ·f . We now derive the condition under which lock-
free sharing yields shorter sojourn times than lock-based,
which means A > B. There are two cases:
Case 1: When mi ≤ ni,A = 2 · r ·mi. So when 2 · r ·mi >
s ·mi + s · f , we can get:

s

r
<

2 ·mi

f + mi

Case 2: When mi > ni, A becomes r · (mi + ni). So when

r · (mi + ni) > s ·mi + s · f , we can get s
r

< mi+f
mi+ni

.

Theorem 3 identifies the condition for jobs to obtain a shorter
sojourn time under lock-free. In [1], the authors show that s
is typically much smaller than r in comparison with various
lock-free objects. For example, for simple lock-free objects
such as buffers and stacks, s varies from 2ms to 10ms with
hardware support, while r > 100ms [1].

4. ON-LINE SCHEDULING

4.1 Partitioning Jobs to Meet (m, k) Constraints
To schedule tasks to meet (m, k)-constraints, we partition

the jobs of a task as mandatory (i.e., those which must meet
their deadlines) and optional (i.e., those which may miss
their deadlines). To decide which jobs are mandatory and
which are optional, we use the k-sequence concept in [7] to
record the recent execution history of a task Ti. The k-
sequence is a word of k bits ordered from the most recent to
the oldest job of the task, in which each bit records whether
the job deadline was missed (bit = 0) or met (bit =1). Each
new job arrival causes a shift of all the bits toward the left.

For the jth job of Ti, we denote the previous k-sequence as
sj = (δi

j−ki+1, ..., δ
i
j), and denote the position (from right)

of the nth deadline-meet (or 1) in sj as lij(n, s). Then, the
failure distance (i.e., the distance to task failure state) [7],
denoted FDi

j is given by:

FDi
j = ki − lij(mi, sj) + 1. (5)

For a newly arriving job, it is a mandatory job if FDi
j = 1.

The optional jobs have FDi
j > 1. For example, let the (m, k)

constraint of a task be (3, 5) and the current k-sequence is
11011, then FDi

j = 2, and the next job is an optional job.

If the current k-sequence is 11010, then FDi
j = 1, and the

next job is a mandatory job.
The procedure of partitioning jobs into mandatory and

optional at run-time is depicted in Algorithm 2. The time
complexity for Algorithm 2 is O(n).

4.2 Job Scheduling to Maximize Total Utility
Having partitioned jobs into mandatory and optional to

meet (m, k) constraints, the next questions that we need to
answer include a) which jobs must be selected for execution
(note that due to potential overloads, not all jobs can be
feasibly executed) and b) the order in which the selected
jobs must be dispatched for execution, to maximize the total
accrued utility. This is done as follows.

To determine which jobs must be selected for execution,
the algorithm follows a greedy approach and examines all

Algorithm 2: Job_Partition(σ)

input: Current online Job set Jr = {J1, · · · , Jn′};1:

output: Exe Queue ;
for ∀Jk ∈ Jr do2:

Ti = Task from which Jr comes;3:

M = mi; /*mi is the (m,k) parameter of Ti*/4:

K = ki; /*ki is the (m,k) parameter of Ti*/5:

pos = Find Right(k-sequence for Ti, M , 1);7:7:

FD(Jk) = M − pos + 1;9:9:

index = FD(Jk);10:

EnQueue(Queue FD[index],Jk);11:

if Queue FD[1] 6= ∅ then13:13:

Exe Queue = Queue FD[1];14:

else15:

/*put optional jobs into the queue for execution*/16:

for j = 2 to max(ki −mi) do17:

if Queue FD[j] 6= ∅ then18:

Exe Queue = Queue FD[j];19:

break;21:21:

return Exe Queue;22:

jobs in the non-increasing order of their “return on invest-
ment.” We measure a job’s return on investment as the
amount of utility that can be obtained per unit execution
time i.e., its utility density (UD). A job i’s UD is given by
UDi = Ui/cr

i , where cr
i is the remaining job execution time.

