
Garbage Collector Scheduling in Dynamic, Multiprocessor Real-Time Systems With

Statistical Timing Assurances

Chewoo Na?, Hyeonjoong Cho?, Binoy Ravindran?, and E. Douglas Jensen‡

?ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA

{cwrha,hjcho,binoy}@vt.edu

‡The MITRE Corporation

Bedford, MA 01730, USA

jensen@mitre.org

Abstract

We consider garbage collection in dynamic, multiprocessor real-time systems, and present a scheduling algorithm

called GCMUA. The algorithm considers mutator activities that are subject to time/utility function time constraints,

stochastic execution-time and memory demands, and overloads. We establish that GCMUA probabilistically lower

bounds each mutator activity’s accrued utility, lower bounds the system-wide total accrued utility, and upper

bounds the timing assurances’ sensitivity to variations in mutator execution-time and memory demand estimates.

Our simulation experiments validate our analytical results and confirm GCMUA’s effectiveness and superiority.

I. Introduction

Memory management in embedded real-time systems is traditionally limited to static partitioning. This approach

is desirable (and likely efficient) when application’s memory requirements are small and can be statically estimated,

as is typically the case for many hard real-time subsystems. However, it is inflexible for applications whose memory

demands cannot be statically estimated and consequently desire run-time memory allocation. Dynamic, manual

memory management is more flexible, but suffers from software engineering and product life-cycle disadvantages—

e.g., programming becomes complex to avoid memory leaks and dangling pointers, reducing code robustness and

increasing maintenance costs. Dynamic, automatic memory management or garbage collection (GC) overcomes

these problems, but introduces unpredictability on GC-pause times, which is antagonistic to timeliness optimization

in real-time systems. This drawback has motivated research on real-time GC.

Real-time GC works can be classified into work-based and time-based [1]. In the work-based approach, the GC

work is distributed over that of the application activities (called “mutator”) by performing a bounded amount of GC

work at each mutator allocation request. Examples include Baker’s GC [2], and its numerous derivatives [3]–[10].

Though the work-based approach reduces the individual pause times, timing assurances are generally difficult

to obtain with this approach, because, worst-case time bounds on each of the GC work attached to the mutator

allocations must be established. As Detlefs shows in [1], such bounds are likely to be highly pessimistic. This is

because, rare, but expensive GC operations must be accounted for in each allocation, to account for the worst-case

GC cost. For example, in Baker’s semi-space copying collector [2] and in its derivatives, scanning thread stacks to

identify reachable objects and copying them from the from-space to the to-space during a flip is expensive, though

flips are rare. Further, mutator reads occurring immediately after a flip are likely to trigger the read-barrier, resulting

in the worst-case cost; reads at other times will cost much less, as objects will be in the to-space. Nevertheless,

the worst-case GC cost must be considered for each allocation. Such overly pessimistic analysis will likely result

in infeasible real-time schedules.

In the time-based approach, the GC executes as a separate thread and is scheduled by the scheduler just as

another application thread (i.e., mutator thread). The advantage of this approach is that the GC work is no longer

coupled with each allocation, and is directly exposed to the scheduler. Thus, a mutator thread’s execution time

does not include GC time, since all GC operations are encapsulated in the GC thread, and consequently tightens

mutator execution times to that in a system without GC. Further, the problem of obtaining timing assurances in

the presence of a GC, now becomes a real-time scheduling problem: How to schedule the mutator and the GC to

satisfy mutator time constraints, while not exhausting memory? Example works in this paradigm include [11]–[16].

A. Multiprocessor Embedded Systems

Multiprocessor architectures (e.g., Symmetric Multi-Processors or SMPs, Single Chip Heterogeneous Multi-

processors or SCHMs) are becoming more attractive for embedded real-time systems primarily because major

processor manufacturers (Intel, AMD) are making them decreasingly expensive. This makes such architectures

very desirable for embedded real-time applications with high computational workloads, where additional cost-

effective processing capacity is often needed. Responding to this trend, RTOS vendors are increasingly providing

multiprocessor platform support (e.g., QNX Neutrino [17]).

Garbage collection on multiprocessors has a long history [3], [4], [7], [10], [18]–[24], that started with Halstead’s

modification of Baker’s algorithm [3]. Halstead partitions the shared-memory into distinct regions for each proces-

sor, and allocation and garbage-collection proceeds within each region through a semi-space copying scheme. As

Cheng and Blelloch shows in [10], this approach can imbalance the GC work distribution across processors. In [25],

Endo balances Halstead-collector’s work through a mark-and-sweep, but non-incremental collector. Flood et. al.

extend Endo’s work for a copying collector [26]. Herlihy and Moss also improve Halstead-collector’s performance

through lock-free synchronization [20]. Doligez and Gonthier’s concurrent mark-and-sweep GC [22] is a derivative

of Dijkstra et. al.’s collector [27], with no read overheads. Bacon et. al. present a concurrent reference counting

collector in [24].

These non real-time GC efforts became the basis for real-time GC (on multiprocessors), which started with

Blelloch and Cheng’s collector [23]. Unlike Halstead’s, their memory model is similar to Baker’s, in that the

whole shared-memory is divided into two spaces (from and to) and are shared among all processors. Fixed bounds

on pause times and memory usage are established in [23]. Cheng and Blelloch parallelizes this collector in [10],

by running multiple GC threads in parallel, so that collection can keep up with increased allocation rate, when

mutator threads and processors increase. Further, they analyze real-time performance in terms of the percentage

of processor time available for mutator threads during any time interval.

