
Scheduling Distributable Real-Time Threads in the
Presence of Crash Failures and Message Losses

Sherif F. Fahmy
ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA
fahmy@vt.edu

Binoy Ravindran
ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA
binoy@vt.edu

E. D. Jensen
The MITRE Corporation

Bedford, MA 01730, USA
jensen@mitre.org

ABSTRACT
We consider the problem of scheduling distributable real-
time threads under run-time uncertainties including those
on thread execution times, thread arrivals, node failures,
and message losses. We present a distributed scheduling
algorithm called ACUA that is designed under a partially
synchronous model, allowing for probabilistically-described
message delays. We show that ACUA satisfies thread time
constraints in the presence of crash failures and message
losses, is early-deciding, and has an efficient message and
time complexity. The algorithm has also better “best-effort”
real-time property than past thread scheduling algorithms.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems

Keywords
Scheduling, Distributed Systems, Utility Accrual.

1. INTRODUCTION
Some emerging networked embedded systems are dynamic

in the sense that they operate in environments with dy-
namically uncertain properties (e.g., [2]). These uncertain-
ties include transient and sustained resource overloads (due
to context-dependent activity execution times), arbitrary
activity arrivals, and arbitrary node failures and message
losses. Reasoning about end-to-end timeliness is a difficult
and unsolved problem in such systems. Another distinguish-
ing feature of such systems is their relatively long activity
execution time scales (e.g., milliseconds to minutes), which
permits more time-costlier real-time resource management.

Maintaining end-to-end properties (e.g., timeliness, con-
nectivity) of a control or information flow requires a model
of the flow’s locus in space and time that can be reasoned
about. Such a model facilitates reasoning about the con-
tention for resources that occur along the flow’s locus and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Cear, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

resolving those contentions to optimize system-wide end-to-
end timeliness. The distributable thread programming ab-
straction which first appeared in the Alpha OS [9], and later
in the Real-Time CORBA 1.2 standard directly provides
such a model as their first-class programming and schedul-
ing abstraction. A distributable thread is a single thread of
execution with a globally unique identity that transparently
extends and retracts through local and remote objects. We
focus on distributable threads as our end-to-end program-
ming/scheduling abstraction, and hereafter, refer to them as
threads, except as necessary for clarity.

Contributions. In this paper, we consider the prob-
lem of scheduling threads in the presence of the previously
mentioned uncertainties, focusing particularly on (arbitrary)
node failures and message losses. Past efforts on thread
scheduling (e.g., [9–11]) can be broadly categorized into two
classes: independent node scheduling and collaborative schedul-
ing. In the independent scheduling approach (e.g., [9, 11]),
threads are scheduled at nodes using propagated thread schedul-
ing parameters and without any interaction with other nodes.
Fault-management is separately addressed by thread integrity
protocols that run concurrent to thread execution. Thread
integrity protocols employ failure detectors (abbreviated here
as FDs), and use them to detect failures of the thread ab-
straction, and to deliver failure-exception notifications [9].
In the collaborative scheduling approach (e.g., [10]), nodes
explicitly cooperate to construct system-wide thread sched-
ules, anticipating and detecting node failures using FDs.

FDs that are employed in both paradigms in past efforts
have assumed a totally synchronous computational model—
e.g., deterministically bounded message delay. While the
synchronous model is easily adapted for real-time applica-
tions due to the presence of a notion of time, this results in
systems with low coverage—i.e., the high likelihood for the
resulting timing assurances to be violated, when the syn-
chrony assumptions are violated at run-time (e.g., due to
overloads, or other exigencies). On the other hand, it is
difficult to design real-time algorithms for the asynchronous
model due to its total disregard for timing assumptions.

Thus, there have been several recent attempts to recon-
cile these extremes. For example, in [1], Aguilera et. al.
describe the design of a fast FD for synchronous systems
and show how it can be used to solve the consensus problem
for real-time systems. Their algorithm achieves the optimal
bound for both message and time complexities. In [6], Her-
mant and Widder describe the Theta-model, where only the
ratio, Θ, between the fastest and slowest message is known.
This increases the coverage of algorithms designed under

this model, as less assumptions are made about the system.
Though Θ is sufficient for proving the correctness of such al-
gorithms, an upper bound on communication delay is needed
to establish timeliness properties.

In this paper, we target partially synchronous systems,
and consider the partially synchronous model in [4], where
message delay and message loss are probabilistically described.
For such a model, we design a collaborative thread schedul-
ing algorithm called the Asynchronous Consensus-based Util-
ity accrual scheduling Algorithm (or ACUA). We show that
ACUA satisfies thread time constraints in the presence of
crash failures and message losses, is early-deciding (i.e., its
decision time is proportional to the actual number of crashes),
and has a message and time complexity that compares fa-
vorably with other algorithms in its class. Furthermore, we
show that ACUA has a better best-effort property — i.e.,
the affinity for feasibly completing as many high importance
threads as possible, irrespective of thread urgency — than
past thread scheduling algorithms [10,11]. We also prove the
exception handling properties of ACUA. To the best of our
knowledge, this is the first collaborative thread scheduling
algorithm designed under a partially synchronous model.

The rest of the paper is organized as follows: In Section 2,
we discuss our models and objectives. Section 3 discusses
the rationale of ACUA, and Section 4 describes the algo-
rithm. We establish ACUA’s properties in Section 5, report
experimental results in Section 6, and conclude in Section 7.

