
Utility Accrual Real-Time Resource Access Protocols with Assured
Individual Activity Timeliness Behavior

Abstract

We present a class of utility accrual resource access
protocols for real-time embedded systems. The proto-
cols consider application activities that are subject to
time/utility function time constraints, and mutual ex-
clusion constraints for concurrently sharing non-CPU
resources. We consider the timeliness optimality cri-
teria of probabilistically satisfying individual activ-
ity utility lower bounds and maximizing total accrued
utility. The protocols allocate CPU bandwidth to sat-
isfy utility lower bounds; activity instances are sched-
uled to maximize total utility. We establish the con-
ditions under which utility lower bounds are satisfied.

1. Introduction

Many emerging real-time embedded systems such
as robotic systems in the space domain (e.g., NASA’s
Mars Rover [5]) and control systems in the defense do-
main (e.g., phased array radars [6]) operate in environ-
ments with dynamically uncertain properties. These
uncertainties include transient and sustained resource
overloads (due to context-dependent, activity execu-
tion times) and arbitrary, activity arrival patterns. Nev-
ertheless, such systems desire assurances on activity
timeliness behavior, whenever possible.

The most distinguishing property of such systems,
is that they are subject to “soft” time constraints (be-
sides hard). The time constraints are soft in the sense
that completing an activity at any time will result in
some (positive or negative) utility to the system, and
that utility depends on the activity’s completion time.
Such soft time-constrained activities are often subject
to optimality criteria such as completing all activi-
ties as close as possible to their optimal completion
times—so as to yield maximal collective utility.

Time/utility functions [7] (TUFs) allow the seman-
tics of soft time constraints to be precisely specified. A
TUF, which generalizes the deadline constraint, speci-
fies the utility to the system resulting from the comple-
tion of an activity as a function of its completion time.
A TUF’s utility values are derived from application-
level QoS metrics. Figures 1(a)–1(b) show some TUF

time constraints of two defense applications (see [4]
and references therein for application details). Clas-
sical deadline is a binary-valued, downward “step”
shaped TUF; 1(c) shows examples.

-
Time

6Utility
Track

Association

0

bbbb

(a)

-
Time

6Utility
Plot Correlation

Track Maintenance

S
S

S
S

0

HHH

(b)

-
Time

6Utility

0

(c)

Figure 1: Example TUF Time Constraints. (a): AWACS associa-
tion [4]; (b): Air Defense correlation & maintenance [4] ; (c): Step
TUFs.

When activity time constraints are expressed with
TUFs, the timeliness optimality criteria are often
based on accrued activity utility, such as maximiz-
ing sum of the activities’ attained utilities or satisfy-
ing lower bounds on activities’ maximal utilities. Such
criteria are called Utility Accrual (or UA) criteria, and
scheduling algorithms that consider UA criteria are
called UA scheduling algorithms.

UA criteria directly facilitate adaptive behavior
during overloads, when (optimally or sub-optimally)
completing more important activities, irrespective of
activity urgency, is often desirable. UA algorithms
that maximize summed utility under downward step
TUFs (or deadlines), meet all activity deadlines dur-
ing under-loads (see algorithms in [9]). When over-
loads occur, they favor activities that are more impor-
tant (since more utility can be attained from them),
irrespective of urgency. Thus, deadline scheduling’s
optimal timeliness behavior is a special-case of UA
scheduling.

1.1. Contributions

Many embedded real-time systems involve mutu-
ally exclusive, concurrent access to shared, non-CPU
resources, resulting in contention for the resources.
Resolution of the contention directly affects the sys-
tem’s timeliness behavior.

UA algorithms that allow concurrent resource shar-
ing exist (see [9]), but they do not provide any assur-

ances on individual activity timeliness behavior—e.g.,
assured utility lower bounds for each activity. UA al-
gorithms that provide assurances on individual activ-
ity timeliness behavior exist [8], but they do not allow
concurrent resource sharing. No UA algorithms exist
that provide individual activity timeliness assurances
under concurrent resource sharing.

We solve this exact problem in this paper. We con-
sider repeatedly occurring application activities that
are subject to TUF time constraints. Activities may
concurrently, but mutually exclusively, share non-CPU
resources. To better account for non-determinism in
task execution and inter-arrival times, we stochasti-
cally describe those properties. We consider the dual
optimality criteria of: (1) probabilistically satisfying
lower bounds on each activity’s accrued utility, and
(2) maximizing total accrued utility, while respecting
all mutual exclusion resource constraints.

We present a class of lock-based resource access
protocols that optimize this UA criteria. The proto-
cols use the approach in [8] that include off-line CPU
bandwidth allocation and run-time scheduling. While
bandwidth allocation allocates CPU bandwidth share
to tasks, scheduling orders task execution on the CPU.
The protocols resolve contention among tasks (at run-
time) for accessing shared resources, and bound the
time needed for accessing resources.

We present three protocols, which differ in the
type of resource sharing that they allow (e.g., direct,
nested). We analytically establish upper bounds on the
resource access times under the protocols, and estab-
lish the conditions for satisfying utility lower bounds.

Thus, the paper’s contribution is the class of re-
source access protocols that we present. We are not
aware of any other resource access protocols that solve
the UA criteria that are solved by our protocols.

The rest of the paper is organized as follows: Sec-
tion 2 describes our models. In Section 3, we sum-
marize the bandwidth allocation and scheduling ap-
proach in [8] for completeness. Section 4 introduces
resource sharing in this approach, and Sections 5, 6,
and 7 present the protocols. In Section 8, we show a
formal comparison of lock-based versus lock-free re-
source access protocols. We demonstrate that neither
is always better than the other. We conclude in Sec-
tion 9.

2. Models and Objectives

Tasks and Jobs. We consider the applica-
tion to consist of a set of tasks, denoted as T =
{T1,T2, · · · ,Tn}. Each instance of a task Ti is called
a job, denoted as Ji, j, j ≥ 1. Jobs are assumed to be
preemptible at arbitrary times.