B. Our Contributions

In this paper, we consider garbage collection in dynamic, multiprocessor real-time systems. By dynamic systems,

we mean those that operate in environments, where arrival and execution behaviors of mutator activities are subject

to run-time uncertainties, causing resource overloads. Yet, such systems desire the strongest possible assurances

on mutator timing behaviors — both that of individual activities’ behavior and that of collective, system-wide

behavior. Statistical assurances (e.g., meeting all deadlines with 80% probability, meeting 95% of deadlines) are

appropriate for these systems, and possible, when activities exhibit non-deterministic, but stochastic behaviors.

Another distinguishing feature of these systems is that their time constraints include those with non-deadline

semantics such as “earlier the better, but before a certain time” and “best before a certain time, after which

earlier is the better.” Further, an activity’s urgency is often orthogonal to its relative importance—-e.g., the most

urgent activity can be the least important, and vice versa; the most urgent can be the most important, and vice

versa. Yet another important distinguishing feature of these systems, is their relatively long activity execution time

magnitudes, compared to those of conventional real-time subsystems—e.g., in the order of milliseconds to minutes.

Some example such systems that motivate our work include [28], [29].

We consider a mutator model that encompasses these application features. Key aspects of our model include:

(1) the time/utility function (or TUF) timeliness model [30] that allows the specification of a broad range of time

constraints, including deadlines and (aforementioned) non-deadline time constraints, and full decoupling of activity

urgency from activity importance; and (2) a stochastic mutator model, where mutator execution time and memory

demand are stochastically expressed, to account for uncertainties in execution and memory allocation behaviors.

We consider garbage collection in this mutator model, and on an SMP system with M identical processors.

We consider time-based GC, due to its previously mentioned advantages. Similar to [14], we fully decouple

mutator and the GC, allowing for any incremental GC algorithm with fine granularity (e.g., [11]). Unlike [10],

we only consider a single GC thread, as we target embedded multiprocessor platforms which typically have only

a few processors (e.g., 4–16). For such a mutator and system model, our objective is to: (1) provide statistical

assurances on individual activity timeliness behavior; (2) provide assurances on system-level timeliness behavior;

and (3) maximize the total activity attained utility.

This problem has not been studied in the past and is N P -hard. We present a polynomial-time, global scheduling

algorithm for the problem called the garbage collector multiprocessor utility accrual scheduling algorithm (or

GCMUA). We prove several properties of GCMUA including optimal total utility for step TUFs, probabilistically-

satisfied lower bounds on each activity’s accrued utility, and a lower bound on the total activity attained utility.

We also show that GCMUA has bounded sensitivity for its assurances to variations in execution-time and mem-

ory demand estimates. Our simulation-based experiments validate our analytical results and confirm GCMUA’s

effectiveness and superiority.

None of the past real-time GC efforts, except [15], [16], consider our mutator and system model, which include

TUF time constraints, stochastic execution-time and memory demands, resource overloads, and SMPs. Both [15],

[16] consider some aspects of our model (e.g., TUFs, overloads), but are restricted to one processor. Moreover, [15]

does not provide any assurances on mutator timing behavior such as lower bounds on individual and collective

activity utility, and [16] is restricted to deterministic memory demand. In contrast, our work precisely provides

such assurances, and allows stochastic memory demand (on SMPs).

Thus, the contribution of the paper is the GCMUA scheduling algorithm that provides assurances on (individual

and collective) mutator timing behavior in dynamic, multiprocessor real-time systems. To the best of our knowledge,

we are not aware of any other efforts that solve the problem solved by GCMUA.

The rest of the paper is organized as follows: Section II describes our models and scheduling objective. In

Section III, we discuss the rationale and design of GCMUA. We establish the algorithm’s properties in Section IV

and report our simulation studies in Section V. The paper concludes in Section VI.

II. Models and Objective

A. Mutator and GC Model

We consider the application to consist of a set of mutator tasks, denoted M={M1, M2, ..., Mn}. Each mutator

task Mi has a number of instances, called jobs. Jobs may be released either periodically or sporadically with a

known minimal inter-arrival time. The jth job of mutator Mi is denoted as Ji, j. A mutator Mi’s period or minimal

inter-arrival time is denoted as Pi.

All mutator tasks are assumed to be independent—i.e., they do not share any non-CPU resources or have any

precedences. The basic scheduling entity that we consider is the job abstraction. Thus, we use J to denote a mutator

job without being task specific, as seen by the scheduler at any scheduling event.

Similar to [23], we consider a memory model where the entire shared-memory is divided into two spaces (from

and two) and shared among all processors. Similar to [14], we consider time-based GC, where the GC is run

periodically, allowing for any fine-grained incremental GC algorithm—e.g., [11]. Later, in Section III-C, we show

how the GC’s period is determined.

B. Timeliness Model

We consider the TUF model [30] for specifying a mutator task’s time constraint. A task’s TUF specifies the

utility of completing the task as a function of that task’s completion time. The classical deadline is a TUF’s special

case — a binary-valued, downward “step” shaped TUF, implying that a positive utility is accrued for completing

the task anytime before the deadline time, after which zero (or infinitively negative utility) is accrued. Figure 1(a)

shows examples. Note that a TUF decouples importance and urgency—i.e., urgency is measured as a deadline on

the X-axis, and importance is denoted by utility on the Y-axis.

As previously mentioned, our motivating applications also have tasks with non-deadline time constraint seman-

tics, such as those where the utility attained for task completion varies (e.g., decreases, increases) with completion

time. Figures 1(b) and 1(c) show example such time constraints from two real applications in the defense domain

(see [29], [31] for application details).