2. MODELS AND OBJECTIVE

2.1 Models
Distributable Threads. Distributable threads execute in

local and remote objects by location-independent invoca-
tions and returns. The portion of a thread executing an ob-
ject operation is called a thread segment. Thus, a thread can
be viewed as being composed of a concatenation of thread
segments. A thread can also be viewed as being composed of
a sequence of sections, where a section is a maximal length
sequence of contiguous thread segments on a node.

We assume that execution time estimates of the sections of
a thread are known when the thread arrives into the system
and are described using TUFs (see our timeliness model).
The sequence of remote invocations and returns made by a
thread can typically be estimated by analyzing the thread
code. The total number of sections of a thread is thus as-
sumed to be known a-priori. The application is thus com-
prised of a set of threads, denoted T = {T1, T2, . . .}. The
set of sections of a thread Ti is denoted as [Si

1, S
i
2, . . . , S

i
k].

Timeliness Model. We specify the time constraint of each
thread using a Time/Utility Function (TUF) [7]. A TUF al-
lows us to decouple the urgency of a thread from its impor-
tance. This decoupling is a key property allowed by TUFs
since the urgency of a thread may be orthogonal to its impor-
tance. A thread Ti’s TUF is denoted as Ui (t). A classical
deadline is unit-valued—i.e., Ui(t) = {0, 1}, since impor-
tance is not considered. Downward step TUFs generalize
classical deadlines where Ui(t) = {0, {m}}. We focus on
downward step TUFs, and denote the maximum, constant
utility of a TUF Ui (t), simply as Ui. Each TUF has an ini-
tial time Ii, which is the earliest time for which the TUF is
defined, and a termination time Xi, which, for a downward
step TUF, is its discontinuity point. Ui (t) > 0,∀t ∈ [Ii, Xi]
and Ui (t) = 0, ∀t /∈ [Ii, Xi] ,∀i.

System Model. We consider a set of nodes Π = {1, · · · , N},
with a logical communication channel between each pair of
nodes. We assume that each node is equipped with two
processors: a processor that executes thread sections on the
node and a scheduling co-processor as in [9]. The dual pro-
cessor assumption is used to reduce ACUA’s scheduling over-
head. (In Section 5, we show that with such a scheduling
co-processor, a thread need only survive ACUA’s overhead
once). We assume that communication links are unreliable,
i.e., messages can be lost with probability p, and communi-
cation delay is described by some probability distribution.

Exceptions and Abort Model. Each section of a thread has
an associated exception handler. We consider a termination
model for thread failures including termination time viola-
tions and node failures. When such thread failures occur,
the section exception handlers are triggered to restore the
system to a safe state. The exception handlers may have
time constraints expressed as TUFs. A handler’s TUF’s ini-
tial time is the time of failure of the handler’s thread. The
handler’s TUF’s termination time is relative to its initial
time. Thus, a handler’s absolute and relative termination
times are not the same. Each handler also has an execution
time estimate. This estimate along with the handler’s TUF
are described by the handler’s thread when the thread ar-
rives at a node. A handler is marked as ready for execution
when either its latest start time (see Section 3.2) expires, or
it receives an explicit invocation from its successor.

Failure Model. The nodes are subject to crash failures.
Up to fmax ≤ n − 1 nodes may fail. The actual number of
failures in the system is denoted as f ≤ fmax.

2.2 Scheduling Objectives
Our primary objective is to design a thread scheduling al-

gorithm that will maximize the total utility accrued by all
threads as much as possible. Further, the algorithm must
provide assurances on the satisfaction of thread termination
times in the presence of (up to fmax) crash failures. More-
over, the algorithm must exhibit the best-effort property.

3. ALGORITHM RATIONALE
ACUA is a collaborative scheduling algorithm, which al-

lows it to construct schedules that result in higher system-
wide accrued utility by preventing locally optimal decisions
from compromising system-wide optimality. It also allows
ACUA to respond to node failures by eliminating threads
that are affected by the failures, thus allowing the algorithm
to gracefully degrade timeliness in the presence of failures.

In ACUA, when a thread arrives into the system, each
node suggests a set of threads for rejection from the system
based on its local environment. The nodes must then agree
on a set of threads to reject from the system-wide schedule.
We formulate this problem as a consensus problem with the
following properties: (a) If a correct node decides on a re-
ject set rSet, then some node proposed rSet; (b) Nodes do
not decide on different reject sets (Uniform agreement); (c)
Every correct node eventually decides (i.e. termination).

Since consensus is part of ACUA, we need to solve it on the
partially synchronous model we consider in this work. For
consensus to be solvable on a given system model, it must
support the implementation of one of the Chandra-Toueg
unreliable failure detectors [3]. In Section 3.1, we show that
it is possible to design an S class FD [3] using the QoS FD
described in [4], and thereby show that consensus is solvable

in our system. Specifically, we show that it is possible to
design a FD that provides the semantics of an S class FD
with very high probability for the duration of the consensus
algorithm. Past work [10,11] had considered the existence of
a perfect FD (P class FD), since they considered a fully syn-
chronous model. In this work, we use the S class FD (which
is weaker than a P class FD) because we consider partially
synchronous systems. An S class FD has the following prop-
erties: 1) Completeness Property:- There is a time, TD, after
which a failed node is permanently suspected by all nodes;
and 2) Accuracy Property:- There is some correct node that
is never suspected by all other nodes.

In addition, since the time constraint of a thread is spec-
ified using a TUF, we need to decompose this thread-wide
TUF into section TUFs in order to allow each node to per-
form its local scheduling. We describe this in Section 3.2.

3.1 Failure Detection
We use the QoS FD in [4] to implement our S class FD.

This QoS FD is designed to monitor only one process. There-
fore, we equip each node with N − 1 FDs to monitor the
status of all other nodes. On each node, i, these N − 1
FDs output the nodes they suspect to the the same list,
suspecti. Our consensus algorithm polls this aggregate FD
every δ time unit when its service is required.

