
Exploiting Slack for Scheduling Dependent, Distributable Real-Time
Threads in Mobile Ad Hoc Networks

Kai Han?, Binoy Ravindran?, and E. D. Jensen‡
?ECE Dept., Virginia Tech
Blacksburg, VA 24061, USA
{khan05,binoy}@vt.edu

‡The MITRE Corporation
Bedford, MA 01730, USA

jensen@mitre.org

Abstract

We consider scheduling distributable real-time
threads with dependencies (e.g., due to synchroniza-
tion) in mobile ad hoc networks, in the presence of
node/link failures, message losses, and dynamic node
joins and departures. We present a distributed real-
time scheduling algorithm called RTG-DS. The algo-
rithm uses a gossip-style protocol for discovering el-
igible nodes, node/link failures, and message losses.
In scheduling local thread sections, it exploits thread
slacks to optimize the time available for gossiping. We
prove that RTG-DS probabilistically bounds distributed
blocking times and distributed deadlock detection and
notification times. Thereby, it probabilistically satis-
fies end-to-end thread time constraints. We also prove
that RTG-DS probabilistically bounds failure-exception
notification times for failed threads (so that their par-
tially executed sections can be aborted). Our simula-
tion results validate RTG-DS’s effectiveness.

1. Introduction

Many distributed systems are most naturally struc-
tured as a multiplicity of causally-dependent, flows of
execution within and among objects, asynchronously
and concurrently. The causal flow of execution can
be a sequence such as one that is caused by a series
of nested, remote method invocations. It can also be
caused by a series of chained, publication and subscrip-
tion events, caused due to topical data dependencies—
e.g., publication of topic A depends on subscription
of topic B; B’s publication, in turn, depends on sub-
scription of topic C, and so on. Since partial fail-
ures are the common case rather than the exception
in some distributed systems, those applications de-
sire the sequential execution flow abstraction to ex-
hibit application-specific, end-to-end integrity proper-
ties. Real-time distributed applications also require
(application-specific) end-to-end timeliness properties
for the abstraction, in addition to end-to-end integrity.

An abstraction for programming causal, multi-
node sequential behaviors and for enforcing end-to-end
properties on them is distributable threads [2,17]. They

first appeared in the Alpha OS [17], and now constitute
the first-class programming and scheduling abstraction
for multi-node sequential behaviors in Sun’s emerging
Distributed Real-Time Specification for Java [2]. In
the rest of the paper, we will refer to distributable
threads as threads, unless qualified.

Object A
 Object D
Object B


DT1


Object C


DT2


DT3


1-Way

Invocation


Figure 1. Distributable Threads

A thread is a single logically distinct (i.e., having
a globally unique ID) locus of control flow movement
that extends and retracts through local and (poten-
tially) remote objects. A thread carries its execu-
tion context as it transits node boundaries, including
its scheduling parameters (e.g., time constraints, ex-
ecution time), identity, and security credentials. The
propagated thread context is intended to be used by
node schedulers for resolving all node-local resource
contention among threads such as that for node’s phys-
ical and logical resources (e.g., CPU, I/O, locks), ac-
cording to a discipline that provides acceptably opti-
mal system-wide timeliness. Thus, threads constitute
the abstraction for concurrency and scheduling. Fig. 1
shows the execution of three threads [18].

Except for the required execution context, the ab-
straction imposes no constraints on the presence, size,
or structure of any other data that may be propagated
as part of the thread’s flow. Commonly, input param-
eters may be propagated with thread invocations, and
results may be propagated back with returns. When
movement of data associated with a thread is the prin-
cipal purpose for a thread, the abstraction can be
viewed as a data flow one as much as, or more than,
a control flow one. Whether an instance of the ab-
straction is regarded as being an execution flow one
or a data flow one, the invariants are that: the (perti-
nent portion of the) application is structured as causal



linear sequence of invocations from one object to the
next, unwinding back to the initial point; each invoked
object’s ID is known by the invoking object; and there
are end-to-end properties that must be maintained,
including timeliness, thread fault management, and
thread control (e.g., concurrency, pause/resume, sig-
naling of state changes).

We consider threads as the programming and
scheduling abstraction in ad hoc networks (e.g., those
without a fixed network infrastructure, including
mobile and wireless networks [3]), in the presence
of application- and network-induced uncertainties.
The uncertainties include resource overloads (due to
context-dependent thread execution times), arbitrary
thread arrivals, arbitrary node failures, and tran-
sient and permanent link failures (causing varying
packet drop rate behaviors). Another distinguish-
ing feature of motivating applications for this model
(e.g., [7]) is their relatively long thread execution time
magnitudes—e.g., milliseconds to minutes. Despite
the uncertainties, such applications desire strong as-
surances on end-to-end thread timeliness behavior.
Probabilistic timing assurances are often appropriate.

When threads mutually-exclusively share non-CPU
resources (e.g., disks, NICs) at a node using lock-
based synchronizers, distributed dependencies can
arise, causing distributed blockings and deadlocks. For
example, a thread A may lock a resource on a node and
may make a remote invocation, carrying the lock with
it. Thread B may later request the same lock and will
be blocked, until A unwinds back from its remote in-
vocation and releases the lock. Unbounded blocking
time can degrade system-wide timeliness optimality—
e.g., B may have a greater urgency than A. Further,
distributed deadlocks can occur when threads A and
B block on each other for remotely held locks. Un-
bounded deadlock detection and resolution times can
also degrade timeliness optimality.

When a thread encounters a node/link failure, par-
tially executed thread sections may be blocked on
nodes that are upstream and downstream of the failure
point, waiting for the thread to unwind back from in-
vocations that are further downstream to them. Such
sections must be notified of the thread failure, so that
they can respond with application-specific exception
handling actions—e.g., releasing handlers for execu-
tion that abort the sections, after releasing and rolling-
back resources held by them to safe states (under
a termination model). Untimely failure notifications
can degrade timeliness optimality—e.g., threads un-
affected by a partial failure may become indefinitely
blocked by sections of failed threads.