-
Time

6Utility

0

(a)

-
Time

6Utility

0

bbbb

(b)

-
Time

6Utility

S
S

S
S

0

HHH

(c)

Fig. 1: Example TUF Time Constraints: (a) Step TUFs; (b) AWACS TUF [29]; and (c) Coastal Air defense TUFs [31]

Jobs of the same mutator task have the same TUF. Mutator Mi’s TUF is denoted as Ui(). Thus, job Ji, j’s

completion at time t will yield an utility of Ui, j(t). In this paper, we focus on non-increasing unimodal TUFs, as

they encompass majority of the time constraints in our motivating applications.

Each TUF Ui, j has an initial time Ii, j and a termination time Xi, j, which are the earliest and the latest times for

which the TUF is defined, respectively. We assume that Ii, j is the arrival time of job Ji, j, and Xi, j− Ii, j is the period

or minimal inter-arrival time Pi of the mutator Mi. If Ji, j’s Xi, j is reached and execution of the corresponding job

has not been completed, an exception is raised, and the job is aborted.

C. Execution and Memory Demands

We estimate the statistical properties—e.g., distribution, mean, variance, of job execution-time and memory

allocation demands rather than the worst-case demands because: (1) our motivating applications [28], [29] exhibit

a large variation in their actual workload. Thus, the statistical estimation of the demand is much more stable and

hence more predictable than the actual workload; (2) worst-case workload is usually a very conservative prediction

of the actual workload [32], resulting in resource over-supply; and (3) allocating execution-times and memory

based on the statistical estimation of the corresponding task demands can provide statistical timing assurances,

which are sufficient for our motivating applications.

Let Yi and Xi be the random variables of a mutator Mi’s execution-time demand and memory allocation demand,

respectively. Estimating the execution-time and memory demand distributions of the task involve: (1) profiling its

execution-time and memory allocation usage, and (2) deriving the probability distribution of that usage. A number

of measurement-based, off-line and online profiling mechanisms exist (e.g., [33]). We assume that the means and

variances of Yi and Xi are finite and determined through such profiling.

We denote the expected execution-time and memory allocation demands of a mutator Mi as E(Yi) and E(Xi),

respectively, and the variance on the demands as Var(Yi) and Var(Xi), respectively.

D. Statistical Timeliness Requirement

We consider a statistical timeliness requirement for each mutator task. For a task Mi, this requirement is specified

as {νi,ρi}, which implies that Mi must accrue at least νi percentage of its maximum utility with the probability

ρi. This is also the requirement of each job of Mi. For example, if {νi,ρi}= {0.7,0.93}, then Mi must accrue at

least 70% of its maximum utility with a probability no less than 93%. For step TUFs, ν can only be 0 or 1. Note

that the hard real-time objective of always meeting all task deadlines is the special case of {νi,ρi}= {1.0,1.0}.

This statistical timeliness requirement on the utility of a mutator implies a corresponding requirement on the

range of mutator sojourn times. Since we focus on non-increasing unimodal TUFs, upper-bounding task sojourn

times will lower-bound task utilities.

E. Scheduling Objective

We consider a two-fold scheduling criterion: (1) assure that each task Mi accrues νi percentage of its maximum

utility with at least the probability ρi; and (2) maximize the total task attained utility. We also desire to obtain a

lower bound on the total task attained utility. Also, when it is not possible to satisfy ρi for each Mi (e.g., due to

CPU or memory overloads), our objective is to maximize the total task attained utility. This problem is N P -hard

because it subsumes the N P -hard problem of scheduling dependent tasks with step TUFs on one processor [34].

III. The GCMUA Algorithm

A. Bounding Accrued Utility

Let si, j be the sojourn time of the jth job of mutator task Mi. Mutator Mi’s statistical timing requirement can

be represented as Pr(Ui(si, j) ≥ νi×Umax
i) ≥ ρi. Since TUFs are assumed to be non-increasing, it is sufficient to

have Pr(si, j ≤ Di) ≥ ρi, where Di is the upper bound on the sojourn time of mutator Mi. We call Di “critical

time” hereafter, and it is calculated as Di = U−1
i (νi×Umax

i), where U−1
i (x) denotes the inverse function of TUF

Ui(). Thus, Mi is (probabilistically) assured to accrue at least the utility percentage νi = Ui(Di)/Umax
i , with the

probability ρi.

Note that the period or minimum inter-arrival time Pi and the critical time Di of the mutator Mi have the following

relationships: (1) Pi = Di for a binary-valued, downward step TUF; and (2) Pi > Di, for other non-increasing TUFs.

B. Estimating Execution Time and Memory Demands

Since execution time demands are stochastically specified (through means and variances), we need to estimate

the execution time and memory demands that must be allocated to each mutator, such that the desired utility

accrual probability ρi is satisfied. Further, each of mutator’s demand must account for the uncertainty in both time

and memory demand specifications (i.e., the variance factors). Given the mean and the variance of a mutator Mi’s

execution time demand Yi, by a one-tailed version of the Chebyshev’s inequality, when Ci ≥ E(Yi), we have:

Pr[Yi < Ci]≥ (Ci−E(Yi))2

Var(Yi)+(Ci−E(Yi))2 (1)

From a probabilistic point of view, Equation 1 is the direct result of the cumulative distribution function of

mutator Mi’s execution time demands—i.e., Fi(y) = Pr[Yi ≤ y]. Recall that each job of mutator Mi must accrue νi

percentage of its maximum utility with a probability ρi. To satisfy this requirement, we let εi = (Ci−E(Yi))2

Var(Yi)+(Ci−E(Yi))2

and obtain the minimum required execution time Ci = E(Yi)+
√

εi×Var(Yi)
1−εi

.