From [4] we know that the probability, PA, that the result
of one of the QoS FDs is accurate when it is queried at ran-
dom is E(TG)/E(TMR), where E(TG) is the average time
that the FD’s output remains correct and E(TMR) is the
average time between consecutive mistakes. We also know
that E(TG) = E(TMR)− E(TM), where E(TM) is the aver-
age time it takes for the FD to correct an erroneous failure
suspicion. Both E(TMR) and E(TM) are input QoS values
chosen when designing the FD, thus we can control PA by
choosing appropriate values for these two parameters.

To show that we can implement an S-class FD using the
QoS FD in [4], we need to determine when the consensus
algorithm needs the service of the FD. The consensus algo-
rithm used in ACUA is the quorum-based algorithm in [8]
which requires the service of the FD in line 5 only.

In the worst case, the algorithm takes N rounds (in each of
the first N−1 rounds an erroneous suspicion of the round co-
ordinator leads to the next round until round N is reached).
Let ∆ be the communication delay described by the prob-
ability density function delay(t) and the cumulative distri-
bution function DELAY (t), the consensus algorithm will
spend either ∆ to receive the coordinator’s estimate or TD to
detect the coordinator’s failure (TD is an input QoS param-
eter chosen when designing the FD, and since it is the time
after which a failed node will be permanently suspected, it
satisfies the completeness property of an S class FD).

In the worst case, the consensus algorithm will query the
FD n times, where n = N×TD

δ
. We consider each of these

queries to be an independent experiment with probability
p = 1 − PA of resulting in an erroneous suspicion. There-
fore, the probability that the FD monitoring a single node
makes at least one erroneous suspicion during the execu-
tion of the algorithm is PFDM = 1 − bino(0, n, p), where
bino(x, n, p) is the binomial distribution with parameters
n and p. Since there are N − 1 FDs on each node, the
probability that a given node erroneously suspects x nodes
is given by bino(x, N − 1, PFDM) and the probability that
a node suspects a majority of the nodes in the system is

PN−1

i= N−1
2 +1

bino(i, N − 1, PFDM). Using this analysis, we

constructed a FD that suspected a majority of nodes with
probability 1.5 × 10−110. We believe this probability is too
low to be of practical concern for the time scales we consider.
Therefore, since it is not practically possible for a node to
erroneously suspect a majority of other nodes during the
execution of the consensus algorithm, the set of nodes not
suspected by all nodes in the system have to intersect in at
least one node. That node is never suspected by any of the
other nodes in the system, thus satisfying the accuracy prop-
erty of an S class FD. In addition, the TD detection time
of our FD satisfies the completeness property of an S class
FD. Therefore, we are able to implement an S class FD with
very high probability on our system during the execution of
our consensus algorithm.

3.2 TUF Decomposition
Thread time constraints are expressed using TUFs. The

termination time of each section belonging to a thread needs
to be derived from that thread’s end-to-end termination
time. This derivation should ensure that if all the section
termination times are met, then the end-to-end termination
time of the thread will also be met.

For the last section of a thread, we derive its termination
time as the thread’s termination time. The termination time
of the other sections is the latest start time of the section’s
successor minus the communication delay. Thus the section
termination times of a thread Ti, with k sections, is:

Si
j .tt =


Ti.tt j = k
Si

j+1.tt− Si
j+1.ex−D 1 ≤ i ≤ k − 1

where Si
j .tt denotes section Si

j ’s termination time, Ti.tt de-

notes Ti’s termination time, and Si
j .ex denotes the estimated

execution time of section Si
j . The communication delay,

which we denote by D above, is a random variable ∆, as
mentioned in Section 3.1. Therefore, the value of D can
only be determined probabilistically. This implies that if
each section meets the termination times computed above,
the whole thread will meet its termination time with a cer-
tain, high, probability. This is further explored in Section 5.

As mentioned in Section 2.1, each handler has a TUF that
specifies its relative termination time, Sh

j .X. However, a
handler’s absolute termination time is relative to the time it
is released, more specifically, the absolute termination time
of a handler is equal to the sum of the relative termination
time of the handler and the failure time tf (which cannot
be known a priori). In order to overcome this problem, we
delay the execution of the handler as much as possible which
allows us to delay the execution of the exception handlers
as much as possible, thus leaving room for more important
threads. Therefore, in the equations below we replace tf

with Si
k.tt, the termination time of thread i’s last section:

Sh
j .tt =


Si

k.tt + Sh
j .X + TD + ta j = k

Sh
j+1.tt + Sh

j .X + D 1 ≤ i ≤ k − 1

where Sh
j .tt denotes section handler Sh

j ’s termination time,

Sh
j .X denotes the relative termination time of section han-

dler Sh
j , ta is a correction factor corresponding to the exe-

cution time of the scheduling algorithm, and TD is the time
needed to detect a failure by our QoS FD. From this decom-

position, we compute start times for each handler:

Sh
j .st =

˘
Sh

j .tt− Sh
j .ex 1 ≤ i ≤ k

where Sh
j .ex denotes the estimated execution time of section

handler Sh
j . Thus, we assure the feasible execution of the

exception handlers of failed sections, in order to revert the
system to a safe state.