In this paper, we present an algorithm called Real-
Time Gossip algorithm for Dependent threads with
Slack scheduling (or RTG-DS) that provides assur-
ances on thread time constraint satisfactions in the
presence of distributed dependencies in ad hoc net-
works. At its core, RTG-DS is a gossip proto-
col (e.g., [13] and references therein). The algo-

rithm uses gossip-style communication for propagat-
ing thread scheduling parameters, and for discovering
nodes (hosting thread sections), and node/link fail-
ures. Further, the algorithm schedules thread sections
by exploiting thread slack in a way that enhances the
time available for gossiping.

We prove that thread blocking times and deadlock
detection and notification times are probabilistically
bounded under RTG-DS. Consequently, we prove that
thread time constraint satisfactions’ are probabilisti-
cally bounded. We also prove that RTG-DS proba-
bilistically bounds failure-exception notification times
for partially executed sections of failed threads. Our
simulation studies verify the algorithm’s effectiveness.

End-to-end real-time scheduling/resource manage-
ment has been previously studied (e.g., [1, 4, 5, 17, 24,
25]), but these are limited to fixed infrastructure net-
works. Real-time assurances in ad hoc networks has
been studied (e.g., [10, 15, 26]), but these exclude de-
pendencies, which is precisely what RTG-DS targets.

Our work builds upon our prior work in [9] that
presents the RTG-D algorithm. While RTG-DS uses
a slack-based thread scheduling approach, RTG-D
uses the Dependent Activity Scheduling Algorithm
(DASA) in [8] for thread scheduling. We compare
RTG-DS with RTG-D in this paper and illustrate
RTG-DS’s superiority. Further, RTG-D does not con-
sider deadlock detection and notification, and failure-
exception notification, while RTG-DS provides prob-
abilistic assurances on such notification times. Thus,
the paper’s contribution is the RTG-DS that provides
probabilistic end-to-end timing assurances (time con-
straint satisfactions and failure recovery times) in the
presence of distributed blockings and deadlocks.

The rest of the paper is organized as follows: In
Section 2, we discuss the models of RTG-DS (these
are the same as that of RTG-D) and state the algo-
rithm objectives. Section 3 presents RTG-DS. We an-
alyze RTG-DS in Section 4. In Section 5, we report
our simulation studies. We conclude the paper and
identify future work in Section 6.

2. Models and Algorithm Objectives

2.1. Task Model: Thread Abstraction
Distributable threads execute in local and remote

objects by location-independent invocations and re-
turns. A thread begins its execution by invoking an
object operation. The object and the operation are
specified when the thread is created. The portion of a
thread executing an object operation is called a thread
segment. Thus, a thread can be viewed as being com-
posed of a concatenation of thread segments.

A thread’s initial segment is called its root and its
most recent segment is called its head. The head of
a thread is the only segment that is active. A thread
can also be viewed as being composed of a sequence of
sections, where a section is a maximal length sequence
of contiguous thread segments on a node. A section’s

2



first segment results from an invocation from another
node, and its last segment performs a remote invoca-
tion. More details on threads can be found in [2,17,18].

Execution time estimates of the sections of a thread
are assumed to be known when the thread arrives at
the respective nodes. Note that a section’s execution
time estimate is that of the contiguous set of thread
segments that starts from the first thread segment ex-
ecuted on the node and ends with the first remote
invocation made from the node. The time estimate
includes that of the section’s normal code and its ex-
ception handler code, and can be violated at run-time
(e.g., due to context dependence, causing overloads).

Each object transited by threads is uniquely hosted
by a node. Threads may be created at arbitrary times
at a node. Upon creation, the number of objects (and
the object IDs) on which they will make subsequent
invocations are known. The identifier of the nodes
hosting the objects, however, are unknown at thread
creation time, as nodes may dynamically fail, or join,
or leave the system. Thus, eligible nodes have to be
dynamically discovered as thread execution progresses.

The sequence of remote invocations and returns
made by a thread can be estimated by analyzing the
thread code (e.g., [16]). The maximum number of sec-
tions of a thread is thus assumed to be known.

The application is thus comprised of a set of
threads, denoted T = {T1, T2, T3, . . .}.

2.2. Timeliness Model
Each thread’s time constraint is specified using

a time/utility function (or TUF) [11]. A TUF
specifies the utility of completing a thread as a
function of that thread’s completion time. Fig. 2
shows three example downward “step” shaped TUFs.

-
Time

6Utility

0

Figure 2. Step
TUFs

A thread’s TUF decouples its
importance and urgency—i.e.,
urgency is measured as a dead-
line on the X-axis, and impor-
tance is denoted by utility on the
Y-axis. This decoupling is sig-
nificant, as a thread’s urgency is
sometimes orthogonal to its rel-
ative importance—e.g., the most
urgent thread is the least important, and vice versa;
the most urgent is the most important, and vice versa.

A thread Ti’s TUF is denoted as Ui (t). Classical
deadline is unit-valued—i.e., Ui(t) = {0, 1}, since im-
portance is not considered. Downward step TUFs gen-
eralize classical deadlines where Ui(t) = {0, {n}}. We
focus on downward step TUFs, and denote the max-
imum, constant utility of a TUF Ui (), simply as Ui.
Each TUF has an initial time Ii, which is the ear-
liest time for which the TUF is defined, and a ter-
mination time Xi, which, for a downward step TUF,
is its discontinuity point. Further, we assume that
Ui (t) > 0, ∀t ∈ [Ii, Xi] and Ui (t) = 0, ∀t /∈ [Ii, Xi] , ∀i.