We describe task arrivals using the Probabilistic
Unimodal Arrival Model (or PUAM) [8]. A PUAM
specification is a tuple 〈p(k),w〉,∀k ≥ 0, where p(k)
is the probability of k arrivals during any time in-

terval w. Note that ∑∞
k=0 p(k) = 1. Poisson distri-

butions P (λ) and Binomial distributions B(n,θ) are
commonly used arrival distributions. Most traditional
arrival models (e.g., frames, periodic, sporadic, uni-
modal) are PUAM’s special cases [8].

We describe task execution times using non-
negative random variables—e.g., gamma distributions.

A job’s time constraint is specified using a TUF
(jobs of a task have the same TUF). A task Ti’s TUF is
denoted as Ui(t); thus job Ji, j’s completion at a time t
will yield an utility Ui (t). We focus on non-increasing
TUFs, as they encompass the majority of time con-
straints in applications of interest to us (e.g., Figure 1).

Resource Model. Jobs can access non-CPU re-
sources (e.g., disks, NICs, locks), which are seri-
ally reusable and are subject to mutual exclusion con-
straints. Similar to resource access protocols for fixed-
priority algorithms [10] and for UA algorithms [9], we
consider a single-unit resource model. Thus, only a
single instance of a resource is present and a job ex-
plicitly specifies the desired resource. The requested
time intervals for holding resources may be nested,
overlapped or disjoint. Jobs are assumed to explicitly
release all granted resources before the end of their ex-
ecution.

Optimality Criteria. We define a statistical time-
liness requirement for tasks. For a task Ti, this is ex-
pressed as 〈AUi,APi〉, which means that Ti must accrue
at least AUi percentage of its maximum utility with the
probability APi. This is also the requirement for each
job of Ti. For e.g., if {AUi,APi}= {0.7,0.93}, then Ti
must accrue at least 70% of its maximum utility with a
probability no less than 93%. For a task Ti with a step
TUF, AUi is either 0 or 1.

We consider a two-fold optimality criteria: (1) sat-
isfy all 〈AUi,APi〉, if possible, and (2) maximize the
sum of utilities accrued by all tasks.

3. Bandwidth Allocation and Scheduling

For non-increasing TUFs, satisfying a designated
AUi requires that the task’s sojourn time is upper
bounded by a “critical time”, CTi. Given a desired
utility lower bound AUi, ∀t1 ≤ CTi,Ui(t1) ≥ AUi and
∀t2 > CTi,Ui(t2) < AUi holds. To bound task so-
journ time by CTi, we conduct a probabilistic feasibil-
ity analysis using the processor demand approach [3].
The key to using the processor demand approach here
is allocating a portion of processor bandwidth to each
task. We first define processor bandwidth:

Definition 3.1. If a task has a processor bandwidth ρ,
then it receives at least ρL processor time during any
time interval of length L.

Once a task is allocated a processor bandwidth, the
bandwidth share can be realized and enforced by a pro-
portional share (or PS) algorithm (e.g., [11]). A PS
algorithm can realize and enforce a desired bandwidth

2

ρi for a task Ti with a bounded allocation error, called
maximal lag, Q, as follows: Ti will receive at least
(ρiL−Q) processor time during any time interval L.
Under a PS scheme, jobs of a task execute on a “vir-
tual CPU” that is not affected by other task behaviors.
We focus on bandwidth allocation at an abstract level
— using any PS algorithm with a lag Q — hereafter.

Theorem 3.1. Suppose there are at most k arrivals of
a task T during any time window of length w and all
jobs of T have identical relative critical time D. Then,
all job critical times can be satisfied if the underly-
ing PS algorithm provides T with at least a processor
bandwidth of ρ = max{(C + Q)

/
D,C/w}, where C is

the total execution time of k jobs released by T in a
time window of w, and Q is the maximal lag of the PS
algorithm.

Proof. Let Cp(0,L) be the processor demand and
Sp(0,L) be the available processor time for task Ti on a
time interval of [0,L], respectively. The necessary and
sufficient condition for satisfying job critical times is:

Sp(0,L)≥Cp(0,L),∀L > 0 (3.1)

Let ρ be the processor bandwidth allocated to T .
Thus, Sp(0,L) = ρL−Q. Further, the total amount
of processor time demand on [0,L] is Cp(0,L) =(⌊

(L−D)
/

w
⌋

+1
)

C. Therefore, Equation 3.1 can
be rewritten as:

ρL−Q≥
(⌊

(L−D)
/

w
⌋
+1

)
C,∀L > 0 (3.2)

Since
(⌊L−D

w

⌋
+1

)≤ (
(L−D)

/
w+1

)
, it is sufficient

to have ρL−Q≥ (L−D
w +1

)
C,∀L > 0. This leads to:

ρ≥ C
w

+
1
L

(
C +Q−C

D
w

)
,∀L > 0 (3.3)

It is easy to see that ρ is a monotone of L. For a positive
C+Q−C D

w , the maximal ρ occurs when L = D, which
yields ρ = (C+Q)

/
D. For a negative C+Q−C D

w , the
maximal ρ occurs when L = ∞. Combining these two
cases, the theorem follows.

For simplicity, we only consider the case ρ≥ (C +
Q)

/
D, which implies D < w. Note that critical sec-

tions in a PS algorithm can be handled by setting Q
as the longest critical section of all tasks. Let Ni be
the random variable for the number of arrivals during
a time window wi. Then, the processor demand of task
Ti during a time window wi is Ci = ∑Ni

j=1 ci, j, where
ci, j is the execution time of job Ji, j. By Theorem 3.1,
ρi ≥ (Ci + Q)

/
CTi, where CTi is Ti’s critical time. To

satisfy the assurance probability, we require:

Pr

[
Ni

∑
j=1

ci, j ≤ ρiCTi−Q

]
≥ APi (3.4)

The above condition is the fundamental bandwidth
requirement for satisfying a task’s critical time. If

Ni = k, the total processor time demand during a time
window becomes ∑k

j=1 ci, j. Therefore, Equation 3.4
can be rewritten as a sum of conditional probabilities:

∞

∑
k=0

(
pi(k)×Pr

[
k

∑
j=1

ci, j ≤ ρiCTi−Q

])
≥ APi (3.5)

3.1. Bandwidth Solutions

Equation 3.4 can be rewritten as:

1−Pr [Ci ≥ ρiCTi−Q]≥ APi (3.6)

By Markov’s Inequality, Pr[X ≥ t] ≤ E(X)
/

t for any
non-negative random variable. Therefore,1−Pr[Ci ≥
ρiCTi −Q] ≥ 1− E(Ci)

/
(ρiCTi −Q). If we can de-

termine a ρi so that 1− E(Ci)
/
(ρiCTi − Q) ≥ APi,

Pr[Ci ≤ ρiCTi −Q] ≥ APi is also satisfied. This be-
comes:

ρi ≥ E(Ci)
CTi (1−APi)

+
Q

CTi
(3.7)

Note that Ni in Equation 3.4 is a random variable and
follows a distribution specified by pi(a). By Wald’s
Equation, E(Ci) = E

(
∑Ni

j=1 ci, j

)
= E(ci)E(Ni). Thus,

ρi ≥ E(ci)E(Ni)
CTi (1−APi)

+
Q

CTi
(3.8)

This solution is applicable for any distributions of
ci and Ni, and only requires the average number of ar-
rivals and the average execution time.

With minimal assumption regarding task arrivals
and execution times, the solution given by Equa-
tion 3.8 may be pessimistic for some distributions.
Thus, an algorithm that demands and utilizes the in-
formation of full distributions for task arrivals and ex-
ecution times is also presented in [8].

For job scheduling, [8] presents a scheduling algo-
rithm called UJSsched that uses the Highest Utility
Density First heuristic. UJSsched has the property
that if all job critical times can be satisfied by EDF,
then UJSsched is also able to do so and accrues at
least the same utility as EDF does. Further, if not all
job critical times can be satisfied, then UJSsched ac-
crues as much utility as possible.

4. Resource Sharing With Locks

Proportional share uses large time quanta to ensure
mutual exclusion. This works well for short critical
sections. However, we conjecture that for some cases,
a small time quantum combined with lock-based, re-
source access protocols may yield lower bandwidth
requirement. When time quanta are smaller than the
length of critical sections, preemptions of a task while
it is inside a critical section may happen. Thus, we use
locks to ensure mutual exclusion. With locks, three
types of blocking can occur:

3

Direct Blocking. If a job Ji,m requests a resource R
that is currently held by another job J j,k, we say that
job Ji,m is directly blocked by job J j,k. Job J j,k is called
the blocking job. Because processor bandwidth is al-
located on a per task basis, we also say that task Ti is
blocked by task Tj.

Transitive Blocking. If a job Ja is blocked by job
Jb which in turn is blocked by job Jc, we say that job
Ja is transitively blocked by Jc.

Queue Blocking. Let a set of tasks T B =
{Tb1,Tb2, · · · ,Tbk} be simultaneously blocked on a re-
source R, held by task To. When To releases R, one
of the blocked tasks, e.g., task Tbm, will acquire R and
continue execution. Thus, another task Tbn will suffer
additional blocking due to Tbm, besides the blocking
due to To. We call such an additional blocking queue
blocking, as it is caused by a queue of blocked tasks.
This definition can be expanded to the case of multiple
tasks in T B being granted R before Tbn.

The objective of resource access protocols is to
effectively bound or reduce task blocking times.
We present three protocols, called the Bandwidth
Inheritance Protocol (BIP), Resource Level Policy
(RLP) and the Early Blocking Protocol (EBP). BIP
speeds up the execution of a blocking task and thus re-
duces direct blocking times. It is inspired by the Prior-
ity Inheritance Protocol (PIP) [10] in priority schedul-
ing. RLP bounds the queue blocking time suffered by
a task. However, BIP and RLP allows transitive block-
ing and deadlocks. EBP avoids deadlocks and bounds
transitive blocking times.

Recall that UJSsched [8] is used to resolve com-
petition among jobs of the same task. Thus, resource
blocking can occur among jobs, which complicates the
analysis of the job scheduling algorithm. Note that as-
surance requirements are at the task level. Thus, we
simply disallow preemptions while a job holds a re-
source. From the perspective of the virtual proces-
sor, UJSsched is invoked when a new job arrives and
when the currently executing job completes.

Transitive blocking and deadlocks can occur only
in the presence of nested critical sections; Lemma 4.1
states this observation. Thus, BIP and RLP disallow
nested sections.

Lemma 4.1. Transitive blocking can occur only in the
presence of nested critical sections. That is, if a job Ja
is transitively blocked by another job Jc, there must
be a job Jb that is currently inside a nested critical
section.

Proof. By the definition of transitive blocking, there
exists a job Jb that blocks Ja and is blocked by Jc.
Since Ja is blocked by Jb, Jb must hold a resource,
e.g., R1. Further, the fact that Jb is blocked by Jc im-
plies that Jb requests another resource, e.g., R2, which
is currently held by Jc. Thus, Jb must be inside a nested
critical section.

Besides the property of no transitive blocking, lack

of nested critical sections also prevents deadlocks,
since hold-and-wait — a necessary condition for dead-
locks — is disallowed. We now introduce a few nota-
tions and assumptions:
• zi, j: jth critical section of task Ti;
• di, j: duration of critical section zi, j on a dedicated

processor without processor contention;
• Ri, j: resource associated with critical section zi, j;
• d j

i : duration of task Ti’s critical section that ac-
cesses resource Ri;

• zi,k ⊂ zi,m: zi,k is entirely contained in zi,m;
• All critical sections are “properly” nested, i.e., for

any pair of zi,k and zi,m, either zi,k ⊂ zi,m, or zi,m ⊂
zi,k, or zi,k

T
zi,m = /0;

• All critical sections are guarded by binary
semaphores.