GCMUA allocates Ci execution time units to each job Ji, j of mutator Mi, so that the probability that job Ji, j

requires no more than the allocated Ci execution time units is at least εi.

The memory demand can be similarly estimated. Given the mean and the variance of a mutator Mi’s memory

allocation demand Xi, we have:

Pr[Xi < Ai]≥ (Ai−E(Xi))2

Var(Xi)+(Ai−E(Xi))2 (2)

To satisfy a mutator’s memory demand, we let µi =
(Ai−E(Xi))2

Var(Xi)+(Ai−E(Xi))2 and obtain the upper bound of memory demand

Ai = E(Xi)+
√

µi×Var(Xi)
1−µi

. Hence, the probability that each Mi requires no more than the allocated Ai bytes is at

least µi.

Lemma 1: With probabilities εi and µi for execution-time and memory demands, respectively, if

∏i εi×∏i µi ≥maxi{ρi}, then Mi accrues at least νi percentage of the utility with the probability ρi.

Proof: For a mutator Mi with a probability εi and a probability µi, the least probability satisfying all execution

time demands is given by ∏i εi, since each probability is exclusive. Likewise, the least probability satisfying

all memory demands is given by ∏i µi. Let ∏i εi×∏i µi = Φi. Φi produces the least probability satisfying both

execution-time and memory demands. Thus, Mi accrues at least νi percentage of the utility with the probability

ρi, when Φi is greater than or equal to the maximum ρi.

C. Bounding GC Cycle Time

In [14], Robertz and Henriksson develop an upper bound on the GC cycle time that guarantees that the application

never runs out of memory:

Lemma 2: For a mutator Mi that arrives with a period Pi (or frequency fi = 1/Pi) and allocates no more than

ai bytes per job, and F bytes of available memory at the start of the GC cycle, a GC cycle-time upper bound that

ensures that total ai is reclaimed is:

TGC ≤ F−∑ai

∑ fi ·ai
.

Since it may not be possible to use all F bytes in the current cycle due to floating garbage, they bound the

memory that can be safely allocated during a cycle:

Lemma 3: With a heap size H and maximum live memory Lmax, the maximum memory that can be safely

allocated during a GC cycle, amax = H−Lmax
2 .

amax is then used to bound the GC cycle time:

Theorem 4: An upper bound on the GC cycle time that guarantees no memory exhaustion is:

TGC ≤
H−Lmax

2 −∑ai

∑ fi ·ai
.

In [14], the TGC upper bound is then used as the GC’s deadline and period, since satisfying that deadline for the

GC ensures no memory exhaustion.

We compute TGC using Theorem 4, but use the stochastic demand Ai determined from Equation 2, instead of

the worst-case demand ai assumed in [14], since we consider statistical properties of memory demands instead of

worst-case. Doing so, and satisfying the resulting TGC deadline for the collector at run-time ensures that the actual

mutator memory demand is satisfied at run-time, as long as that demand does not exceed Ai.

Equation 2 ensures that the probability that each Mi requires no more than Ai bytes is at least µi. Thus, there is

1−µi probability that Mi requires more than Ai bytes. When the actual memory demand at run-time exceeds Ai,

causing “memory overloads,” an appropriate TGC would not be found. Hence, in order make the GC task schedulable,

we need to dynamically calculate TGC using the actual run-time demand and check for GC’s feasibility. If infeasible,

some mutator tasks will have to be aborted to ensure feasibility. We explain this process in detail in the next section.

D. Algorithm Description

GCMUA’s scheduling events include job arrival, job completion, the expiration of a time constraint including the

arrival of a TUF’s termination time, and memory allocation request. To describe GCMUA, we define the following

variables and auxiliary functions:

• ζr: current job set in the system including running jobs and unscheduled jobs.

• σtmp,σa: a temporary schedule; σm: schedule for processor m, where m≤ N.

• Jk.X : job Jk’s termination time; Jk.C(t): Jk’s remaining allocated execution time.

• offlineComputing() is computed at time t = 0 once. For a mutator Mi, it computes Ci as Ci = E(Yi)+√
εi×Var(Yi)

1−εi
and TGC computed with memory demand upper bound Ai.

• UpdateRAET(ζr) updates the remaining allocated execution time of all jobs in the set ζr.

• ComputeTgc(t) calculates the GC cycle time with estimated memory demand Ai and actual memory demand

ai except the memory demand of Jt .

• feasible(σ) returns a boolean value denoting schedule σ’s feasibility; feasible(Jk) denotes job Jk’s

feasibility. For σ (or Jk) to be feasible, the predicted completion time of each job in σ (or Jk), must not exceed

its termination time. For the GC task, we assume that its worst-case execution time, denoted CGC is known. CGC

depends upon the particular GC algorithm (see [12] for CGC calculation, for a variant of Brooks’ algorithm [6]).

Note that TGC < CGC due to memory overloads.

• findProcessor() returns the ID of the processor on which the currently assigned tasks have the shortest

sum of allocated execution times.

• append(Jk,σ) appends Jk at rear of schedule σ.

• removeLeastPUDJob(σ) removes job with the least potential utility density (or PUD) from schedule σ.

PUD is the ratio of the expected job utility (obtained when job is immediately executed to completion) to the

remaining job allocated execution time, i.e., PUD of a job Jk is Uk(t+Jk.C(t))
Jk.C(t) . Thus, PUD measures the job’s “return

on investment.” Function returns the removed job. In case of the job equals to Note that when TGC < CGC, the

GC task is not removed. Instead, the next least PUD job is removed.

• headOf(σm) returns the set of jobs that are at the head of schedule σm, 1≤ m≤ N.