When thread time constraints are expressed with
TUFs, the scheduling optimality criteria are based on

maximizing accrued thread utility—e.g., maximizing
the sum of the threads’ attained utilities. Such cri-
teria are called utility accrual (or UA) criteria, and
sequencing (scheduling, dispatching) algorithms that
consider UA criteria are called UA sequencing algo-
rithms. The criteria may also include other factors
such as resource dependencies. Several UA algorithms
such as DASA are presented in the literature [20]. We
derive RTG-DS’s local thread section scheduling algo-
rithm from DASA, and compare it with DASA.

2.3. Exceptions and Abortion Model
If a thread has not completed by its termination

time, a failure-exception is raised, and exception han-
dlers are immediately released and executed for abort-
ing all partially executed thread sections. The han-
dlers are assumed to perform the necessary compen-
sations to avoid inconsistencies (e.g., rolling back re-
sources held by the sections to safe states) and other
actions that are required for the safety and stability of
the external state. This abortion model is similar to
that in transactional paradigms (e.g., [23]).

Note that, once a thread fails to meet its termina-
tion time, the scheduler at the node where the thread’s
termination time expires will immediately raise the
failure exception. At all other (upstream) nodes,
where the thread has partially executed and is waiting
for the head to unwind back from invocations, a noti-
fication for the exception must be delivered. Delivery
of that notification is done by RTG-DS.

We consider a similar abortion model for thread fail-
ures, for resolving deadlocks, and for resolving thread
blocks when a blocking thread is aborted to obtain
greater utility (similar to transactional abortions [23]).
The scheduler at the node where these situations are
detected will raise the failure exception. At all other
(upstream) nodes, where the thread has partially exe-
cuted, RTG-DS delivers the failure exception.

2.4. Resource Model
Thread sections can access non-CPU resources (e.g.,

disks, NICs) located at their nodes during their exe-
cution, which are serially reusable. Similar to fixed-
priority resource access protocols [22] and that for
TUF algorithms [8, 14], we consider a single-unit re-
source model. Resources can be shared under mutual
exclusion constraints. A thread may request multiple
shared resources during its lifetime. The requested
time intervals for holding resources may be nested,
overlapped or disjoint. Threads explicitly release all
granted resources before the end of their executions.

All resource request/release pairs are assumed to be
confined within nodes. Thus, a thread cannot lock a
resource on one node and release it on another node.
Note that once a thread locks a resource on a node, it
can make remote invocations (carrying the lock with
it). Since request/release pairs are confined within
nodes, the lock is released after the thread’s head re-
turns back to the node where the lock was acquired.

3



Threads are assumed to access resources
arbitrarily—i.e., which resources will be needed
by which threads, and in what order is not a-priori
known. Consequently, we consider a deadlock detec-
tion and resolution strategy (as opposed to deadlock
avoidance or prevention). A deadlock is resolved
by aborting a thread involved in the deadlock, by
executing the thread’s handler (which will perform
the necessary resource roll-backs and compensations).

2.5. System Model
The system consists of a set of processing compo-

nents, generically referred to as nodes, denoted N =
{n1, n2, n3, . . .}, communicating through bidirectional
wireless links—e.g., [3]. A basic unicast routing pro-
tocol such as DSR [12] is assumed for packet trans-
mission. MAC-layer packet scheduling is assumed to
be done by a CSMA/CA-like protocol (e.g., IEEE
802.11). Node clocks are synchronized using an al-
gorithm such as [21]. Nodes may dynamically join or
leave the network. We assume that the network com-
munication delay follows some non-negative probabil-
ity distribution—e.g., the Gamma distribution. Nodes
may fail by crashing, links may fail transiently or per-
manently, and messages may be lost, all arbitrarily.

2.6. Objectives
Our goal is to design an algorithm that can

schedule threads with probabilistic termination-time
satisfactions in the presence of (distributed) block-
ings and deadlocks—i.e., establish probabilistically-
satisfied blocking time and deadlock detection and no-
tification time for a thread, so that the probability of
the thread for satisfying its termination time can be
computed. We also desire to maximize the total thread
accrued utility. Moreover, the time needed to notify
partially executed sections of a failed thread (so that
handlers for aborting thread sections can be released)
must also be probabilistically bounded.

Note that maximizing the total utility subsumes
meeting all termination times as a special case. When
all termination times are met (during underloads), the
total accrued utility is the optimum possible. During
overloads, the goal is to maximize the total utility as
much as possible, thereby completing as many impor-
tant threads as possible, irrespective of their urgency.

3. The RTG-DS Algorithm

RTG-DS builds upon RTG [10]. Some aspects of
RTG-DS (e.g., determining a thread’s next destina-
tion node) are the same as those of RTG. In describ-
ing RTG-DS, we describe the entire algorithm for com-
pleteness, but summarize parts that are the same as
that of RTG for brevity. We first overview RTG-DS.

When a thread arrives at a node, RTG-DS decom-
poses the thread’s end-to-end TUF into a set of lo-
cal TUFs, one for each of the sections of the thread.

The decomposition is done using the thread’s schedul-
ing parameters including its end-to-end TUF, number
of sections, section execution time estimates that the
thread presents to RTG-DS upon arrival. Local TUFs
are used for thread scheduling on nodes.

When a thread completes its execution on a node,
RTG-DS must determine the thread’s next destina-
tion node. In order to be robust against node/link
failures, message looses, and node joins/departures,
RTG-DS uses a gossip-style protocol (e.g., [6]). The
algorithm starts a series of synchronous gossip rounds.
During each round, the node randomly selects a set
of neighbor nodes and queries whether they can exe-
cute the thread’s next section (as part of the thread’s
next invocation or return from its current invocation).
The number of gossip rounds, their durations, and the
number of neighbor nodes (i.e., the “fan-out”) are de-
rived from the local TUF’s slack, as they directly af-
fect the communication time incurred by gossip, and
thereby affect following sections’ available local slack.

When a node receives a gossip message, it checks
whether it hosts the requested section, and can com-
plete it satisfying its local TUF (propagated with the
gossip message). If so, it replies back to the node where
the gossip originated (referred to as the original node).
If not, the node starts a series of gossip rounds and
sends gossip messages (like the original node).