5. Bandwidth Inheritance Protocol

BIP’s key idea is to speed up the execution time of a
blocking task T , by transferring all bandwidth of tasks
that are blocked by T . Thus, the blocked tasks loose
their bandwidth and become stalled. We define BIP as
a set of rules:

1. If a task Ti is blocked on a resource R that is cur-
rently held by a task Tj, the processor bandwidth
of task Ti is inherited by task Tj. That is, the
processor bandwidth of task Tj is temporarily in-
creased to ρi +ρ j until Tj releases resource R. In
the meanwhile, the bandwidth of task Ti becomes
zero. Thus, Ti is stalled even if some jobs of Ti
are eligible for execution.

2. Bandwidth inheritance is transitive. That is, if a
task Ta is blocked by Tb which in turn is blocked
by task Tc, then the bandwidth of Ta is also trans-
ferred to Tc.

3. Bandwidth inheritance is additive. Suppose a task
Ta holds a resource R, and a set of tasks T B =
{Ti,∀i = 1, ...,k} are all blocked on R. Then, the
bandwidth of Ta is increased to ρa +∑k

i=1 ρi.
BIP’s three rules indicate how the bandwidth of

blocked tasks can be transferred to the blocking task
for the three types of blocking. By doing so, we re-
duce the duration of the blocking task’s critical sec-
tion. Task bandwidth can be transferred through dy-
namic task join and leave operations — EEVDF al-
lows this while maintaining a constant lag.

5.1. Blocking Time under BIP

We now upper bound a blocking task’s duration of
critical section. Assume that the blocking task has a
total bandwidth of ρ, possibly through bandwidth in-
heritance. Then, the duration of the critical section is
di/ρ. Therefore, the key to bound the duration is to
lower bound the processor bandwidth allocated to a
blocking task. An arbitrarily small bandwidth essen-
tially yields an unbounded blocking time.

4

Section 3 presented methods to determine the min-
imal bandwidth needed to satisfy task utility bounds,
without resource blocking. We now establish the rela-
tionship between the bandwidth requirements with and
without blocking.

Theorem 5.1. In Theorem 3.1’s task model, if a task
is blocked on resource access, the minimal required
bandwidth is ρ = (B+C +Q)

/
D, where B is the total

blocking time of jobs of the task during a time window
W.

Proof. The proof is similar to that of Theorem 3.1 [8].
To satisfy job critical times, the available processor
time during any time interval [0,L], excluding the
blocking time, should be greater than or equal to job
processor demand:

Sp(0,L)−Q−
(⌊

L−D
W

⌋
+1

)
B≥

(⌊
L−D

W

⌋
+1

)
C,∀L > 0

(5.1)
This leads to:

ρL≥
(⌊

L−D
W

⌋
+1

)
(B+C)−Q,∀L > 0 (5.2)

By the same argument as in the proof of Theorem 3.1,
we have ρ≥ (B+C +Q)

/
D.

Thus, if ρmin
i = (Ci +Q)

/
Di is Ti’s processor band-

width by assuming no resource blocking, it is safe to
use ρmin

i as the lower bound on Ti’s bandwidth even in
the presence of resource blocking. Also, observe that
if Ti is a blocking task, it must inherit the bandwidth
of at least one blocked task. Let T R be the set of
tasks that may be blocked by Ti. Ti’s total bandwidth
while it is inside the critical section (of using resource
R) is at least ρmin

i + min{ρmin
j | j 6= i

V
Tj ∈ T R }. The

direct blocking time caused by Ti is upper bounded by
(di +Q)

/(
ρmin

i +min{ρmin
j | j 6= i,Tj ∈ T R }

)
, where

di is the duration of Ti’s critical section for R. This
blocking time calculation is repeated for all critical
sections of a task, and for all jobs of a task in a time
window.

5.2. Bandwidth Allocation under BIP

Let each task Ti access ni resources, denoted
Ri, j, j = 1, . . . ,ni. Let dRi, j denote the maximal length
of the critical section for accessing resource Ri, j, and
ρmin

Ri, j
denote the smallest ρmin among all tasks that may

access Ri, j. Ti’s direct blocking time for accessing Ri, j

is BRi, j = dRi, j

/(
ρmin

Ri, j
+ρmin

i

)
. A job of Ti’s direct

blocking time is:

BD =
ni

∑
j=1

BRi, j =
ni

∑
j=1

dRi, j +Q

ρmin
Ri, j

+ρmin
i

, (5.3)

where ni is the number of critical sections of Ti. By
Theorem 5.1, we require that the probability of satis-
fying task critical time is at least APi. This leads to:

∞
∑

k=0
pi(k)Pr[B+C +Q≤ ρiCTi]≥ APi ⇒

∞
∑

k=0
pi(k)Pr

[
k

ni
∑
j=1

dRi, j +Q

ρmin
Ri, j

+ρmin
i

+
k
∑
j=1

ci, j +Q≤ ρiCTi

]
≥ APi

(5.4)
For all tasks, we first calculate the minimal band-

width requirements without resource blocking, i.e.,
ρmin

i , using the techniques in Section 3. The direct
blocking time for each job of Ti, namely BD is then cal-
culated. Observe that the net effect of resource block-
ing is an increase in task execution time. In the case of
direct blocking, the execution time of a job is increased
by BD, which has been calculated. Once the blocking
time is calculated, the bandwidth requirement under
BIP can be computed from Equation 5.4. Solutions in
Section 3 can be applied to solve Equation 5.4 for ρi.

6. Resource Level Policy

RLP’s idea is to associate a static numerical value
with each task, called a task’s Resource Level (or RL).
A task’s RL is static in the sense that it is assigned
when the task is created, is maintained intact during
the task’s life time, and is the same for all jobs of the
task. By using static RLs, we aim to produce a pre-
dictable order for accessing a shared resource, in case a
queue of tasks are blocked on the same resource. Thus,
queue blocking times can be bounded.