4. ALGORITHM DESCRIPTION
Algorithm 1 shows the general structure of ACUA. Algo-

rithm 1 is triggered when a thread arrives into the system or
when a node fails When ACUA is triggered, each node con-
structs a local schedule (line 5). In lines 6-14 each node sug-
gests a set of threads for rejection based on the local schedule
it constructs in line 5. In line 15, the nodes send the set of
threads they suggest for rejection to all other nodes in the
system. Each node then waits for a certain time period to
collect the suggestions that other nodes send (lines 15-16).
Using these suggestions, each node makes a decision about
which set of threads should be rejected from the system (line
18). A consensus protocol is then started in order to reach
agreement among the nodes about the set of threads that
will be rejected, using the decision each node made in line
18 as input to the consensus protocol (line 19). After reach-
ing agreement, the nodes remove the set of rejected threads
from their waiting queue (line 20) and construct a new local
schedule containing the remaining threads (line 21).

A important part of ACUA is how it selects a set of
threads for rejection locally (lines 7-14). ACUA distinguishes
between threads that become unschedulable due to local
overloads, and threads that become unschedulable in order
to accommodate a newly arrived thread. This is necessary
because a newly arrived thread can only be accepted into
the system if all its future head nodes accept its sections.
Thus, if some nodes reject other threads’ sections in order
to accommodate the arriving thread, and other nodes reject
the sections of the arriving thread, the new thread should
not be accepted into the system and the sections rejected
to accommodate the new thread’s sections on some nodes
should be allowed to execute normally.

Lines 7-12 perform this function. If the section of the
newly arrived thread is not part of the constructed schedule,
it cannot be responsible for the elimination of other threads
from the system. Thus the difference between the current
schedule and the previous schedule is the set of threads that
the node proposes for rejection (lines 8-9). On the other
hand, if a section of the newly arrived thread is part of
the schedule, we need to differentiate between two possi-
ble causes for rejecting threads: 1) overload conditions may
render some threads unschedulable and 2) the newly arrived
thread may render some threads unschedulable.

The former set can be determined by constructing a sched-
ule without considering Si

j (line 7) and then subtracting
that set from the set of previously schedulable threads (line
11). On line 12 we place a separator, ⊥, between the set
of threads rendered unschedulable due to overload and the
set of threads rendered unschedulable due to the acceptance
of a section of the newly arrived thread. Note that nodes
indicate whether they accept, reject, or are not responsible
for the sections of a newly arrived thread by prepending 1,
0 and ∅ to their suggestions respectively.

Using this additional information, the problem mentioned

Algorithm 1: ACUA on each node i

input: σi
r ; // σi

r : unordered ready queue;1:
input: σp; // σp : previous schedule;2:
output σi; // σi: schedule;3:
Initialization: Σi = ∅; wi = ∅;4:

σi = ConstructSchedule(σi
r);5:

if i is head node for newly arrived thread j then6:
σtmp = ConstructSchedule(σi

r − Si
j);7:

if Si
j /∈ σi then8:
rSet = 0 ∪ (σp − σi);9:

else10:
tmp = (σp − σtmp);11:

rSet = 1 ∪ (σp − (σi − Si
j)− tmp) ∪ ⊥ ∪ tmp;12:

else13:
rSet = ∅ ∪ (σp − σi);14:

send(rSeti, i, t) to all;15:
upon receive(rSetj , j) until 2D do16:

Σi = Σi ∪ rSetj ;17:
wi=DetRejectSet(Σi);18:
wi=UniformConsensus(wi);19:

UpdateSectionSet(wi, σi
r);20:

σi =ConstructSchedule(σi
r);21:

σp = σi;22:
return σi;23:

above can be eliminated by only eliminating threads ren-
dered unschedulable by an arriving thread if all its future
head nodes accept the thread. The details of this function-
ality is contained in the function DetRejectSet. Note that
the timeout value on line 16 is a stochastic value, thus even
if none of the nodes fail, there is a non-zero probability that
some nodes do not receive the suggestions of all other nodes.
This is further addressed in Section 5.

Algorithm 2: DetRejectSet on node i

input: Σi; // Σi: set of suggestions for rejection.1:
output wi; // wi: rejection set output.2:
accept=true;3:
wi = ∅;4:
for each future head node, j, of newly arrived thread do5:

tmpj=retrieve node j’s entry from Σi;6:
if head(tmpj)=0 then7:

accept=false;8:

for each node j do9:
rSetj=retrieve node j’s entry from Σi;10:
rSetj = rSetj - first element in rSetj ;11:
if j is a future head node then12:

if accept=true then13:
wi=wi ∪ elements before and after ⊥ in rSetj ;14:

else15:
wi=wi ∪ only elements after ⊥ in rSetj ;16:

else17:
wi=wi ∪ rSetj ;18:

if node j is a head node for thread set Γ with a19:
section on node i then

if node i does not receive node j’s suggestion then20:
wi=wi ∪ Γ;21:

return wi;22:

Algorithm 2 describes how nodes determine the set of
threads to suggest for rejection from the system. The algo-
rithm first checks whether the newly arrived thread has been
accepted into the system by all future head nodes (lines 5-8).
Lines 10 and 11 retrieve the suggestion of node j and remove
the first element. Lines 12-16 determine which threads to
consider for rejection based on the fact that threads ren-

dered unschedulable by the newly arrived thread on some
nodes should only be rejected if all head nodes accept the
sections of the newly arrived thread. Line 18 adds the set of
threads that non-head nodes suggest for rejection. Finally,
lines 19-21 suggests threads for rejection if they have a sec-
tion hosted on the current node and the current node does
not receive any suggestions from one of the previous, current,
or future head nodes of the threads. This is done because
a node suspects those nodes it does not receive suggestions
from to have failed, and thus suggests for elimination the
threads that are hosted by them. The uniform consensus
algorithm we use is described in [8].