Algorithm 3: Job_Scheduling(queue)

input : Ready Jobs Queue: queue2:2:

output: the selected job Jexe4:4:

σtmp := UD Sorting(queue);6:6:

for ∀Jk ∈ σtmp do7:

if !Feasibility Check(Jk,σ) then9:9:

abort(Jk);11:11:

else12:

σ:=EDF Insert(σ,Jk);14:14:

Jexe := headOf(σ);15:

Each examined job is inserted into a deadline-ordered
schedule, as deadline-ordering is optimal with respect to
meeting all deadlines [14]. The schedule is then tested for
its feasibility, and if infeasible, the inserted job is rejected.
This process is repeated until all jobs are examined, while
preserving the invariant of schedule feasibility. The job at
the head of the schedule is then dispatched for execution.

We describe the procedure of job scheduling to maximize
total utility in Algorithm 3. In line 6, we sort all jobs in
decreasing order of utility density (UD). In line 11, abortion
is done only when termination time is missed. The sub-
procedure of inserting jobs into a deadline-ordered schedule
is presented in Algorithm 4.

The time complexity for Algorithm 3 is O(n2) since either
Feasibility Check() and EDF Insert() has a time com-
plexity of O(n).

Note that jobs synchronize through lock-free synchroniza-
tion. Thus, no dependencies arise between jobs and no dead-
locks occur, saving MK-LfUA from costly dependency-chain
and deadlock resolution computations, unlike in [6, 13].

This process will ensure that the output schedule is a fea-
sible schedule. Furthermore, during underloads, no jobs will
be rejected, and this schedule will be EDF. In addition, by



Algorithm 4: EDF_Insert(σ, Jk))

input : Jk and an ordered job list σ2:2:

output: the updated list σ4:4:

if Jk /∈ σ then6:6:

σtent =σ;8:8:

Insert(Jk, σtent, Jk.deadline);10:10:

if feasible(σtent) then12:12:

σ := σtent;14:14:

return σ;16:16:

virtue of the greedy UD-order by which jobs are examined,
the output schedule will likely yield a high total utility.

4.3 CPU Speed Adjustment
The actual task execution time may differ from the ex-

pected execution time demand. Thus, the CPU speed must
be dynamically adjusted. We need to dynamically reclaim
the slack time if a job is completed earlier than expected,
and increase the next tasks’ speed to accommodate all jobs
if a job is completed later than expected.

Since there is a CPU speed transition overhead, we must
take into account the potential payoff from changing the
speed to determine CPU speed. From [3], the energy and
time transition overheads are ETRAN = (1− η) · c · |V 2

DD2 −
V 2

DD1 | and tTRAN ≈ 2·C
IMAX

|VDD2−VDD1 |, respectively, where

η, C, and IMAX are system parameters. Since f ∝ VDD and
Si = fi/fm, the transition energy and time overhead from
CPU speed S2 to S1 are:

ETRAN ≈ R1 · |S2
2 − S2

1 | (6)

tTRAN ≈ R2 · |S2 − S1| (7)

where R1 and R2 are constants related with the system.
Suppose the slack time for a job Ji is ∆ti = eest − eact,

where eest is the estimated execution time for Ji and eact

is the actual execution time for Ji, and the aggregate slack
time for the previous k executed jobs is

∑k
1 ∆tk. Let the re-

maining execution time for the next job be cr, the potential
new CPU speed for reclaiming aggregate slack time be Sadj ,
and let the CPU has discrete speeds: {Smin, ..., Sopt−1,
Sopt, ..., Smax}. Now,

Proposition 3. If the aggregate slack time

k∑
1

∆tk >

(
1

Sopt−1
− 1

Sopt

)
· [cr + 2 ·R2 · (Sopt − Sopt−1)] ,

then the adjusted speed can be set as:

Sadj = max



Slow,




cr · Sopt

cr +
(∑k

1 ∆tk − 2 · tTRAN

)
· Sopt






 ;

otherwise, the CPU speed can be unchanged.