If the original node receives a reply from a node be-
fore the end of its gossip rounds, the thread is allowed
to make an invocation on, or return to that node, and
thread execution continues. If a reply is not received,
the node regards that further thread execution is not
possible (due to possible node/link failures or node de-
partures), and releases the section’s exception handler
for execution. A series of gossip rounds is also imme-
diately started to deliver the failure-exception notifi-
cation to all upstream sections of the thread, so that
handlers may be released on those nodes.

We now discuss each of the key aspects of RTG-DS
in the subsections that follow.

3.1. Building Local Scheduling Parameters
RTG-DS decomposes a thread’s end-to-end TUF

based on the execution time estimates of the thread’s
sections and the TUF termination time. Let a thread
Ti arrive at a node nj at time t. Let Ti’s total execu-
tion time of all the thread sections (including the local
section on nj) be Eri, the total remaining slack time be
Sri, the number of remaining thread sections (includ-
ing the local section on nj) be Nri, and the execution
time of the local section be Eri,j . RTG-DS computes
a local slack time LSi,j for Ti as LSi,j = Sri

Nri−1 , if
Nri > 1; LSi,j = Sri, if 0 6 Nri 6 1.

RTG-DS determines the local slack for a thread in a
way that allows the remaining thread sections to have
a fair chance to complete their execution, given the
current knowledge of section execution-time estimates,
in the following way. When the execution of Ti’s cur-
rent section is completed at the node nj , RTG-DS de-

4



termines the next node for executing the thread’s next
section, through a set of gossip rounds. The network
communication delay incurred by RTG-DS for the gos-
sip rounds must be limited to at most the local slack
time LSi,j . The algorithm equally divides the total
remaining slack time to give the remaining thread sec-
tions a fair chance to complete their execution.

The local slack is used to compute a local termi-
nation time for the thread section. The local ter-
mination time for a thread Ti is given by LXi,j =
t + Eri,j + LSi,j . The local termination time is used
to test for schedule feasibility, while constructing local
section schedules (we discuss this in Section 3.3).

3.2. Determining Next Destination Node
Once the execution of a section completes on a node,

RTG-DS determines the node for executing the next
section of the thread, through a set of gossip rounds
during which the node randomly multicasts with other
nodes in the network. RTG-DS determines the num-
ber of rounds for “gossiping” (i.e., sending messages to
randomly selected nodes during a single gossip round)
as follows. Let the execution of Ti’s local section on
node nj complete at time tc. Ti’s remaining local slack
time is given by LSri,j = LXi,j − tc.

Note that LSri,j is not always equal to LSi,j , due
to the interference that the thread section suffers from
other sections on the node. Thus, LSri,j ≤ LSi,j .
With a gossip period Ψ, RTG-DS determines the
number of gossip rounds before LXi,j as round =
LSri,j/Ψ. RTG-DS also determines the number of
messages that must be sent during each gossip round,
called fan out, for determining the next node.

RTG-DS divides the system node members into: a)
head nodes that execute thread sections, and b) in-
termediate nodes that propagate received gossip mes-
sages to other members. Detailed procedure-level de-
scriptions of RTG-DS algorithms on head node and
intermediate node can be found in [10].

3.3. Scheduling Local Sections
RTG-DS constructs local section schedules with the

goals of (a) maximizing the total attained utility from
all local sections, (b) maximizing the number of lo-
cal sections meeting their local termination times, and
(c) increasing the likelihood for threads to meet thread
termination times, while respecting dependencies.

The algorithm’s scheduling events include section
arrivals and departures, and lock and unlock requests.
When the algorithm is invoked, it first builds the de-
pendency list of each section by following the chain of
resource request and ownership. A section i is depen-
dent upon a section j, if i needs a resource which is
currently held by j. Dependencies can be local—i.e.,
the requested lock is locally held, or distributed—i.e.,
the requested lock is remotely held.

The algorithm then checks for deadlocks, which can
be local or distributed (e.g., two threads are blocked
on their respective nodes for locks which are remotely

held by the other). Deadlocks are detected by the
presence of a cycle in the resource graph (a necessary
condition). Deadlocks are resolved by aborting that
section in the cycle, which will likely contribute the
least utility. That section is aborted by executing its
handler, which will perform roll-backs/compensations.

Now, the algorithm examines sections in the order
of non-increasing potential utility densities (or PUDs).
Informally, a section’s PUD is the total utility accrued
by immediately executing it and its dependents di-
vided by the aggregate execution time spent. Thus,
a section’s PUD measures its “return on investment.”

The algorithm inserts each examined section and
its dependents into a tentative schedule that is ordered
by local slacks, least-slack-first (or LSF). The insertion
also respects each section’s dependency order.

After insertion, RTG-DS checks the schedule’s fea-
sibility with respect to satisfying all inserted sections’
local termination times. If infeasible, the inserted sec-
tion and its dependents are removed. The process is
repeated until all sections are examined. Then, RTG-
DS selects the least-slack section for execution. If the
selected section is remote (because it holds a locally
requested lock), the algorithm will speed up it’s ex-
ecution by adding all local dependents’ utilities and
propagating the aggregate value to it (by gossiping).

We now explain key steps of the algorithm in detail.

3.3.1 Arranging Sections by PUD

The local scheduling algorithm examines sections in
non-increasing PUD order to maximize the total ac-
crued utility. Section i’s PUD, PUDi = Ui+U(Dep(i))

ci+c(Dep(i)) ,
where Ui is i’s utility, ci is i’s execution time, and
Dep(i) is the set of sections on which i is directly or
transitively dependent. Note that PUDi can change
over time, since ci and Dep(i) may change over time.