We now turn our attention to the scheduling algorithm
that nodes use to construct a local schedule. This algo-
rithm is encapsulated by the function ConstructSchedule
(see Algorithm 3). The algorithm takes a list of sections,
and constructs a total order with each section’s global Po-
tential Utility Density (or PUD). The global PUD of a sec-
tion is the ratio of the utility of the thread that the section
belongs to, to the sum of the remaining execution times of
all the thread’s sections. The algorithm examines each sec-
tion in the PUD-order, including them in the schedule, and
testing for schedule feasibility. If infeasible, the inserted sec-
tion is rejected, and the process is repeated until all sections
are examined. Note that we construct a total order on global
Potential Utility Density (PUD) in order to attempt to max-
imize system-wide accrued utility. This can be seen in line
8 of the algorithm, where the execution time of the whole
thread, Ti.ex, is used instead of the execution time for each
individual section, Si.ex, when computing PUD. The algo-
rithm for UpdateSectionSet is simple and involves a simple
removal of the rejected threads from a node’s ready queue.

Algorithm 3: ConstructSchedule

input: σr ,σp,H; output σ;1:
Initialization: t = tcur ;σ = ∅;HandlerIsMissed = fasle;2:
for each Si ∈ σp such that Si /∈ σr do3:

Insert(Sh
j , H, Sh

j .tt);4:

σ = H;5:
for each Si ∈ σr do6:

if Si
j−1.tt + D + Si

j .ex ≤ Si
j .tt then7:

Si.PUD = min

„
Ui(t+Ti.ex)

Ti.ex ,
Uh

i (t+Ti.ex+T h
i .ex)

Ti.ex+T h
i

.ex

«
8:

else9:
Si.PUD = 010:

σtmp=sortByPUD(σr);11:
for each Si ∈ σtmp from head to tail do12:

if Si.PUD ≥ 0 then13:
Insert(Si, σ, Si.tt);14:

Insert(Sh
i , σ, Sh

i .tt);15:
if Feasible(σ) = false then16:

Remove(Si, σ, Si.tt);17:

if Sh
i /∈ H then18:

Remove(Sh
i , σ, Sh

i .tt);19:

else20:
break;21:

σp = σ;22:
return σ;23:

5. ALGORITHM PROPERTIES
We compare the best-effort properties of ACUA, CUA [10],

and HUA [11]. In HUA (an independent node scheduling al-
gorithm), thread sections are scheduled locally at each node

they arrive at using their propagated scheduling parameters.
The local scheduler is a modified version of DASA [5], which
uses the heuristic of favoring tasks with a high utility to ex-
ecution time ratio, i.e., high PUD, when constructing the
schedule. These modifications allow HUA to manage the
scheduling of exception handlers in case of thread failure.

In CUA (a collaborative scheduling algorithm), when a
thread arrives, its sections are sent to all its future head
nodes. Each node constructs its schedule locally according
to a modified version of DASA. The nodes then cooperate
with each other to reach agreement on a system-wide set
of threads eligible for execution. Basically, this agreement
step involves the elimination of any threads that have any
of their sections missing from the global schedule.

We quantify the best-effort property by introducing the
concept of DASA Best Effort (or DBE) property:

Definition 1. Consider a distributed scheduling algorithm
A. DBE is defined as the property that A orders its threads
in non-increasing order of global PUD while considering them
for scheduling and schedules all feasible threads in the system
in that order.

Lemma 1. HUA, does not have the DBE property.

Proof. The proof is by counterexample. Assume that a
system has two nodes, n1 and n2, and two threads, T1 and
T2. Assume that each thread has two sections, one hosted
on each of the nodes. Let the sections be S1

1 and S2
1 for

T1 and S1
2 and S2

2 for T2. Assume that both threads have
end-to-end step-down TUFs, with the utility for T1 being 5
and the utility of T2 being 6. Also assume that both threads
arrive at n1 at t0. Assume that the execution times of S1

1 ,
S2

1 , S1
2 and S2

2 are 2, 3, 3 and 1 time units respectively and
that both threads have a relative termination time of 5.

The parameters above ensure that only one of the threads
can be scheduled successfully. Therefore, an algorithm that
has the DBE property would choose T2 for execution since
its global PUD, 6

4
= 1.5, is greater than the PUD of T1,

5
5

= 1. Note that the DBE property will result in a system-
wide accrued utility of 6 in this case.

In contrast, HUA computes the PUD of the sections of
each thread hosted on each node when constructing its sched-
ule [11]. Since the PUD of S1

1 , 5
2

= 2.5, is greater than

the PUD of S1
2 , 6

3
= 2, the scheduler on n1 will choose S1

1

for scheduling first. By the time S1
1 has finished execution,

t0 +3, releasing S1
2 for execution will mean that it will finish

past the global termination time of T2 (T0 + 5). Thus, only
T1 will execute with a resulting accrued utility of 5 for the
system.

Thus HUA does not have the DBE property.

Lemma 2. CUA does not have the DBE property.

Proof. CUA does not have the DBE property became
it does not schedule all feasible threads in the system. For
example, if two nodes host sections of two threads, T1 and
T2, during overloads, one node may schedule the section be-
longing to T2 at the expense of that belonging to T1 and the
other may schedule the section belonging to T1 at the ex-
pense of that belonging to T2. Since CUA excludes threads
from the system if they are missing any of their sections and
both of the above threads have one of their sections missing,
both threads will be excluded from the system. This is un-
necessary since excluding one thread will render the other

schedulable, thus the algorithm does not schedule all feasible
threads and therefore does not have the DBE property.