Algorithm 1: GCMUA
Input : M={M1,...,Mn}, ζr={J1,...,JN}, N:# of processors1
Output : array of dispatched jobs to processor p, Jobp2
Data: {σ1, ...,σN}, σtmp, σa3

offlineComputing(M);4
Initialization: {σ1, ...,σN}= {0, ...,0};5
UpdateRAET(ζr);6
for ∀Jk ∈ ζr do7

Jk.PUD = Uk(t+Jk.C(t))
Jk.C(t) ;8

σtmp = sortByEXF(ζr);9
TGC = computeTgc(null);10
while TGC < 0 and !IsEmpty(σtmp) do11

t = removeLeastPUDJob(σtmp);12
TGC = computeTgc(t);13

for ∀Jk ∈ σtmp from head to tail do14
if Jk.PUD > 0 or Jk == Jc then15

m = findProcessor();16
append(Jk, σm);17

for m = 1 to N do18
σa = null;19
while !feasible(σm) and !IsEmpty(σm) do20

t = removeleastPUD(σm);21
append(t, σa);22

sortByEXF(σa);23
σm += σa;24

{Job1, ...,JobN} = headOf({σ1, ...,σN});25
return {Job1, ...,JobN};26

A description of GCMUA at a high level of abstraction is shown in Algorithm 1. The procedure

offlineComputing() is included in line 4, although it is executed only once at t = 0. The procedure computes

TGC with the memory demand Ai.

When GCMUA is invoked, it updates the remaining allocated execution-times and memory demands of each

job. The remaining allocated execution times and memory demands of running jobs are decreasing, while those of

unscheduled jobs remain constant. The algorithm then computes the PUDs of all jobs. The jobs are then sorted in

the order of earliest termination time first (or EXF), in line 9. In each step of the while-loop from line 10 to line

13, TGC is computed and checked for memory overloads (i.e., TGC ≤ 0). The algorithm removes the overload by

removing the least PUD job, until TGC > 0. In each step of for-loop from line 14 to line 17, the job with the earliest

termination time is selected to be assigned to a processor. The processor that yields the shortest sum of allocated

execution times of all jobs in its local schedule is selected for assignment (procedure findProcessor()). The

rationale for this choice is that the shortest summed execution time processor results in the nearest scheduling

event for completing a job after assigning each job. This will establish the same schedule as that of the global EDF.

Then, the job Jk with the earliest termination time is inserted into the local schedule σm of the selected processor

m.

In the for-loop from line 18 to line 24, GCMUA attempts to make each local schedule feasible by removing the

lowest PUD job. In line 20, if σm is not feasible, then GCMUA removes the job with the least PUD from σm until

σm becomes feasible. All removed jobs are temporarily stored in a schedule σa and then appended to each σm in

EXF order. Note that simply aborting the removed jobs may result in decreased accrued utility. This is because,

the algorithm may decide to remove a job which is estimated to have a longer allocated execution time than its

actual one, even though it may be able to accrue some utility. For this case, GCMUA gives the job another chance

to be scheduled instead of aborting it, which eventually makes the algorithm more robust. Finally, each job at the

head of σm,1≤ m≤ N is selected for execution on the respective processor.

IV. Algorithm Properties

A. Timeliness Assurances

We establish GCMUA’s timeliness assurances under the conditions of (1) independent tasks that arrive periodi-

cally and sporadically, and (2) task utilization demand satisfies any of the schedulable utilization bounds for global

EDF (GFB, BAK, BCL) in [35].
Theorem 5 (Optimal Performance with Step Shaped TUFs): Suppose that only step shaped TUFs are allowed

under conditions (1) and (2). Then, a schedule produced by global EDF is also produced by GCMUA, yielding
equal total utilities. This is a termination time-ordered schedule.

We prove this by examining Algorithm 1. In line 9, the queue σtmp is sorted in a non-decreasing termination

time order. In line 12, the function findProcessor() returns the index of the processor on which the summed

execution time of assigned tasks is the shortest among all processors. Assume that there are n tasks in the current

ready queue. We consider two cases: (1) n ≤ N and (2) n > MN. When n ≤ N, the result is trivial: GCMUA’s

schedule of tasks on each processor is identical to that produced by EDF (every processor has a single mutator or

none assigned). When n > N, task Ti (N < i≤ n) will be assigned to the processor whose tasks have the shortest

summed execution time. This implies that this processor will have the earliest completion for all assigned tasks

up to Mi−1, so that the event that will assign Ti will occur by this completion. Note that tasks in σtmp are selected

to be assigned to processors according to EXF. This is precisely the global EDF schedule, as a TUF termination

time is equivalent to the deadline in EDF scheduling. Under conditions (1) and (2), EDF meets all deadlines. Thus,

each processor always has a feasible schedule, and the while-loop from line 16 to line 18 will never be executed.

Thus, GCMUA produces the same schedule as global EDF.

Some important corollaries about GCMUA’s timeliness behavior can be deduced from EDF’s behavior under

conditions (1) and (2):
Corollary 6: Under conditions (1) and (2), GCMUA always completes the allocated execution time of all tasks

before their critical times.

Theorem 7 (Statistical Task-Level Assurance): Under conditions (1) and (2), GCMUA meets the statistical time-
liness requirement {νi,ρi} for each mutator Mi.

Proof: From Corollary 6, all allocated execution times of tasks can be completed before their critical times.