Proof. When the aggregate slack time > 0, we should
first check whether the slack time can be allocated to the
next job, considering the discrete CPU speed and transi-
tion overheads. The sufficient condition for allocation is

cr

Sadj
< cr

Sopt
+

∑k
1 ∆tk− 2 · tTRAN . Now, we can derive that

cr <
Sopt·Sadj

Sopt−Sadj
·
(∑k

1 ∆tk − 2 · tTRAN

)
≤ Sopt·S(opt−1))

Sopt−S(opt−1)
·(∑k

1 ∆tk − 2 · tTRAN

)
.

Thus, the threshold for CPU speed adjustment is
∑k

1 ∆tk >(
1

Sopt−1
− 1

Sopt

)
· [cr + 2 ·R2 · (Sopt − Sopt−1)]. Combining

with the transition overhead model, we can obtain the ad-
justed CPU speeds.

Proposition 4. If
∑k

1 ∆tk < 0, we need to increase the
CPU speed for the next job. The new adjusted speed is:

Sadj = argmin
{

Si|Si >
cr·Sopt

cr+(∆t−2tT RAN )·Sopt

}

where Sopt < Si < Smax.

Proof. Similar to Proposition 3’s proof, we can obtain
cr

Sadj
< cr

Sopt
+

∑k
1 ∆tk−2 ·tTRAN , considering the transition

overhead. It indicates that Sadj >
cr·Sopt

cr+(∆t−2tT RAN )·Sopt
. We

conclude the result from the convex feature of E(Si).

To dynamically adjust the CPU speed, MK-LfUA first
calculates the aggregate slack time by adding up the slack
time from previously executed jobs. After obtaining the
aggregate slack time

∑k
1 ∆tk, the algorithm adjusts the CPU

speed according to Propositions 3 and 4.

Algorithm 5: Speed_Adjust(Sopt,4t, cr)

input: Sopt, 4t, cr; output: Sadj ;2:2:

constant set = enum{Smin, ..., Sopt−1, Sopt, ..., 1.0};4:4:

Thresh =6:6: (
1

Sopt−1
− 1

Sopt

)
· [cr + 2 ·R2 · (Sopt − Sopt−1)];

if 4t > Thresh then8:8:

Snew =
⌈

cr·Sopt

cr+(4t−2·tT RAN )·Sopt

⌉
;10:10:

Sadj = max{Slow, Snew};11:

4t = 0;13:13:

else if 0 < 4t < Thresh then14:

Sadj = Sopt;15:

if 4t < 0 then17:17:

Sadj = argmin
⌈

cr·Sopt

cr+(4t−2·tT RAN )·Sopt

⌉
;18:

4t = 0;20:20:

return Sadj ;21:

Algorithm 5 shows dynamically adjusting the CPU speed.

5. ALGORITHM DESCRIPTION
We now provide a high-level procedural description of

MK-LfUA in Algorithm 6, combining the offline schedul-
ing and online scheduling. We define the following auxiliary
functions:
• Offline_Computing() is invoked at time t = 0. For a
task Ti, it computes the estimated execution time demand
ci = Ci + 3V ar(Ci) + s (Section 3.1).
• Get_OptimalSpeed() obtains the optimal CPU speed for
the task set, offline (Algorithm 1).
• Job_Partition(σ) partitions jobs into mandatory and
optional at run-time, per their failure distance (Algorithm 2).
• Job_Scheduling(queue) schedules jobs in queue (Algo-
rithm 3).
• SlackTime_Calc() calculates the aggregate slack time af-
ter executing previous jobs.
• Speed_Adjust(Sopt,4t, cr) adjusts the optimal CPU speed
for job Jexe according to aggregate slack time via Slack-
Time Calc() (Algorithm 5).
We present the pseudocode for most of these functions in

previous sections. We omit Offline Computing() and Slack-
Time Calc() as they are straightforward.