3.3.2 Determining Schedule Feasibility

RTG-DS determines a node’s processor load ρR by
considering that node’s own processor bandwidth, and
also by leaving a necessary gossip time interval for each
thread section. Let t be the current time, and di be the
local termination time of section i. ρR in time interval
[t, di] is given by:

ρRi(t) =

∑
dk≤di

ck(t) + Tcomm

(di − t)
, Tcomm ≥ LCD

where ck(t) is section k’s remaining execution time
with dk ≤ di, and LCD is the lower bound of network
communication delay. Different from computing ρ on
a single node, RTG-DS adds an additional communi-
cation time interval, Tcomm, to each ck(t). If a section
is the last one of its parent thread, there is no need
to consider gossiping time and Tcomm = 0. Without
adding Tcomm, a section may successfully complete,
but may not have enough time to find the next des-
tination node. Thus, not only that section’s parent

5



thread will be aborted in the end, but also will waste
processor bandwidth, which could otherwise be used
for other threads’ sections.

Suppose there are n sections on a node, and let dn

be the longest local termination time. Then, the total
load in [t, dn] is computed as: ρR(t) = maxρRi

(t), ∀i.

3.3.3 Least-Slack Section First (LSF)

RTG-DS selects local sections with the lesser (local)
slack time earlier for execution. By doing so, RTG-DS
ensures that greater remaining slack time is available
for threads to find their next destination nodes.

1 2 3 4 5
0

1

2

3

4

5

6

7

 

 

Ti
m

e

DASA Execution Order

 Slack before Execution
 Slack after Execution

Figure 3. Slack Under DASA

For example, consider five sections with different
local slack times. Fig. 3 shows slacks of the sections
before and after execution under DASA, on a single
node. In the worst case, DASA will schedule sections
along the decreasing order of slacks, as shown in Fig. 3.
Assuming that the lower bound of network communi-
cation time, LCD, is 0.5 time unit, section 5 has only
1 time unit left to gossip (its original local slack time
is 3 time units), which makes it more difficult to make
a successful invocation on (or return to) another node.

1 2 3 4 5
0

1

2

3

4

5

6

7

 

 

Ti
m

e

RTG-D Execution Order

 Slack before Execution
 Slack after Execution

Figure 4. Slack Under RTG-DS

RTG-DS avoids this with the LSF order. In Fig. 4,
section 5’s remaining local slack remains unchanged
after execution, while section 1’s slack decreases from
7 to 5 time units, which will slightly decrease its gossip
time. Note that RTG-DS gains the same total slack
time in these five sections as DASA does, but it al-
locates slack time more evenly, thereby seeks to give
each section an equal chance to complete gossiping.

When checking feasibility, it is important to respect
dependencies among sections. For example, section
j may depend on section i, thus i must be executed

before j to respect the dependency. However, under
LSri > LSrj , j will be arranged before i. To resolve
this conflict without breaking the LSF order, RTG-DS
“tightens” i’s local slack time to the same as j’s.

RTG-DS’s local section scheduling algorithm is de-
scribed in Algorithm 1.

Algorithm 1: RTG-DS’s Local Section Schedul-
ing Algorithm

Create an empty schedule φ;1

for each section i in the local ready queue do2

Compute Dep(i), detecting and resolving deadlocks if3

any;
Compute PUDi;4

Sort sections in ready queue according to PUDs;5

for each section i in decreasing PUD order do6

φ̂ = φ; /* get a copy for tentative changes */7

if i /∈ φ then8

CurrentLST = LST(i); /* LST(i) returns the9

local slack of i */
for each PrevS in Dep(i) do10

if PrevS ∈ φ then11

if LST(PrevS) ≤ CurrentLST then12

Continue;13

else14

LST(PrevS) = CurrentLST;15

Remove(PrevS, φ̂, LST); /* Remove16

PrevS from φ̂ at position LST */

Insert(PrevS, φ̂, CurrentLST);17

if Feasible(φ̂) then18

Insert(i, φ̂, CurrentLST);19

if Feasible(φ̂) then20

φ = φ̂;21

Select least-slack section from φ for execution;22

3.3.4 Utility Propagation

Section i may depend on section j located on the same
node or on a different node. For the latter case, RTG-
DS propagates i’s utility to j in order to speed up
j’s execution, and thus shorten i’s time waiting for
blocked resources. The utility is propagated by gos-
siping to all system members within a limited time in-
terval, as it does in finding the next destination node.

When j’s head node receives an utility-propagation
message, it has to decide whether to continue execut-
ing j, or to immediately abort j and grant the lock
to i. This decision is based on Global Utility Density
(or GUD), which is defined as the ratio of the owner
thread utility to the total remaining thread execution
time. Thread PUDs are not used in this case, because
this utility comparison involves multiple nodes.

Algorithm 2 describes this decision process. If the
decision is to continue j’s execution, the node will add
i’s utility to j’s current and previous head nodes, con-
sequently speeding up j’s execution (since the sched-
uler examines sections in the PUD order). If the de-
cision is not to continue j’s execution, the node will
release j’s abort handler, and will start gossiping to 1)

6



Algorithm 2: RTG-DS’s Utility Propagation Al-
gorithm

Upon receiving a UP gossip message msg:1

COPY(gossip, msg) ;2

if GUDi > GUDj then3

if abtj < erj then4

abort j;5

gossip.lsr ← msg.lsr − abtj ;6

/* give resource lock to i */7

else8

continue j’s execution;9

/* keep resource lock */10

gossip.lsr ← msg.lsr;11

else12

gossip.lsr ← msg.lsr;13

gossip.round ← gossip.lsr/Ψ ;14

gossip.c ← FANOUT(gossip.round);15

RTG GOSSIP(gossip);16

release j’s abort handler’s on all previous head nodes
of j and 2) grant lock to i. Note that i’s utility is only
propagated to j’s execution nodes after the node from
where i requested the lock, because j’s other execution
nodes do not contribute to this dependency.