If there are n tasks in a system, the RLs of tasks are
integers from 1 to n. We assume that a larger numeric
value means higher RL. There are different ways for
assigning static RLs. In general, static RLs must be as-
signed reflecting our objective of maximizing summed
utility. Here, we propose several alternatives for as-
signing static RLs:
(1) Maximal Height of TUF. For any pair of tasks,

if maxUi > maxU j, then RLi > RL j. maxUi is the
maximal height of a TUF, i.e., maxU = {Ui(t)|Ii ≤
t ≤ Xi}. Ii and Xi are the first and last time in-
stances on which Ui(t) is defined. The approach is
easy to implement and works well for step TUFs.
However, it ignores task execution time informa-
tion. Further, for non-step TUFs, the maximal
TUF height may be much higher than task accrued
utility.

(2) Pseudo Slope. For a task Ti, this is defined as:
pSlopei = Ui(Ii)/(Xi− Ii). Pseudo Slope seeks to
capture a TUF’s shape, but it ignores task execu-
tion times.

(3) Pseudo Utility Density. For a task Ti, this
measures the utility that can be accrued, by
average, per unit execution time: pUDi =
Ui(ρmin

i E(ci))
/

ρmin
i E(ci).

5

Using static RLs, the task with the highest RL will
be granted a resource R if there is a queue of tasks
blocked on R. Thus, when calculating the queue block-
ing time for task Ti, we only need to consider tasks
with RLs higher than that of Ti—e.g., if RLi = i, then
Ti only suffers queue blocking due to tasks Tj, j =
i+1, ...,n.

1t 2t 3t 4t 5t 6t 7t

T1

T2

T3

T4

Normal execution

Critical section

Resource request

Resource release

Figure 2: An Example of Using Static Resource Levels

Unfortunately, this scheme of using static RLs may
yield unbounded queue blocking times for low RL
tasks. Figure 2 shows an example. In Figure 2, task T2
is blocked on a resource request and is later starved.

To overcome the difficulty with static RLs, we in-
troduce the concept of Effective Resource Level (or
ERL). Besides RL, each task is associated with an
ERL, which may increase over time. The idea is to use
ERL to prevent a few high RL tasks from dominating
the usage of shared resources. With ERLs, RLP works
as follows:

1. If a task is not blocked on any resource, its ERL
is the same as its static RL.

2. Whenever a resource R is released, the ERL’s of
all tasks that are currently blocked on R are in-
creased by n, where n is the number of tasks in
the system.

3. When a resource R becomes free, one of the
blocked tasks with the highest ERL is granted re-
source access. If a tie among the highest ERL
tasks occurs, the task with the longest blocking
time wins.

4. When a task acquires the resource on which it
was blocked, its ERL returns to its static RL.

Theorem 6.1. Under RLP, a task Tk can be queue
blocked on a resource R for at most (m− 2) critical
sections, where m is the number of tasks that may ac-
cess R.

Proof. Consider a set of tasks T B , including task
Tk, that are blocked on a resource R. Obviously,
|T B | ≤ m− 1, because one task must be holding the
resource. At time instant t0, let R be released by the
current blocking task. Thus Tk’s ERL is increased
to RLk + n, which is higher than RLi,∀i. This high
ERL effectively ensures that no tasks that are blocked
on R after t0 can queue block Tk. Therefore, Tk can
only suffer additional queue blocking from existing
blocked tasks, which are at most (m− 3) critical sec-
tions. Note that at t0, one of the tasks from T B namely
task Tr, is granted resource R. Therefore, the num-
ber of the remaining blocked tasks, excluding Tk, is

|T B−Tk|−1≤ (m−3). The theorem follows by sum-
ming up queue blocking times before and after instant
t0, i.e., 1+(m−3) = (m−2).

Theorem‘6.1 leads to the following corollary:

Corollary 6.2. The ERL of a task Ti is within the range
of [RLi,(m−1)n+RLi], where m is defined in Theo-
rem 6.1 and n is the number of tasks in the system.

Proof. By Theorem 6.1, a task can suffer a queue
blocking time of at most (m− 2) critical sections.
In addition, it suffers one direct blocking. Upon re-
leasing a shared resource, these blocking tasks in-
crease the ERL of a task (m− 2) + 1 = m− 1 times.
Since each increase is n, the ERL of Ti is bounded by
(m−1)n+RLi.

Theorem 6.3. Let TR be the set of tasks that may ac-
cess resource R. Theorem 6.1’s queue blocking time
bound is tight for any Ti ∈ TR, except the highest RL
task in TR.

Proof. Without loss of generality, let TR =
{T1,T2, ...,Tm} and RLi = i. We prove this theo-
rem by showing that there always exists a resource
access pattern so that any task Ti ∈ TR, i < m suffers a
queue blocking time of (m− 2) critical sections. The
resource access pattern can be constructed as follows:
Let ti be a time stamp and satisfies ti+1 > ti. Now:
• t0: Task Ti+1 is holding resource R and tasks

T B = {Tk|Tk ∈ TR,k 6= i
V

k 6= i+1} are blocked
on R. |T B |= (m−2).

• t1: Task Ti+1 releases R. A task in T B , say Tr is
granted resource R. ERL’s of remaining tasks in
T B are increased by n.

• t2: Task Ti+1 requests R and is blocked on R.
• t3: Task Ti requests R and is blocked on R.
Now, at time t3, the ERL of task Ti is lower than

those of all other tasks in the blocked task queue,
which includes (m−2) tasks. Therefore, Ti will suffer
a queue blocking time of (m−2) critical sections.

1t 2t 3t 4t 5t 6t 7t

T1

T2

T3

T4

Normal execution

Critical section

Resource request

Resource release

4

3

2

1

4

3

2

1 1

6

7

4 4

10

3

4

2

11

10

8

3

14 2

3 7 3

8 4

8t

Figure 3: Dynamic Resource Levels

We now revisit the example in Figure 2. In Figure 3,
we show the behavior of tasks by using the dynamic
resource level adjustment rules. Note that the numbers
on each timeline of a task indicates the ERL of that
task. In this case, m = 4. Thus, task queue blocking

6

times should be bounded by m−2 = 2 critical sections,
which is consistent with Figure 3. Observe that task
T2 is queue blocked for exactly two critical sections
(of T3 and T4, respectively). On the other hand, task
T3 suffers one critical section of queue blocking for
its resource requests; task T4 only incurs one critical
section of queue blocking during its second resource
request.