Further, based on the results of Equation 1, among the actual processor time of mutator Mi’s jobs, at least εi

of them have lesser actual execution time than the allocated execution time. Thus, GCMUA satisfies {νi,ρi},∀i

at least with a probability of εi = max{ρi}, since all mutators must have lesser actual execution time than the

allocated. ∏εi = max{ρi} ≥ ρi,∀i—i.e., the algorithm accrues νi utility with a probability of at least ρi.
Theorem 8 (System-Level Utility Assurance): Under conditions (1) and (2), if a mutator Mi’s TUF has the

highest height Umax
i , then the system-level utility ratio, defined as the ratio of the total utility accrued by GCMUA

to the system’s maximum possible total utility, is at least ∑n
i=1 ρiνiUmax

i
∑n

i=1 Umax
i

.

Proof: We denote the number of jobs released by mutator Mi as mi. Mutator Mi can accrue at least νi

percentage of its maximum possible utility with the probability max{ρi} ≥ ρi. Thus, the ratio of the total accrued

utility to the maximum possible total utility is max{ρi}ν1Umax
1 l1+...+max{ρi}νnUmax

n ln
Umax

1 l1+...+Umax
n ln

. This is greater than or equal to
ρ1ν1Umax

1 l1+...+ρnνnUmax
n ln

Umax
1 l1+...+Umax

n ln
. Thus, when li approaches ∞, the formula converges to ∑n

i=1 ρiνiUmax
i

∑n
i=1 Umax

i
.

B. Sensitivity of Assurances

GCMUA is designed in the same stochastic framework as two of our past algorithms [16], [36]. Consequently,

the algorithm inherits the sensitivity property on assurances that the prior algorithms provide. That is, GCMUA

assumes that {E(Yi),Var(Yi)} and {E(Xi),Var(Xi)} are correct. However, it is possible that these inputs may change

over time (e.g., due to changes in application’s execution context). To understand GCMUA’s behavior when this

happens, we assume that E(Yi)’s and Var(Yi)’s are erroneous, and present the sufficient condition under which the

algorithm satisfies {νi,ρi},∀Mi.

Our previous work [36] establishes sensitivity of the assurances to variations in execution-time demand –

GCMUA also inherits this feature. Here, we develop an extension to that property to variations in memory demand.

Let a mutator Mi’s correct expected memory demand demand be E(Xi) and its correct variance be Var(Xi), and let

an erroneous expected demand E ′′(Xi) and an erroneous variance Var′′(Xi) be specified as the input to GCMUA.

Let the mutator’s statistical timeliness requirement be {νi,ρi}. We show that if GCMUA can satisfy {νi,ρi} with

the correct expectation E(Xi) and the correct variance Var(Xi), then there exists a sufficient condition under which

the algorithm can still satisfy {νi,ρi} even with the incorrect expectation E ′′(Xi) and incorrect variance Var′′(Xi).
Theorem 9 (): Assume that GCUA satisfies {νi,ρi},∀i, under correct, expected memory demand estimates,

E(Xi)’s, and their correct variances, Var(Xi)’s. When incorrect expected values, E ′′(Xi)’s, and variances, Var′′(Xi)’s,
are given as inputs instead of E(Xi)’s and Var(Xi)’s, GCUA satisfies {νi,ρi},∀i, if E ′′(Xi)+(Ai−E(Xi))

√
Var′′(Xi)
Var(Xi)

≥
Ai,∀i.

Proof: We skip the proof for brevity, but it is similar to that for execution time demands (see [36]).

V. Simulation-Based Experiments

We conducted simulation-based experimental studies to validate our analytical results and to compare GCMUA’s

performance with Robertz and Henriksson’s EDF-based GC scheduling [14]. We considered two cases: (1) the

execution time demand of all mutator tasks are constant (i.e., no variance) and GCMUA exactly estimates the

execution time allocation, and (2) the demand of all tasks statistically varies and GCMUA probabilistically estimates

the execution time allocation for each task. The former experiment is conducted to evaluate GCMUA’s generic

performance as opposed to EDF, while the latter is conducted to validate the algorithm’s assurances.

We consider two TUF shape patterns: (1) all tasks have step-shaped TUFs, and (2) a heterogeneous TUF shape

class, including step, linearly decreasing, and parabolic shapes.

A. Performance with Constant Demand

According to [37], EDF’s schedulable utilization bound (or EUB) depends on α as well as the number of

processors. It implies that there exists task sets with utilization demand(or UD) close to 1.0 no matter how many

processors the system has. We consider an SMP machine with 4 processors and mutator tasks with period Pi,

expected execution time demand E(Yi) and memory demand E(Xi), [1, α ·Pi], respectively, where α is given

max{Ci
Pi
|i = 1, ..,5} and Var(Yi) = Var(Xi) = 0.

2.0 2.5 3.0 3.5 4.0 4.5

60

65

70

75

80

85

90

95

100

105

C
M

R
 a

nd
 A

U
R

(%
)

Utilization Demand

 M
i,UA

 T
GCMUA

(a) GCMUA

2.0 2.5 3.0 3.5 4.0 4.5
60

80

100

C
M

R
 a

nd
 A

U
R

(%
)

Utilization Demand

 M
i,EDF

 T
EDF

(b) Robertz and Henriksson’s EDF GC
Scheduling

Fig. 2: Performance Under Constant Demand, Step TUFs

Figure 2 show the accrued utility ratio (or AUR) and the critical-time meet ratio (or CMR) of each mutator task

under increasing utilization demand (or UD), for step and heterogenous TUF shape classes, respectively. AUR is

the ratio of the total accrued utility to the maximum possible total utility, and CMR is the ratio of the number of

jobs meeting their critical times to the total number of job releases.

We vary the UD from 2.2 to 4.6. For tasks with step TUFs, we show AUR and CMR in the same plot since

they are identical, as satisfying the critical time implies the accrual of a constant utility.