3.3.5 Resolving Distributed Deadlocks

Detecting deadlocks between different nodes require
all system members to uniformly identify each thread.
Thus, when a thread is created, a global ID (or GID) is
created for it. With GIDs, it is easier to determine the
thread that must be aborted to resolve a distributed
deadlock: If GUDi > GUDj , then i has a higher util-
ity. Then, j is aborted to grant the lock to i. Other-
wise, j keeps the lock and gossips an abortion message
back to i. Algorithm 3 describes this procedure.

Algorithm 3: RTG-DS’s Distributed Deadlock
Detection Algorithm

Upon j receiving i’s UP gossip message msg:1

COPY(gossip, msg) ;2

if DETECT(msg) = true then3

/* a distributed deadlock occurs */4

if GUDi > GUDj then5

abort j;6

gossip.lsr ← msg.lsr − abtj ;7

give resource lock to i;8

else9

continue j’s execution;10

keep resource lock;11

gossip.lsr ← msg.lsr;12

gossip.round ← gossip.lsr/Ψ ;13

gossip.c ← FANOUT(gossip.round);14

RTG GOSSIP(gossip);15

4. Algorithm Analysis

Let δ be the desired probability for delivering a mes-
sage to its destination node within the gossip period

Ψ. If the communication delay follows a Gamma dis-
tribution with a probability density function:

f (t) =
(t− LCD)α−1

e
−(t−LCD)

β

Γ (α)βα
, t > LCD

where Γ (α) =
∫∞
0

xα−1e−xdx, α > 0. Then, δ =∫ tb

LCD
f (t) dt, t > LCD, where tb : D (tb) = δ, and

D(t) is the distribution function. Note that LCD is
the communication delay lower bound and Ψ > tb.

We denote the message loss probability as 0 ≤ σ <
1, and the probability for a node to fail during thread
execution as 0 ≤ ω < 1. Let C denote the number of
messages that a node sends during each gossip round
(i.e., the fan out). We call a node susceptible if it has
not received any gossip messages so far; otherwise it is
called infected. The probability that a given suscepti-
ble node is infected by a given gossip message is:

p =
(

C

n− 1

)
(1− σ) (1− ω) δ (1)

Thus, the probability that a given node is not infected
by a given gossip message is q = 1−p. Let I(t) denote
the number of infected nodes after t gossip rounds,
and U(t) denote the number of remaining susceptible
nodes after t rounds. Given i infected nodes at the end
of the current round, we can compute the probability
for j infected nodes at the end of the next round (i.e.,
j − i susceptible nodes are infected during the next
round). The resulting Markov Chain is characterized
by the following probability pi,j of transitioning from
state i to state j:

pi,j = P [I (t + 1) = j|I (t) = i]

=





(
n− i
j − i

) (
1− qi

)j−i
qi(n−j) j > i

0 j < i
(2)

The probability that the expected number of j
nodes are infected after round t + 1 is given by:

P [I (0) = j] =

{
1 j = 1
0 j > 1

(3)

P [I (t + 1) = j] =
∑

i6j

P [I (t) = i] pi,j (4)

Theorem 1. RTG-DS probabilistically bounds thread
time constraint satisfactions’.

Proof. Let a thread will execute through m head
nodes. The mistake probability pMk

that a head node
k cannot determine the thread’s next destination head
node after gossip completes at round tmax is given by:

pMk
= {1− P [I (tmax) = η]} × 1

U (tmax)

=



1−

∑

i6η

P [I (tmax−1) = i] pi[η]



× 1

U (tmax)
(5)

7



where η is the expected number of infected nodes after
tmax. This pMk

is achieved when all nodes are not over-
loaded (consequently, RTG-DS’s LSF-order being lo-
cally optimal, will feasibly complete all local sections).

Let wk be the waiting time before section k’s execu-
tion. wk includes the section interference time, gossip
time, and blocking time (we bound blocking time in
Theorem 4). Now, Xk and Xm can be defined as:

Xk =

{
1 If wk ≤ LSrk − LCD

0 Otherwise
(6)

Xm =

{
1 If wk ≤ LSrm

0 Otherwise
(7)

If Xk = 1, the relative section can not only finish its
execution, but it can also make a successful invocation.
Xm is for the last destination node, so it does not
consider the communication delay LCD. Thus, the
probability for a distributable thread d to successfully
complete its execution PSd

, and that for a thread set
D to complete its execution, PSD

, is given by:

PSd
= Xm

∏

k≤m−1

(1− pMk
)Xk PSD =

∏

d∈D

PSd
(8)

Theorem 2. The number of rounds needed to infect
n nodes, tn, is given by:

tn = logC+1 n +
log n

C
+ o (1) (9)

Proof. We skip the proof, due to page constraints. The
proof is similar to [19], but we conclude the theorem
under the assumption that the fan out C exceeds 1.

Lemma 3. A head node will expect its gossip mes-
sage to be replied in at most 2tn rounds, with a high
(computable) probability.

Proof. Suppose the next destination node N is the last
node getting infected by the gossip message from a
head node A. Thus, node A will take tn rounds to
gossip to node N . Suppose A is the last node to be
infected by N ’s reply message, and it will take another
tn rounds. Thus, the worst case to determine the next
destination node is 2tn rounds. The probability can
be computed using Equations 3 and 5. Since the fan
out number C can be adjusted, we can get a required
probability by modifying C into a proper value.

Theorem 4. If a thread section is blocked by another
thread section on a different node, then its blocking
time under RTG-DS is probabilistically bounded.

Proof. Suppose section i is blocked by section j whose
head is now on a different node. According to Theo-
rem 2, it will take section i at most tni time rounds to
gossip an utility propagation (UP) message to section
j’s head node.