Algorithm 6: MK-LfUA: High Level Description

input : T = {T1, · · · , Tn}, Jr = {J1, · · · , Jn′}1:

output: selected job Jexe and CPU speed Sexe2:

Offline Computing();3:

Sopt = Get OptimalSpeed();4:

Initialization: t := tcur, σ := ∅;5:

Initialization: static 4t = 0;7:7:

switch triggering event do8:

case task release(Ti) cr
i = ci;9:

case task completion(Ti) cr
i = 0;10:

otherwise Update cr
i ;11:

EXE Queue = Job Partition(Jr);12:

Jexe = Job Scheduling(EXE Queue);13:

4t = SlackTime Calc();14:

Sexe = Speed Adjust(Sopt, 4t, cr
Jexe

);15:

6. SIMULATION RESULTS
We extensively evaluated MK-LfUA’s performance through

simulation. The goal of our simulation study is to under-
stand how MK-LfUA’s timing and energy consumption prop-
erties compare with other algorithms that address subsets of
MK-LfUA’s problem space. We used the Intel PXA271 pro-
cessor model, which supports five discrete frequencies {13,
104, 208, 312, 416 MHz}. The energy consumption at a
given frequency is calculated using Equation 1. In prac-
tice, the C3, C2, C1, and C0 terms in E(Si) depend upon
the power management state of the system and its subsys-
tems [10]. We used the three energy settings E0, E1, and
E2 shown in Table 1 from [10] (these settings are also used
in [14]).

Table 1: Energy Models
Models C0 C1 C2 C3

E0 0 0 0 f3
m

E1 0.25f3
m 0 0 0.75f3

m

E2 0.5f3
m 0 0 0.5f3

m

We adopted a real-time target tracking WSN applica-
tion [8] in our simulation study. We considered a maximum
of 6 targets and thus 6 periodic tasks that are concurrently
fired on a local cluster-head or a sink node due to them.
The task parameters are shown in Table 2. We set two tar-
gets, associated with tasks T1 and T2, as animals moving
at slow speeds, and hence resulting in long data generating
(and thus task) periods. We set other two targets, asso-
ciated with tasks T3 and T4, as human beings moving at
moderate speeds and thus moderate data generating peri-
ods, and the last two targets associated with tasks T5 and
T6 as vehicles moving at high speeds and short data gener-
ating periods. We assume that the physical measurements
for each target is periodically reported to an embedded sink
node/local cluster head. We also assume that the underly-
ing communication has negligible overheads ( not the focus
of our work).

The statistical task execution time demand (ci) was deter-
mined through numerous experiments to obtain the bounded
value, according to Section 3.1. ρ = 95% for all tasks.

We compared MK-LfUA against algorithms that target
different subsets of its problem space including DBP [7],
EDF∗+DRA [2], MK E{R} [11], ReUA [14], and BaseEDF.
DBP is the distance-based priority algorithm for (m, k) con-
straints, but it does not consider DVS. EDF∗+DRA is a
DVS real-time scheduling algorithm, but it does not consider

(m, k) constraints. MK E{R} is a DVS real-time schedul-
ing algorithm for (m, k) constraints, but it does not con-
sider overloads or synchronization. ReUA is a DVS real-
time scheduling algorithm that considers overloads and lock-
based synchronization, but it does not consider (m, k) con-
straints. BaseEDF is EDF with maximum CPU speed.

6.1 Energy Consumption
We compared the system-level energy consumption of the

algorithms under different power models. Figure 1(a) shows
the convex characteristic of our power model. For energy
setting E1, the CPU speed Slow that minimizes system-level
energy consumption is 0.55 (approximately), and the corre-
sponding CPU frequency is 208Mhz for Intel PXA271. For
energy model of E0, Slow = 0, and the system-level energy
consumption increases monotonically with the CPU speed.