6.1. Queue Blocking Times under RLP

We consider a task Tb, along with a queue of k tasks,
that are blocked by a task Ta. Figure 4 shows this sce-
nario.

k tasksTa Tb

Figure 4: An Example of Queueing Blocking

To determine Tb’s queue blocking time, we exam-
ine the blocking time due to each task in the k− task
queue. Observe that the qith task in the k − task
queue executes with a CPU bandwidth of at least
ρmin

qi +
(

∑k
j=i+1 ρmin

q j

)
+ρmin

b =
(

∑k
j=i ρmin

q j

)
+ρmin

b due
to bandwidth inheritance. Thus, the total queue block-
ing time resulting from the k tasks is:

BQ[k] =
k

∑
i=1

dqi +Q(
k
∑
j=i

ρmin
q j

)
+ρmin

b

(6.1)

Let dq = max{dqi|i = 1, ...,m − 2} and ρmin
q =

min{ρmin
q j
| j = 1, ...,m− 2}. Then, BQ[k] is bounded

by:

Bm
Q[k] =

k

∑
i=1

dq +Q(
k
∑
j=i

ρmin
q

)
+ρmin

b

=
k

∑
i=1

dq +Q
(k− i+1)ρmin

q +ρmin
b

=
k

∑
i=1

dq +Q
iρmin

q +ρmin
b

(6.2)

We need to determine a k such that Bm
Q[k] achieves

its maximal value and thus bounds Tb’s queue blocking
time. We show that the maximal queue blocking time
occurs with maximal number of tasks in the queue, i.e.,
k = (m−2).

Lemma 6.4. The Bm
Q[k] function defined in Equa-

tion 6.2 monotonically increases with k.

Proof. We define two auxiliary functions B−Q [k] and
B+

Q [k]. B−Q [k] is the amount of blocking time that may
be reduced if a (k + 1)th blocked task is added into
the existing k− task queue. B+

Q [k] is the additional
queue blocking time due to the (k +1)th blocked task.

That is, B−Q [k] =
k
∑

i=1

dq+Q
iρmin

q +ρmin
b
−

k
∑

i=1

dq+Q
(i+1)ρmin

q +ρmin
b

and

B+
Q [k] = dq+Q

ρmin
q +ρmin

b
= B+

Q .

Now, the relationship between Bm
Q[k +1] and Bm

Q[k]
can be derived as: Bm

Q[k + 1] = Bm
Q[k] + B+

Q − B−Q [k].

It follows that: B−Q (k)
/
(dq + Q) =

k
∑

i=1

1
iρmin

q +ρmin
b
−

k
∑

i=1

1
(i+1)ρmin

q +ρmin
b

=
k
∑

i=1

(
1

iρmin
q +ρmin

b
− 1

(i+1)ρmin
q +ρmin

b

)

= 1
ρmin

q +ρmin
b
− 1

2ρmin
q +ρmin

b
+ 1

2ρmin
q +ρmin

b
− 1

3ρmin
q +ρmin

b
+

· · ·+ 1
kρmin

q +ρmin
b
− 1

(k+1)ρmin
q +ρmin

b

= 1
ρmin

q +ρmin
b
− 1

(k+1)ρmin
q +ρmin

b

= 1
ρmin

q +ρmin
b

kρmin
q

(k+1)ρmin
q +ρmin

b

= 1
ρmin

q +ρmin
b

kρmin
q

kρmin
q +ρmin

q +ρmin
b

< 1
ρmin

q +ρmin
b

= B+
Q

/
(dq +Q)

Therefore, Bm
Q[k + 1] = Bm

Q[k] + B+
Q − B−Q [k] > Bm

Q[k].

By Lemma 6.4, a task Ti’s queue blocking time is
BQ = ∑ni

j=1 Bm
Q j

[m j−2], where Bm
Q j

[m j−2] is the max-
imal queue blocking time for accessing resource Ri, j.
Now,

Bm
Q j

[m j−2] =
m j−2

∑
l=1

(
(dq j +Q)

/(
lρmin

q j +ρmin
i

))

(6.3)
Using a technique similar to that in Equation 5.4, the
bandwidth requirement under RLP is:

∞

∑
k=0

pi(k)Pr[BD +BQ +C +Q≤ ρiCTi]≥ APi

⇒
∞

∑
k=0

pi(k)Pr
[
k

ni

∑
j=1

dRi, j +Q

ρmin
Ri, j

+ρmin
i

+

k
ni

∑
j=1

Bm
Q j

(m j−2)+
k

∑
j=1

ci, j +Q≤ ρiCTi
]≥ APi

(6.4)

7. The Early Blocking Protocol

We design EBP to deal with nested critical sections.
Nested sections may create deadlocks and transitive
blocking. EBP’s basic idea is to block an “unsafe”
resource request even if the requested resource is free.
An unsafe resource request is one that may cause dead-
locks. Meanwhile, a safe request is granted. [2, 10]
uses a similar scheme.

Let a task T invoke nest req res(R′,RV) to enter a
nested critical section. In their order of access, RV ,
called a “resource vector,” is a list of resources that T
may access while it is inside nested critical sections.
R′ is RV ’s first element.

7

For single-unit resources, a deadlock occurs if and
only if there is a cycle in the resource graph. A cycle
can only be formed by at least two tasks inside nested
critical sections. Further, there must be at least one re-
source R that is requested by one task Ti and which is
held by another task Tj, both of which are inside nested
critical sections—i.e., the resource vectors of Ti and Tj
overlap. Thus, EBP compares the resource vector of a
requesting task with those of the existing tasks. If any
resource vectors overlap, there is a deadlock possibil-
ity, and the requesting task is blocked.

We formulate EBP as follows: Let a task T invoke
nest req res(R′,RV).

1. If R′ is held by another task, then T is blocked.
2. If R′ is free, then nest req res(R′,RV) may or

may not be granted, per the following:
(a) Let Tnest be the set of tasks that are cur-

rently inside nested sections. For any task
Ti ∈ Tnest , let RVi be Ti’s current resource
vector.