B. Performance with Statistical Demand

We now evaluate GCMUA’s statistical timeliness assurance. Table I summarizes the mutator settings used in our

study. The table shows the mutator periods and the maximum utilities (or Umax) of the TUFs. Note that the period

of the GC is dynamically calculated. For each mutator’s demand, normally distributed execution time demands are

generated. Average execution times are changed along with the total UD.

TABLE I: Mutator Settings
Mutators and GC Pi Umax

i ρi Var(Yi) µi Var(Xi)
M1 23 347.4 0.96 1.6 0.96 1.0
M2 22 372.6 0.96 1.6 0.96 1.0
M3 50 188.3 0.96 1.6 0.96 1.0
M4 40 143.2 0.96 1.6 0.96 1.0
M5 45 20.0 0.96 1.6 0.96 1.0
GC N/A 243.9 0.96 1.6 0.96 1.0

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

20

40

60

80

100

A
U

R
 (=

C
M

R
) (

%
)

Utilization Demand (UD)

 M
1

 M
2

 M
3

 M
4

 M
5

 GC

(a) Task-level

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

20

40

60

80

100

A
U

R
 a

nd
 C

M
R

 (%
)

Utilization Demand (UD)

 CMR
 AUR

(b) System-level

Fig. 3: Performance Under Statistical Demand, Step TUFs

Figures 3 shows AUR and CMR of each mutator under increasing total UD of GCMUA. For a mutator with

step TUFs, task-level AUR and CMR are identical, as satisfying the critical time implies the accrual of a constant

utility. Whereas, the system-level AUR and CMR are different as satisfying the critical time of each mutator does

not always yield the same amount of utility.

Figure 3 shows that all mutators under GCMUA accrue 100% AUR and CMR within global EDF’s bound (i.e.,

UD<≈2.0 here), thus satisfying the desired {νi,ρi}= {1,0.96},∀i. This validates Theorem 7.

Under the condition beyond what Theorem 7 indicates, GCMUA achieves graceful performance degradation in

both AUR and CMR in Figure 3, as the previous experiment in Section V-A implies.

According to Theorem 8, the system-level AUR must be at least 96%. (For each mutator Mi,νi = 1, because all

TUFs are step shaped.) We observe that AUR and CMR of GCMUA under the condition of Theorem 8 are above

99.0%. This validates Theorem 8.

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

20

40

60

80

100

A
U

R
 (%

)

Utilization Demand (UD)

 M
1

 M
2

 M
3

 M
4

 M
5

 GC

(a) Task-level

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

20

40

60

80

100

C
M

R
 (%

)

Utilization Demand (UD)

 CMR
 AUR

(b) System-level

Fig. 4: Performance Under Statistical Demand, Heterogeneous TUFs

We observe a similar trend in Figure 4 for heterogeneous TUFs. We assign step TUFs for M1 and GC,

linearly decreasing TUFs for M3 and M4, and parabolic TUFs for M2 and M5. For each mutator Mi, νi is set

as {1.0,0.2,0.2,0.2,0.2} and for GC, it is set as 1.0.

According to Theorem 8, the system-level AUR must be at least 0.96× (1.0 ·347.4+0.2 ·372.6+0.2 ·188.3+

0.2 · 143.2 + 0.2 · 20.0 + 1.0 · 243.9)/(347.4 + 372.6 + 188.3 + 143.2 + 20.0 + 243.9) = 53.72%. In Figure 4, we

observe that the system-level AUR under GCMUA is above 53.72% within global EDF’s bound. This further

validates Theorem 8 for non step-shaped TUFs.

VI. Conclusions, Future Work

In this paper, we consider garbage collection in dynamic, multiprocessor real-time systems, and present a schedul-

ing algorithm called GCMUA. The algorithm considers mutator tasks that are subject to TUF time constraints,

variable execution-time and memory demands, and resource overloads, and allows any fine-grained incremental

GC algorithm. We establish that GCMUA probabilistically satisfies task utility lower bounds, and lower bounds

system-wide total accrued utility. The algorithm’s lower bound satisfactions have bounded sensitivity to variations

in execution-time and memory demand estimates. When task utility lower bounds cannot be satisfied due to CPU

and/or memory overloads, GCMUA maximizes total utility by completing a subset of tasks which yields high total

utility, and thereby gracefully degrades timeliness. Our simulation experiments validate our analytical results and

confirm the algorithm’s effectiveness and superiority.

Our work can be extended in several ways. To allow GC algorithms with larger granularity, GCMUA can be

extended to allow GCs with non-negligible atomic segments. The work can also be extended in the direction of [10]

by allowing multiple GC threads so that collection can scale with increased allocation rate. Other directions include

relaxing our task arrival model (e.g., unimodal arrival) and allowing mutator threads to share non-CPU resources.

References

[1] D. Detlefs, “A hard look at hard real-time garbage collection,” in IEEE ISORC, May 2004, pp. 23– 32.
[2] J. Henry G. Baker, “List processing in real time on a serial computer,” CACM, vol. 21, no. 4, pp. 280–294, 1978.
[3] J. Robert H. Halstead, “Multilisp: a language for concurrent symbolic computation,” ACM TOPLAS, vol. 7, no. 4, pp. 501–538, 1985.
[4] A. W. Appel, J. R. Ellis, and K. Li, “Real-time concurrent collection on stock multiprocessors,” in ACM PLDI, 1988, pp. 11–20.
[5] H. G. Baker, “The treadmill: real-time garbage collection without motion sickness,” ACM SIGPLAN Not., vol. 27, no. 3, pp. 66–70,

1992.
[6] R. A. Brooks, “Trading data space for reduced time and code space in real-time garbage collection on stock hardware,” in ACM LFP,