After j’s head node receives i’s UP message, RTG-
DS will compare i’s GUD with j’s. If GUDi > GUDj ,
then j must grant the lock to i as soon as possible. Ac-
cording to Algorithm 2, the handler will deal with j’s
head within min(abtj,erj). According to Lemma 3,
i’s head will expect a reply from j after at most tni

time rounds. If tni− min(abtj,erj) ≥ LCD, then j
can reply and grant lock to i at the same time. Thus,
i’s blocking time bound bi,j = 2tni

. Otherwise, j must
first reply to i. Since i’s head needs at least LCD
gossip time to continue execution, the blocking time is
at most LSri − LCD. Thus, if (LSri − LCD) − tni−
min(abtj,erj) ≥ LCD, bi,j = LSri − LCD. If not, i
has to be aborted because there is not enough time to
grant the lock. Under this condition, RTG-DS aborts
i, and bi,j = 2tni, since j need not respond any more
after the first reply to i. If GUDi ≤ GUDj , then
j will not grant i the lock until it finishes necessary
execution. Thus, bi,j = LSri − LCD.

The probability of the blocking time bound is in-
duced by RTG-DS’s gossip process. It can be com-
puted using (3) and (5), and a desired probability can
be obtained by adjusting the fan out C.

Theorem 5. RTG-DS probabilistically bounds dead-
lock detection and notification times.

Proof. As shown in Fig. 5, there are two possible sit-
uations: 1) deadlock happens when section i requires
resource R2, or 2) when section j’s REQ R1 message
arrives at Node 2.

Let GUDi > GUDj . Under the first condition, i
will check the necessary time for deadlock solution,
which is denoted as dsi2. Let LSri2 be the remaining
local slack time of section i on Node 2, tni2 be the time
rounds needed by i to gossip to Node 1 in order to fin-
ish i on time, and abtj1, abtj2 be the needed abortion
time of section j on Node 1 and 2, respectively.

Then, dsj2 = abtj2, if no LIFO-ordered abortion
is necessary from node 1 to node 2; otherwise dsj2 =
abtj1 + abtj2 + 2tni2. By LIFO-ordered abortion, the
last executed section is the first one that is aborted.

Under the second condition, deadlock happens
when j’s REQ message arrives at Node 2. Now,
dsj2 = tnj1, if tnj1 − abtj2 ≥ LCD, or if tnj1 −
(abtj1 + abtj2 + 2tni2) ≥ LCD. Otherwise, dsj2 =
max (tnj1 + abtj1 + tni1, abtj2).

Thus, if dsj2 ≤ LSri2 − LCD, the scheduler will
resume i. Otherwise, it will abort i since i won’t have
necessary remaining local slack time for gossiping.

The analysis is similar if GUDi > GUDj . The
probabilistic blocking time bound is induced by RTG-
DS’s gossiping. It can be computed using (3), and a
desired probability can be obtained by adjusting fan
out C.

Theorem 6. RTG-DS probabilistically bounds failure-
exception notification times for aborting partially exe-
cuted sections of failed threads.

8



Figure 5. Example Distributed Deadlock

Proof. From Lemma 6 in [10], we obtain the failure-
exception notification time fn as follows: fn = 3tn, if
no LIFO-ordered abortion is necessary from node m
to node n. Otherwise, fn = 3tn +

∑
i=m,...,n tni.

5. Simulation Studies

We evaluate RTG-DS’s effectiveness by comparing
it with“RTG-DS/DASA”— i.e., RTG-DS with DASA
as the section scheduler — as a baseline. We do so be-
cause DASA exhibits very good performance among
most UA scheduling algorithms [20]. We use uniform
distribution to describe section inter-arrival times, sec-
tion execution times, and termination times of a set
of distributable threads. All threads are generated to
make invocations through the same set of nodes in the
system. However, the relative arrival order of thread
invocations at each node may change due to different
section schedules on nodes. Thus, it is quite possible
that a thread may miss its termination time because
it arrives at a destination node late.

A fixed number of shared resources is used in the
simulation study. The simulations featured four (one
on each node) and eight (two on each node) shared
resources, respectively. Each section probabilistically
determines how many resources it needs. Each time
a resource is acquired, a fraction (following uniform
distribution) of the section’s remaining execution time
is assigned to it.

0.5 1.0 1.5 2.0

55

60

65

70

75

80

85

90

95

100

8 shared resources

 

 

A
U

R
 (%

)

O L

 RTG-DS
 RTG-DS/DASA

Figure 6. AUR in a 8-Resource-System Under
RTG-DS and RTG-DS/DASA

We measure RTG-DS’s performance using the met-
rics of Accrued Utility Ratio (AUR), Termination time

Meet Ratio (TMR) and Offered Load (OL) in a 100-
node system. AUR is the ratio of the total accrued
utility to the maximum possible total utility, TMR is
the ratio of the number of threads meeting their termi-
nation times to the total thread releases in the system,
and OL is the ratio of a section’s expected execution
time to the expected section inter-arrival time. Thus,
when OL < 1.0, a section will most possibly complete
its execution before the next section arrives; when OL
> 1.0, system will have long-term overloads.

0.5 1.0 1.5 2.0
50

55

60

65

70

75

80

85

90

95

100

8 shared resources

 

 

TM
R

 (%
)

O L

 RTG-DS
 RTG-DS/DASA

Figure 7. TMR in a 8-Resource-System Under
RTG-DS and RTG-DS/DASA

Note that RTG-DS uses the novel techniques that
we have presented here including ρR(t), GUD and
PUD, selecting LSF section, utility propagation, and
distributed deadlock resolution. RTG-DS/DASA does
not use any of these, but only follows RTG-DS in the
gossip-based searching of next destination nodes.

Figures 6 and 7 show the results for the eight-
resource system. From the figure, we observe that
RTG-DS gives much better performance than RTG-
D/DASA. Further, when OL is increased, both algo-
rithms’ AUR and TMR decrease. We observe consis-
tent results for the four-resource case, but omit them
here for brevity.