(b) If for any task Ti ∈ Tnest , RV
T

RVi = /0, then
nest req res(R′,RV) is granted; the request
is blocked otherwise.

3. When a task exits a nested critical sec-
tion, RLP checks if granting any pending
nest req res(R′,RV) is safe. If more than one
pending nest req res(R′,RV) is safe, then RLP is
invoked.

7.1. Transitive Blocking Times Under
EBP

We now establish that EBP is deadlock-free and can
bound transitive blocking times.

Lemma 7.1. Under EBP, for any pair of tasks that are
currently inside nested critical sections, their resource
vectors do not have common elements.

Proof. Let tasks T1 and T2 enter nested critical sec-
tions at instants t1 < t2, respectively. If RV1

T
RV2 6= /0,

then T2 cannot enter its nested section. Thus, the re-
source vectors of T1 and T2 do not have common ele-
ments.

Lemma 7.1 leads to Theorem 7.2 and Corollary 7.3:

Theorem 7.2. EBP avoids deadlock.

Corollary 7.3. Under EBP, if a task T1 is blocked by a
task T2 while T1 is inside nested critical sections, then
T2 is not inside nested critical sections.

Proof. Suppose T2 is inside nested critical sections. If
T1 is blocked by T2, then T1 needs a resource R that is
currently held by T2. Thus, R is a common element in
T1 and T2’s resource vectors. This violates Lemma 7.1.

Theorem 7.4. Under EBP, a chain of transitive block-
ing includes three tasks.

Proof. We use Ti → Ri to denote that task Ti needs re-
source Ri. Similarly, Ri → Ti means that resource Ri
is currently held by task Ti. Thus, a chain of transitive
blocking has the form T1 → R1 → T2 → R2 → T3 →
. . .→ Tn. Since there is a chain of transitive blocking,
n ≥ 3. It is easy to see that any task Ti, i 6= 1

V
i 6= n

must be inside nested critical sections. By Corol-
lary 7.3, if T2 is inside nested critical sections, T3 can-
not be inside nested critical sections. Therefore, T3
must be at the end of the chain. Thus, n = 3.

Theorem 7.5. Let a task T requests resource Ri. Let
Ti, j be the set of tasks that have a resource vector
RV = {. . . ,Ri, . . . ,R j, . . .} and let T j be the set of tasks
that may access resource R j. T ’s transitive block-

ing time for Ri is bounded by (dmax + Q)
/

(ρmin +

ρmin
Ri, j

+ ρmin
R j

). ρmin is T ’s minimal bandwidth, dmax =

max{d j
k |Tk ∈ T j}, ρmin

Ri, j
= min{ρmin

k |Tk ∈ Ti, j}, and
ρmin

R j
= min{ρmin

k |Tk ∈ T j}.

Rj

Ri

Rj

Ri

T1

T2

T3

1t 2t 3t 4t

Figure 5: Illustration of Transitive Blocking

Proof. Consider a chain of transitive blocking as in
Figure 5. Task T1 is transitively blocked by task T3
when it requests resource Ri. By Theorem 7.4, the
scenario illustrated in Figure 5 is the only possible sce-
nario.

Further, task T3 has a bandwidth of at least ρmin
1 +

ρmin
2 +ρmin

3 due to bandwidth inheritance. We consider
the worst case where the most pessimistic bounds are
assumed. That is, ρmin

2 = ρmin
Ri, j

= min{ρmin
k |Tk ∈ Ti, j}

and ρmin
3 = ρmin

R j
= min{ρmin

k |Tk ∈ T j}. The theorem
follows.

8. Lock-Based versus Lock-Free

As discussed earlier, our conjecture is that for some
cases, our lock-based, resource access protocols may
work well. For other cases, the lock-free scheme—i.e.,
setting quantum size as the longest critical section in
the system [1], may perform better. We now explore
the conditions under which resource access protocols
may be beneficial, and the reverse conditions as well.

The discussion focuses on two aspects: (1) band-
width requirement for a given task; and (2) feasibility
of a task set. Given a set of n tasks and their allocated
bandwidth, if ∑n

i=1 ρi ≤ 1, we say that the task set is

8

feasible for the particular bandwidth allocation. Oth-
erwise, the task set is said infeasible for the particular
allocation.

We first introduce some notations:
• ρp

i : bandwidth requirement of task Ti under lock-
based resource access protocols;

• ρnp
i : bandwidth requirement of task Ti under

the lock-free scheme (also called non-preemptive
scheme as there will be at most one preemption
while a task tries to access a resource [1]);

• Qp: quantum size under the lock-based resource
access protocols

• Qnp: quantum size under the lock-free scheme.

Lemma 8.1. Suppose Qnp equals to the length of a
critical section of task Tm (accessing resource Rm). If
a task Ti may be blocked on Rm, then ρp

i > ρnp
i .

Proof. Let dR = Qnp be the length of the critical sec-
tion. If task Ti may be blocked on R, it suffers at least
one direct blocking due to access to R. The direct
blocking time is calculated as:

BD = k
ni

∑
j=1

dRi, j +Qp

ρmin
Ri, j

+ρmin
i

≥ dR +Qp

ρmin
R +ρmin

i
≥ dR +Qp > dR

(8.1)
The total blocking time is B = BD + BQ + BT ≥ BD >
dR. Given the total execution time of C during a time
window, we have:

B+C+QP > dR +C+Qp = Qnp +C+Qp > Qnp +C
(8.2)

Recall that the fundamental bandwidth requirement
under resource access protocols is:

∞

∑
k=0

pi(k)Pr
[
Bk +Ck +Qp ≤ ρp

i CTi
]≥ APi (8.3)

and under the lock-free scheme is:
∞

∑
k=0

pi(k)Pr
[
Ck +Qnp ≤ ρnp

i CTi
]≥ APi (8.4)

where Ck is the sum of k job execution times, Bk is
the total blocking time of k jobs. Since Ck + Qnp <
Bk +Ck +Qp,∀k, ρnp

i < ρp
i .