Theorem 3. ACUA has the DBE property for threads
that can be delayed O(f∆+nk) (see Lemma 5) and are still
schedulable.

Proof. ACUA overcomes the issue mentioned in Theo-
rem 1 because it uses the PUD of the entire thread when
constructing local schedules on each node. Thus sections
that are excluded are those with the least system-wide PUD.
In other words, the threads in ACUA are considered in non-
increasing order of global PUD for scheduling. In addition,
ACUA overcomes the issue mentioned in Theorem 2 by pre-
venting an arriving thread from eliminating other threads
if at least one of the nodes that will be hosting a future
head of the arriving thread does not accept that section for
scheduling. The details of this procedure are explained in
Algorithms 1 and 2. This allows ACUA to schedule all fea-
sible threads. Thus all feasible threads that can tolerant the
scheduling overhead of ACUA and still remain feasible will
be scheduled in non-increasing order of global PUD. The
theorem follows from Definition 1.

Theorem 4. ACUA can tolerate up to fmax = n − 1
faulty processors.

Proof. This follows directly from the fault tolerant prop-
erty of the S class based consensus algorithm in [8] which
we use in our work.

Lemma 5. ACUA has time complexity O(f∆ + nk).

Proof. Lines 5 and 7 in Algorithm 1 have complexity
O(k2) where k is the maximum number of sections in the
ready queue of system nodes. Lines 8-15 have constant com-
plexity, lines 16-17 have complexity 2∆, line 18 has complex-
ity O(nk), line 19 has complexity O ((f + 1)∆), line 20 has
complexity O(k) and line 21 has complexity O(k2). There-
fore, the algorithm has actual complexity of 3k2 + 2∆ +
nk + (f + 1) ∆ + k, which is asymptotically O(f∆ + nk) if
we consider k a constant.

This time complexity compares favorably with the time
complexity of CUA, which is O(D + df + nk) [10], asymp-
totically. However, the value of the time complexity of CUA
is lower than that of ACUA since it makes the additional
assumption of the existence of a fast FD [1]. In addition, ∆
is a random variable, thus the timing guarantee for ACUA
is stochastic in nature.

Lemma 6. ACUA has message complexity O(fn2).

Proof. Lines 16-17 in Algorithm 1 have message com-
plexity n (one for each suggested rejection set sent by a
node). Line 19 has message complexity n2(f +1) since each
round has a message cost of n2. The algorithm is early de-
ciding so it will take f + 1 rounds [8]. Therefore the actual
message cost of the algorithm is n + n2(f + 1), which is
asymptotically O(fn2).

The message complexity of ACUA is asymptotically higher
than that of CUA, O(nf) [10]. However we show in our next
theorem that the size of each message should be smaller for
ACUA in well behaved systems.

Lemma 7. The message size in ACUA is smaller than
that in CUA for well behaved systems.

Proof. The input to the consensus algorithm in ACUA
is the set of rejected threads while the input to the consensus
algorithm in CUA is the set of schedulable threads. Since
the set of rejected threads should be smaller than the set of
accepted threads in well behaved systems, we claim that the
message size in ACUA is smaller than that in CUA.

Lemma 8. If each section of a thread meets its derived
termination time (see Section 3.2), then under ACUA, the
entire thread meets its termination time with high, com-
putable probability, psuc.

Proof. Since the termination times derived for sections
are a function of communication delay, and this communi-
cation delay is a random variable with CDF DELAY (t),
the fact that all sections meet their termination times im-
plies that the whole thread will meet its global termination
time only if none of the communication delays used in the
derivation in Section 3.2 are violated during runtime.

Let D be the communication delay used in the derivation
of section termination times. The probability that D is vi-
olated at runtime is p = 1 − DELAY (D). For a thread
with k sections, the probability that none of the section to
section transitions incur a communication delay above D is
psuc = bino(0, k, p). Thus, the probability that the thread
meets its termination time is also psuc = bino(0, k, p).

Lemma 9. If all nodes are underloaded and no nodes fail,
then no threads will be suggested for rejection by ACUA with
high, computable, probability pnorej.

Proof. Since the nodes are all underloaded and no nodes
fail, Algorithm 3 ensures that all sections will be accepted.
Thus, the only source of thread rejection is if a node does
not receive a suggestion from other nodes during the timeout
value, D, (see Algorithm 1 in Section 4). This can occur due
to one of two reasons; 1) the broadcast message (line 15),
that indicates the start of the consensus algorithm, may not
reach some nodes 2) the broadcast message reaches all nodes,
but these nodes do not send their suggestions to other nodes
in the system during the timeout value assigned to them.

The probability that a node does not receive a message
within the timeout value from one of the other nodes is p =
1−DELAY (D). We consider the broadcast message to be
a series of unicasts to all other nodes in the system. There-
fore, the probability that the broadcast start of consensus
message reaches all nodes is Ptmp = bino(0, N, p) where
bino(x, n, p) is the binomial distribution with parameters n
and p. If this message is received, a node waits for messages
from all other nodes. The probability that none of these mes-
sages arrive after the timeout is tmp = bino(0, N, p). Since
there are N nodes, the probability that none of these nodes
miss a message is bino(N, N, tmp). Therefore the probabil-
ity that no threads will be rejected is the product of the
probability that the broadcast message reaches all nodes,
and the probability that all nodes receive suggestions from
all other nodes in response to this start of consensus message
i.e. pnorej = bino(N, N, tmp)× Ptmp.

Theorem 10. If all nodes are underloaded, no nodes fail
(i.e. f = 0), and threads can be delayed O(f∆ + nk) time
units once and still be schedulable, ACUA meets all the thread
termination times yielding optimal total utility with high,
computable, probability, Palg.