In Fig. 8, as discussed in Section 3.3.3, we observe
that under any OL, RTG-DS has a smaller variance
of remaining local slack time than RTG-DS/DASA,
because it first executes the least-slack section instead
of the earliest local termination time section. By this
way, though sections’ mean value of remaining local
slack time after execution is almost the same, RTG-DS
gives sections with less local slack time more chances
to finish their gossip process, and thus more chances

9



0.5 1.0 1.5 2.0

5

10

15

20

25

30

35

8 shared resources

 

 

LS
r M

ea
n 

V
al

ue
/L

S
r V

ar
ia

nc
e 

(T
U

s)

O L

 RTG-DS LSr Mean Value
 RTG-DS/DASA LSr Mean Value
 RTG-DS LSr Variance
 RTG-DS/DASA LSr Variance

Figure 8. Remaining Local Slack Time Under
RTG-DS and RTG-DS/DASA (Mean, Variance)

to find their next destination nodes.

6. Conclusions and Future Work

In this paper, we present a gossip-based algorithm
called RTG-DS, for scheduling distributable threads
under dependencies in ad hoc networks. The algorithm
uses gossip-based communication for (a) propagating
thread scheduling parameters, (b) determining succes-
sive nodes for feasible thread execution, (c) speeding-
up the execution of blocking threads, and (d) detect-
ing and resolving deadlocks. RTG-DS constructs local
thread section schedules by exploiting thread slack in
a way that enhances time available for gossiping.

We prove that RTG-DS probabilistically bounds
thread blocking times and deadlock detection and
notification times, thereby probabilistically bounding
thread time constraint satisfactions’. Further, we show
that the algorithm probabilistically bounds failure-
exception notification times for aborting partially exe-
cuted sections of failed threads. Our simulation studies
validate the algorithm’s effectiveness.

Immediate directions for extending our work in-
clude allowing node anonymity, unknown number of
thread sections, and non-step TUFs. Other long term
goals include extending RTG-DS to arbitrary graph-
shaped, multi-node, causal control and/or data flows.

References

[1] T. Abdelzaher et al. A feasible region for meeting
aperiodic end-to-end deadlines in resource pipelines.
In ICDCS, pages 436–445, 2004.

[2] J. Anderson and E. D. Jensen. The distributed real-
time specification for java: Status report. In JTRES,
2006. Available: http://www.real-time.org/docs/

jtres06/jtres06.pdf.
[3] F. Baker. An outsider’s view of manet. Internet-

Draft, Work In Progress draft-baker-manet-review-
01.txt, IETF Network Working Group, March 2002.

[4] A. Bestavros and D. Spartiotis. Probabilistic job
scheduling for distributed real-time applications. In
IEEE Works. on Real-Time Applications, May 1993.

[5] R. Bettati. End-to-End Scheduling to Meet Deadlines
in Distributed Systems. PhD thesis, UIUC, 1994.

[6] K. P. Birman, M. Hayden, et al. Bimodal multicast.
ACM TOCS, 17(2):41–88, 1999.

[7] CCRP. Network centric warfare. http://www.

dodccrp.org/html2/research_ncw.html. Last ac-
cessed, May 2006.

[8] R. K. Clark. Scheduling Dependent Real-Time Activ-
ities. PhD thesis, CMU, 1990. CMU-CS-90-155.

[9] K. Han et al. Probabilistic, real-time scheduling of
distributable threads under dependencies in mobile,
ad hoc networks. Available: http://www.real-time.
ece.vt.edu/rtgd.pdf, 2006.

[10] K. Han, B. Ravindran, and E. D. Jensen. Real-time
gossip: Probabilistic, distributed real-time schedul-
ing in ad hoc networks. Available: http://www.

real-time.ece.vt.edu/rtg.pdf, 2006.
[11] E. D. Jensen et al. A time-driven scheduling model

for real-time systems. In RTSS, pages 112–122, 1985.
[12] D. Johnson et al. Dsr: The dynamic source routing

protocol for multihop wireless ad hoc networks. In
C. E. Perkins, editor, Ad Hoc Networking, chapter 5,
pages 139–172. Addison-Wesley, 2001.

[13] H. Li et al. Bar gossip. In OSDI, November 2006.
[14] P. Li. Utility Accrual Real-Time Scheduling: Models

and Algorithms. PhD thesis, Virginia Tech, 2004.
[15] B. S. Manoj et al. Real-time traffic support for ad

hoc wireless networks. In IEEE ICON, pages 335 –
340, 2002.

[16] D. P. Maynard et al. An example real-time command,
control, and battle management application for alpha.
Technical Report Archons Project Technical Report
88121, CMU CS Dept., 1988.

[17] J. D. Northcutt. Mechanisms for Reliable Distributed
Real-Time Operating Systems - The Alpha Kernel.
Academic Press, 1987.

[18] OMG. Real-time corba 2.0: Dynamic scheduling spec-
ification. Technical report, OMG, September 2001.
Final Adopted Specification, http://www.omg.org/

docs/ptc/01-08-34.pdf.
[19] B. Pittel. On spreading a rumor. SIAM J. Appl.

Math., 47(1), 1987.
[20] B. Ravindran, E. D. Jensen, and P. Li. On recent

advances in time/utility function real-time scheduling
and resource management. In IEEE ISORC, pages 55
– 60, May 2005.

[21] K. Romer. Time synchronization in ad hoc networks.
In MobiHoc, pages 173–182, 2001.

[22] L. Sha, R. Rajkumar, and J. P. Lehoczky. Prior-
ity inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on Computers,
39(9):1175–1185, 1990.

[23] N. R. Soparkar, H. F. Korth, and A. Silberschatz.
Time-Constrained Transaction Management. Kluwer
Academic Publishers, 1996.

[24] J. Sun. Fixed-Priority End-To-End Scheduling in Dis-
tributed Real-Time Systems. PhD thesis, UIUC, 1997.

[25] K. Tindell and J. Clark. Holistic schedulability anal-
ysis for distributed hard real-time systems. Micropro-
cessing & Microprogramming, 50(2-3), 1994.

[26] N. Wang and C. Gill. Improving real-time system con-
figuration via a qos-aware corba component model. In
HICSS, page 10, 2004.

10