Lemma 8.2. Suppose Qnp equals to the length of a
critical section of task Tm (accessing resource Rm). If
a task Ti may not be blocked on Rm, then ρp

i can be
smaller than ρnp

i .

Proof. We prove this lemma by considering an ex-
treme case where resource Rm is only accessed by task
Tm and another task Tk. All other tasks in the system
do not use any shared resources. For any task that does
not use any shared resource, its blocking time is zero.
Further, Qp can be smaller than Qnp. Therefore,

B+C +Qp = C +Qp < C +Qnp (8.5)

If that is the case, ρp
i is smaller than ρnp

i .

Theorem 8.3. If a task set is feasible under the lock-
free scheme, it can be infeasible under resource access
protocols, and vice versa.

Proof. We prove this theorem by examples.
1. A task set is feasible under the lock-free scheme,

but infeasible using resource access protocols.
Suppose all tasks access a single resource R in a

system. By Lemma 8.1, ρnp
i < ρp

i ,∀i = 1, ...,n. Thus,

n

∑
i=1

ρnp
i <

n

∑
i=1

ρp
i (8.6)

Also assume
n
∑

i=1
ρnp

i = 1 for this particular task set.

Then,
n
∑

i=1
ρp

i > 1, and hence the task set if infeasible

under resource access protocols.
2. A task set is feasible under resource access pro-

tocols, but infeasible under the lock-free scheme.
Consider a system where only two tasks, T1 and T2

need to access a resource R. Other tasks do not need
to access any shared resources. Let:

Up =
n
∑

i=1
ρp

i = (ρp
1 +ρp

2)+
n
∑

i=3
ρp

i

Unp =
n
∑

i=1
ρnp

i = (ρnp
1 +ρnp

2)+
n
∑

i=3
ρnp

i

(8.7)

By Lemma 8.1, ρnp
i < ρp

i , i = 1,2. However, if ρp
1 +ρp

2
is small enough, we have:

Up ≈
n
∑

i=3
ρp

i

Unp ≈
n
∑

i=3
ρnp

i

(8.8)

By Lemma 8.2, ρp
i < ρnp

i , i = 3, ...,n. Therefore, Up <
Unp. If Up = 1 for this particular task set, then the task
set if infeasible under the lock-free scheme.

Through Lemmas 8.1 and 8.2 and Theorem 8.3, we
demonstrate that neither the lock-free scheme, nor the
resource access protocols are always better than the
other. Specifically, if only a small number of tasks
share a few resources, then using resource access pro-
tocols is beneficial. If resources are shared by most of
the tasks in the system, then the lock-free scheme is
more suitable in terms of bandwidth requirement.

Another hybrid case is that tasks can be partitioned
into logical groups. Tasks in each logic group closely
interact with each other and share resources. In ad-
dition, resource sharing across group boundaries is
rare. For example, in a networked computer, device
drivers may share the protocol input/output queues
with the network protocol stack. On the contrary, a
word processor is very unlikely to access the protocol
queues. For this hybrid case, if the critical sections in a
logic group are considerably longer than those in other
groups, resource access protocols may still help to re-
duce bandwidth requirement. If all critical sections

9

are on the same magnitude, little can be gained by us-
ing resource access protocols. Resource access pro-
tocols may even adversely affect system performance,
because smaller time quanta result in higher overhead.

9. Conclusions

We present three UA resource access protocols.
The protocols consider activities that are subject to
TUF time constraints, and mutual exclusion con-
straints on sharing non-CPU resources. We consider
the timeliness objective of probabilistically satisfying
lower bounds on the utility accrued by each activity,
and maximizing the total accrued utility. The protocols
allocate CPU bandwidth to activities to satisfy utility
lower bounds, while activity instances are scheduled
to maximize total utility. We analytically establish the
conditions under which utility bounds are satisfied.

The protocols presented here have been folded into
a timing analysis software tool, in corporation with an
industrial vendor. The tool is currently being used in
US DoD programs. Future work includes studying the
sensitivity of the protocols to the accuracy of the re-
quired scheduling parameters, and extending them to
multiprocessors.

References

[1] J. H. Anderson, R. Jain, and K. Jeffay. Efficient object
sharing in quantum-based real-time systems. In IEEE
RTSS, pages 346–355, December 1998.

[2] T. P. Baker. Stack-based scheduling of real-time
processes. Real-Time Systems, 3(1):67–99, March
1991.

[3] S. K. Baruah, L. E. Rosier, and R. R. Howell. Al-
gorithms and complexity concerning the preemptive
scheduling of periodic, real-time tasks on one proces-
sor. Real-Time Systems, 2(4):301–324, Nov. 1990.

[4] R. Clark, E. D. Jensen, A. Kanevsky, J. Maurer, et al.
An adaptive, distributed airborne tracking system. In
IEEE WPDRTS, pages 353–362, April 1999.

[5] R. K. Clark, E. D. Jensen, and N. F. Rouquette.
Software organization to facilitate dynamic processor
scheduling. In IEEE WPDRTS, April 2004.

[6] GlobalSecurity.org. Multi-platform radar
technology insertion program. http:
//www.globalsecurity.org.

[7] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-
driven scheduling model for real-time systems. In
IEEE RTSS, pages 112–122, December 1985.

[8] P. Li, B. Ravindran, and E. D. Jensen. Utility ac-
crual real-time scheduling with probabilistically as-
sured timeliness performance. In PARTES Workshop,
ACM EMSOFT, Sept. 2004.

[9] B. Ravindran, E. D. Jensen, and P. Li. On recent
advances in time/utility function real-time scheduling
and resource management. In IEEE ISORC, pages 55
– 60, May 2005.

[10] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority
inheritance protocols: An approach to real-time syn-
chronization. IEEE Trans. Computers, 39(9):1175–
1185, Sept. 1990.

[11] I. Stoica, H. A.-Wahab, K. Jeffay, et al. A proportional
share resource allocation algorithm for real-time, time-
shared systems. In IEEE RTSS, pages 288–299, De-
cember 1996.

10