Proof. By Lemma 9, no threads will be considered for
rejection from a fault free, underloaded system with proba-
bility pnorej . This means that all sections will be scheduled
to meet their derived termination times by Algorithm 3.
Thus, by Lemma 8, each thread, j, will meet its termi-
nation time with probability pj

suc. Therefore, for a sys-
tem with X threads, the probability that all threads meet
their termination time is Ptmp =

QX
j=1 pj

suc. Given that
the probability that all threads will be accepted is pnorej ,
Palg = Ptmp × pnorej .

ACUA takes O(f∆+nk) time units to determine a newly
arrived thread’s schedulability. If this delay causes any of
the thread’s sections to miss their termination times, the
thread will not be schedulable. We require that a thread
suffer this delay once because we assume that there is a
scheduling co-processor on each node. Thus, the delay will
only be incurred by the newly arrived thread while other
threads continue to execute uninterrupted on the other pro-
cessor.

Theorem 11. ACUA is an early deciding algorithm that
achieves consensus on the system-wide execution eligible thread
set in a partially synchronous system with virtually certain
probability.

Proof. Since the consensus algorithm in [8], on which we
base our algorithm, is early deciding so is our algorithm. In
addition, we show in Section 3.1 that we can provide an S
class FD with very high probability during the execution of
our algorithm (with probability of error 1.50×10−110), there-
fore the S class FD based consensus algorithm in [8] executes
on our system with virtually certain probability. Since the
input to the consensus algorithm is the set of threads to re-
ject from the system, at its completion all nodes will agree
on the set of threads to reject from their schedules and hence
on the system-wide set of execution eligible threads.

Theorem 12. If n − f nodes do not crash, are under-
loaded, and all incoming threads can be delayed O(f∆+nk)
and still be schedulable, ACUA meets the execution time of
all threads in its eligible execution thread set, Γ, with high
computable probability, Palg.

Proof. By Theorem 11, ACUA achieves system-wide con-
sensus on the set of schedulable threads. By Lemma 9, the
probability that none of the threads hosted by the surviving
nodes are rejected is, pnorej = bino(N−f, N−f, tmp)×tmp
where tmp = bino(0, N − f, p) and p = 1 − DELAY (D).
Thus all sections belonging to those threads will be sched-
uled to meet their derived termination times. By Lemma 8,
this implies that each of these threads, j, will meet its termi-
nation time with probability pj

suc. Therefore, for a system
with an eligible thread set, Γ, the probability that all threads
meet their termination times is Ptmp =

Q
j∈Γ pj

suc. Thus,
the probability that all the remaining threads are accepted
is Palg = Ptmp × pnorej .

Definition 2 (Section Failure). A section, Si
j, is said

to have failed when one or more of the previous head nodes
of Si

j’s thread (other than Si
j’s node) has crashed.

Lemma 13. If a node hosting a section, Si
j, of thread Ti

fails at time tf , every correct node will include handlers
for thread Ti in H by time tf + TD + ta, where ta is an
implementation-specific computed execution bound for ACUA
calculated per the analysis in Theorem 5.

Proof. Since the QoS FD we use detects a failed node
in TD time units [4], all nodes detect the failure of the failed
node at time tf + TD. As a result, ACUA is triggered and
excludes Ti from the system because nodes will not receive
any suggestions from node j (see lines 19-21 of Algorithm 2).
Consequently, Algorithm 3 will include the section handlers
for this thread in H (see lines 3-4 of Algorithm 3). Execution
of ACUA completes in time ta and thus all handlers will be
included in H by time tf + TD + ta.

Lemma 14. If a section Si, where i 6= k, fails at time
tf (per Definition 2) and section Si+1 is correct, then under
ACUA, its handler Sh

i will be released no earlier than Sh
i+1’s

completion and no later than Sh
i+1.tt + D + Sh

i .X − Sh
i .ex.

Proof. For i 6= k, a section’s exception handler can be
released due to one of two events; 1) its start time expires; or
2) an explicit invocation is made by the handler’s successor.

For the first case, we know from the analysis in Section 3.2
that the start time of Sh

i is Sh
i+1.tt+Sh

j .X+D−Sh
j .ex. Thus,

by definition, it satisfies the upper bound in the theorem.
Also, since Sh

j .X ≥ Sh
j .ex (otherwise the handler would not

be schedulable), Sh
i+1.tt + Sh

j .X + D− Sh
j .ex > Sh

i+1.tt, and
this satisfies the lower bound of the theorem.

For the second case, an explicit message has arrived indi-
cating the completion of Sh

i+1. Since the message was sent,
this means that Sh

i+1.tt has already passed, thus satisfying
the theorem lower bound. Further, the message should have
arrived D time units after Sh

i+1 finishes execution (i.e., at
Sh

i+1.tt+D), since Sh
i+1.tt+D ≤ Sh

i+1.tt+D+Sh
i .X−Sh

i .ex
(as Sh

i .X ≥ Sh
i .ex), thus satisfying the upper bound.

Lemma 15. If a section Si fails (per Definition 2), then
under ACUA, its handler Sh

i will complete no later than
Sh

i .tt (barring Sh
i ’s failure).