Figures 1(b) and 1(c) show the normalized energy con-
sumption of different algorithms under energy settings E0

and E1, respectively. From Figure 1(b), we observe that dur-
ing underloads, most algorithms consume the same energy.
This is because, the E0 model only considers the CPU’s
energy consumption and all algorithms seek to set as low
CPU speed as possible. During overloads, all algorithms
consume the same energy, as they all set the CPU speed as
Smax = 1.0.

From Figure 1(c), we can observe that MK-LfUA saves
at least 10% more energy than other schemes during under-
loads (i.e., total CPU load < 1). This is because, MK-LfUA
statistically estimates task execution time demands, which
gives a tighter bound than WCET. This results in reclaim-
ing less slack time at run-time and less speed transition over-
heads under MK-LfUA than other algorithms. Furthermore,
MK-LfUA sets an optimal CPU speed for each job (offline),
yielding the minimum possible initial energy consumption.

During overloads, almost all schemes consume the same
energy as they set the maximum CPU speed (Smax = 1.0).

6.2 Timeliness Assurance
In our first set of experiments, we evaluated the statistical

timeliness assurances of the algorithms. Figure 2(a) shows
the Deadline Meet Ratio (DMR) and Figure 2(b) shows the
Accrued Utility Ratio (AUR) of the mandatory jobs under
no shared objects. DMR is the ratio of the jobs meeting
their deadlines to the total job releases of all tasks, and
AUR is the ratio of accrued aggregate utility to the max-
imum possible utility. Since the AUR is strongly affected
by the DMR, they have similar trends. Compared to other
algorithms, MK-LfUA achieves at least 10-30% DMR and
AUR during overloads, since it can distinguish mandatory
jobs from optional jobs and favors jobs with higher utility.
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Figure 2: DMR and AUR with no shared objects

To measure DMR and AUR under concurrent object shar-
ing, we only compare MK-LfUA and ReUA, since only these



Table 2: Experimental Application Parameters
Task Target Type Jobs Execution Time, ci (ms) Period (ms) Range Utility (m, k)

T1 Animal 120 82 ≥ 1000 20 (3, 5)
T2 Animal 124 82 ≥ 1000 20 (3, 5)
T3 Human Being 124 110 ≥ 500 40 (4, 5)
T4 Human Being 109 110 ≥ 500 40 (4, 5)
T5 Vehicle 109 135 ≥ 200 80 (4, 5)
T6 Vehicle 124 135 ≥ 200 80 (4, 5)
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Figure 1: Normalized Energy Consumption under Different Energy Settings

two consider synchronization, utility accrual scheduling, and
DVS. We use five shared objects for all tasks. Figures 3(a)
and 3(b) show the DMR and AUR of these algorithms, re-
spectively, under different CPU loads. We observe that MK-
LfUA outperforms ReUA by at least 20% in terms of DMR
and AUR when the CPU load exceeds 1.0.
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Figure 3: DMR and AUR with shared objects

7. CONCLUSIONS
In this paper, we presented an algorithm called MK-LfUA

that minimizes the system-level energy consumption through
DVS, while meeting (m, k)-constraint with lock-free syn-
chronization. The algorithm can be applied to embedded
applications such as data aggregations in wireless sensor net-
works. During overloads, when the (m, k)-constraint cannot
be met, the algorithm maximizes the accrued task utility.
We determine the optimal CPU speeds which minimize en-
ergy consumption and derive tradeoffs of lock-free in offline
stage. We also illustrated how to dynamically adjust the
CPU speed considering the frequency transition overhead.
Our simulation results illustrate that MK-LfUA can save
about 15 − 20% more energy compared to past algorithms,
and that MK-LfUA meets more deadlines and accrues more
utility for mandatory jobs than past algorithms.
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