1984, pp. 256–262.
[7] S. Nettles and J. O’Toole, “Real-time replication garbage collection,” in ACM PLDI. ACM Press, 1993, pp. 217–226.
[8] T. Yuasa, “Real-time garbage collection on general-purpose machines,” J. Syst. Softw., vol. 11, no. 3, pp. 181–198, 1990.
[9] M. S. Johnstone, “Non-compacting memory allocation and real-time garbage collection,” Ph.D. dissertation, University of Texas at

Austin, 1997.
[10] P. Cheng and G. E. Blelloch, “A parallel, real-time garbage collector,” in ACM PLDI, 2001, pp. 125–136.
[11] R. Henriksson, “Scheduling garbage collection in embedded systems,” Ph.D. dissertation, Lund Institute of Technology, July 1998.
[12] T. Kim, N. Chang, N. Kim, and H. Shin, “Scheduling garbage collector for embedded real-time systems,” ACM SIGPLAN Not., vol. 34,

no. 7, pp. 55–64, 1999.
[13] D. F. Bacon, P. Cheng, and V. T. Rajan, “A real-time garbage collector with low overhead and consistent utilization,” in ACM POPL,

2003, pp. 285–298.
[14] S. G. Robertz and R. Henriksson, “Time-triggered garbage collection: robust and adaptive real-time gc scheduling for embedded

systems,” in ACM LCTES, 2003, pp. 93–102.
[15] S. Feizabadi and G. Back, “Java garbage collection scheduling in utility accrual scheduling environments,” in JTRES, October 2005.
[16] H. Cho, C. Na, B. Ravindran, and E. D. Jensen, “On scheduling garbage collector in dynamic real-time systems with statistical timing

assurances,” in IEEE ISORC, 2006, to appear. Available: http://www.ee.vt.edu/∼realtime/isorc06.pdf.
[17] QNX, “Symmetric multiprocessing,” http://www.qnx.com/products/rtos/smp.html, last accessed October 2005.
[18] J. Crammond, “A garbage collection algorithm for shared memory parallel processors,” Int. J. Parallel Program., vol. 17, no. 6, pp.

497–522, 1989.
[19] I. Foster, “A multicomputer garbage collector for a single-assignment language,” Int. J. Parallel Program., vol. 18, no. 3, pp. 181–203,

1990.
[20] M. P. Herlihy and J. E. B. Moss, “Lock-free garbage collection for multiprocessors,” IEEE TPDS, vol. 3, no. 3, pp. 304–311, 1992.
[21] L. Huelsbergen and J. R. Larus, “A concurrent copying garbage collector for languages that distinguish (im)mutable data,” in ACM

PPOPP, 1993, pp. 73–82.
[22] D. Doligez and G. Gonthier, “Portable, unobtrusive garbage collection for multiprocessor systems,” in ACM POPL, 1994, pp. 70–83.
[23] G. E. Blelloch and P. Cheng, “On bounding time and space for multiprocessor garbage collection,” in ACM PLDI, 1999, pp. 104–117.
[24] D. F. Bacon, C. R. Attanasio, H. B. Lee, V. T. Rajan, and S. Smith, “Java without the coffee breaks: a nonintrusive multiprocessor

garbage collector,” in ACM PLDI, 2001, pp. 92–103.
[25] T. Endo, “A scalable mark-sweep garbage collector on large-scale shared-memory machines,” Master’s thesis, University of Tokyo,

February 1998.
[26] C. Flood, D. Detlefs, N. Shavit, and C. Zhang, “Parallel garbage collection for shared memory multiprocessors,” in USENIX JVM

Conference, April 2001.
[27] E. W. Dijkstra, L. Lamport, et al., “On-the-fly garbage collection: an exercise in cooperation,” in Language Hierarchies and Interfaces,

International Summer School. London, UK: Springer-Verlag, 1976, pp. 43–56.
[28] R. K. Clark, E. D. Jensen, and N. F. Rouquette, “Software organization to facilitate dynamic processor scheduling,” in IEEE WPDRTS,

April 2004.
[29] R. K. Clark, E. D. Jensen, et al., “An adaptive, distributed airborne tracking system,” in IEEE WPDRTS, April 1999.
[30] E. D. Jensen, C. D. Locke, and H. Tokuda, “A time-driven scheduling model for real-time systems,” in IEEE RTSS, December 1985,

pp. 112–122.
[31] D. P. Maynard, S. E. Shipman, et al., “An example real-time command, control, and battle management application for alpha,” CMU

CS Dept., Tech. Rep., Dec. 1988, archons Project TR 88121.
[32] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Dynamic and aggressive scheduling techniques for power-aware real-time

systems,” in IEEE RTSS, December 2001, pp. 95 –105.
[33] X. Zhang, Z. Wang, et al., “System support for automated profiling and optimization,” in ACM SOSP, October 1997, pp. 15–26.
[34] R. K. Clark, “Scheduling dependent real-time activities,” Ph.D. dissertation, Carnegie Mellon University, 1990.
[35] M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedulability analysis of edf on multiprocessor platforms,” in IEEE ECRTS, 2005,

pp. 209– 218.
[36] H. Cho, H. Wu, B. Ravindran, and E. D. Jensen, “On multiprocessor utility accrual real-time scheduling with statistical timing

assurances,” 2005, http://www.ee.vt.edu/∼realtime/rtas06 RTL VT.pdf.
[37] J. Goossens, S. Funk, and S. Baruah, “Priority-driven scheduling of periodic tasks systems on multiprocessors,” Real-Time Systems,

vol. 25, no. 2-3, pp. 187–205, 2003.