Proof. If one or more of the previous head nodes of Si’s
thread has crashed, it implies that Si’s thread was present in
a system-wide schedulable set previously constructed. This
means that Si and its handler were previously determined to
be feasible before Si.tt and Sh

i .tt, respectively (lines 13-19,
Algorithm 3). When some previous head node of Si’s thread
fails, ACUA will be triggered and will remove Si from the
pending queue. In addition, Algorithm 3 will include Sh

i in
H and construct a feasible schedule containing Sh

i (lines 3-
21). Since the schedule is feasible and Sh

i is inserted to meet
Sh

i .tt (line 4), then Sh
i will complete by time Sh

i .tt

Theorem 16. When a thread fails, the thread’s handlers
will be executed in LIFO (last-in first-out) order. Further-
more, all (correct) handlers will complete in bounded time.
For a thread with k sections, handler termination times Sh

i .X,
which fails at time tf , and (distributed) scheduler latency ta,
this bound is Ti.X +

P
i Sh

i .X + kD + TD + ta.

Proof. The LIFO property follows from Lemma 14. Since
it is guaranteed that each handler, Sh

i , cannot begin before
the termination time of handler Sh

i+1 (the lower bound in
Lemma 14), thus we guarantee LIFO execution of the han-
dlers. Lemma 15 shows that all correct handlers complete
in bounded time. Finally, if a thread fails at time tf , all
nodes will include handlers for this thread in their schedule
by time tf + TD + ta (Lemma 13) and ACUA guarantees
that all these sections will complete before their termina-
tion times (Lemma 15). Due to the LIFO nature of handler

executions, the last handler to execute is the first exception
handler, Sh

1 . The termination time of this handler (from the
equations in Section 3.2) is Ti.X +

P
i Sh

i .X +kD+TD + ta.
The theorem follows.

6. EXPERIMENTAL RESULTS
We performed a series of simulation experiments to com-

pare the performance of ACUA to CUA and HUA in terms
of Accrued Utility Ratio (AUR) and Termination-time Meet
Ratio (TMR). We define AUR as the ratio of the accrued
utility (the sum of Ui for all completed threads) to the utility
available (the sum of Ui for all available jobs) and TMR as
the ratio of the number of threads that meet their termina-
tion time to the total number of threads in the system. We
considered threads with three segments. Each thread starts
at its origin node with its first segment. The second segment
is a result of a remote invocation to some node in the sys-
tem, and the third segment occurs when the thread returns
to its origin node to complete its execution. The periods of
these threads are fixed, and we vary their execution times
to obtain a range of utilization ranging from 0 to 200%. In
order to make the comparison fair, all the algorithms were
simulated using a synchronous system model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

A
U

R

Utilization

AUR vs Utilization

HUA
CUA

ACUA

Figure 1: AUR vs. Utilization

Figure 1 shows the result of the AUR experiments. As
can be seen, during underloads (i.e., for utilizations less than
one), all three algorithms perform near optimally. However,
both ACUA and CUA sometimes accrue less than 100%
AUR during underloads. This is due to the higher overhead
of these algorithms. It is during overloads, however, that
ACUA begins to outperform both of the other algorithms.
The performance of CUA and HUA varied during overloads;
sometimes CUA had better performance and at other times
the situation was reversed. This difference depends on which
loss of best-effort property, Lemma 1 or Lemma 2, causes the
greatest loss of utility for the thread set being tested. Thus,
it can be seen that ACUA has a better best-effort property
than CUA and HUA, validating Lemmas 1 and 2 and The-
orem 3. In Figure 2, we show the TMR of the algorithms,
which exhibit the same trend.

7. CONCLUSIONS
We presented a best-effort utility accrual scheduling algo-

rithm, ACUA, for scheduling distributable real-time threads
in partially synchronous systems. We compared ACUA in
terms of its best-effort property, and message and time com-
plexity to two previous thread scheduling algorithms includ-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

T
M

R

Utilization

TMR vs Utilization

HUA
CUA

ACUA

Figure 2: TMR vs. Utilization

ing CUA and HUA. We showed that ACUA has a better
best-effort property during overloads than HUA and CUA,
and has message and time complexities that are comparable
to CUA (which is in its class). We also showed the exception
handling properties of ACUA.

8. REFERENCES
[1] M. K. Aguilera et al. On the impact of fast failure

detectors on real-time fault-tolerant systems. In DISC,
pages 354–370. Springer-Verlag, 2002.

[2] J. R. Cares. Distributed Networked Operations: The
Foundations of Network Centric Warfare. iUniverse,
Inc., 2006.

[3] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. J. ACM,
43(2):225–267, 1996.

[4] W. Chen, S. Toueg, and M. K. Aguilera. On the
quality of service of failure detectors. IEEE
Transactions on Computers, 51(1):13–32, 2002.

[5] R. K. Clark. Scheduling Dependent Real-Time
Activities. PhD thesis, CMU, 1990. CMU-CS-90-155.

[6] J.-F. Hermant and J. Widder. Implementing reliable
distributed real-time systems with the Θ-model. In
OPODIS, pages 334–350, 2005.

[7] E. Jensen, C. Locke, and H. Tokuda. A time driven
scheduling model for real-time operating systems. In
IEEE RTSS, pages 112–122, 1985.

[8] A. Mostéfaoui and M. Raynal. Solving consensus using
chandra-toueg’s unreliable failure detectors: A general
quorum-based approach. In DISC, pages 49–63, 1999.

[9] J. D. Northcutt. Mechanisms for Reliable Distributed
Real-Time Operating Systems — The Alpha Kernel.
Academic Press, 1987.

[10] B. Ravindran, J. S. Anderson, and E. D. Jensen. On
distributed real-time scheduling in networked
embedded systems in the presence of crash failures. In
IFIP SEUS Workshop, 2007.

[11] B. Ravindran, E. Curley, et al. On best-effort
real-time assurances for recovering from distributable
thread failures in distributed real-time systems. In
IEEE ISORC, pages 344–353, 2007.

