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Abstract. We consider networked, embedded real-time systems that
operate under run-time uncertainties on activity execution times and ar-
rivals, node failures, and message losses. We consider the distributable
threads abstraction for programming and scheduling such systems, and
present a thread scheduling algorithm called QBUA. We show that QBUA
satisfies (end-to-end) thread time constraints in the presence of crash
failures and message losses, has efficient message and time complexities,
and lower overhead and superior timeliness properties than past thread
scheduling algorithms. Our experimental studies validate our theoretical
results, and illustrate the algorithm’s effectiveness.

1 Introduction

Some emerging, networked embedded real-time systems (e.g., US DoD’s Network
Centric Warfare systems [1]) are subject to resource overloads (due to context-
dependent activity execution times), arbitrary activity arrivals, and arbitrary
node failures and message losses. Reasoning about end-to-end timeliness is a
difficult and unsolved problem in such systems. A distinguishing feature of such
systems is their relatively long activity execution time scales (e.g., milliseconds
to minutes), which permits more time-costlier real-time resource management.

Maintaining end-to-end properties (e.g., timeliness, connectivity) of a control
or information flow requires a model of the flow’s locus in space and time that
can be reasoned about. Such a model facilitates reasoning about the contention
for resources that occur along the flow’s locus and resolving those contentions
to optimize system-wide end-to-end timeliness. The distributable thread pro-
gramming abstraction which first appeared in the Alpha OS [2], and later the
Real-Time CORBA 1.2 standard directly provides such a model as their first-
class programming and scheduling abstraction. A distributable thread is a single
thread of execution with a globally unique identity that transparently extends
and retracts through local and remote objects. We focus on distributable threads
as our end-to-end programming/scheduling abstraction, and hereafter, refer to
them as threads, except as necessary for clarity.

Contributions. In this paper, we consider the problem of scheduling threads
in the presence of the previously mentioned uncertainties, focusing particularly
on (arbitrary) node failures and message losses. Past efforts on thread scheduling



(e.g., see [3] and references therein) can be broadly categorized into two classes:
independent node scheduling and collaborative scheduling. In the independent
scheduling approach, threads are scheduled at nodes using propagated thread
scheduling parameters and without any interaction with other nodes. Thread
faults are managed by integrity protocols that run concurrent to thread exe-
cution. Integrity protocols employ failure detectors (or FDs), and use them to
detect thread failures. In the collaborative scheduling approach, nodes explicitly
cooperate to construct system-wide thread schedules, detecting node failures us-
ing FDs while doing so. In this work, we compare QBUA to three previous thread
scheduling algorithms, HUA, CUA, and ACUA (see [3] and references therein).

HUA is an independent scheduling algorithm, which sometimes may make
locally optimal decisions that may not be globally optimal. This is overcome by
CUA and ACUA, which are collaborative scheduling algorithms that use uniform
consensus [4] for unanimously deciding on system-wide thread schedules in the
presence of node failures. In [3], it is shown that ACUA has superior timeliness
properties (e.g., lower number of missed deadlines) than HUA and CUA. In
addition, HUA and CUA consider synchronous computational models (i.e., those
with deterministically bounded time variables). In contrast, ACUA considers
the partially synchronous model in [5], where message delay and message loss
are probabilistically described. Though this increases ACUA’s coverage3, the
algorithm has high overhead, thereby only allowing threads that can tolerant
this large overhead to reap the algorithm’s superior timeliness.

In this paper, we present a collaborative scheduling algorithm called the
Quorum-Based Utility Accrual scheduling (or QBUA) that precisely overcomes
ACUA’s overhead disadvantage. The algorithm considers the partially synchronous
model in [5], and uses a Quorum set of nodes for majority agreement on con-
structing system-wide thread schedules. We show that QBUA satisfies thread
time constraints in the presence of node crash failures and message losses, has
efficient message and time complexities that compare favorably with other al-
gorithms in its class, and lower overhead and superior timeliness than past al-
gorithms including CUA and HUA. We also show that the algorithm’s lower
overhead enables it to allow more threads to benefit from its superior timeliness,
than that allowed by past algorithms.

2 Models and Objective

Distributable Thread Abstraction. Distributable threads, our computing abstrac-
tion, execute in local and remote objects by location-independent invocations
and returns. The portion of a thread executing an object operation is called a
thread segment. Thus, a thread can be viewed as being composed of a concate-
nation of thread segments. A thread can also be viewed as being composed of a
3 As defined in [6], coverage is the decreasing likelihood for the algorithm’s timing

assurances to be violated, when the underlying synchrony assumptions are violated
at run-time (e.g., due to overloads or other exigencies). This likelihood reduces when
coverage increases.



sequence of sections, where a section is a maximal length sequence of contiguous
thread segments on a node. A section’s first segment results from an invocation
from another node, and its last segment performs a remote invocation. We as-
sume that execution time estimates of sections of a thread are known when the
thread arrives into the system and are described using TUFs (see our timeliness
model). The sequence of remote invocations and returns made by a thread can
typically be estimated by analyzing the thread code. The total number of sec-
tions of a thread is thus assumed to be known a-priori. The application is thus
comprised of a set of threads, denoted T = {T1, T2, . . .} and the set of sections
of a thread Ti is denoted as [Si

1, S
i
2, . . . , S

i
k]. See [7] for more details.

Timeliness Model. We specify the time constraint of each thread using a
Time/Utility Function (TUF) [8]. A TUF allows us to decouple the urgency of a
thread from its importance. This decoupling is a key property allowed by TUFs
since the urgency of a thread may be orthogonal to its importance. A thread Ti’s
TUF is denoted as Ui (t). A classical deadline is unit-valued—i.e., Ui(t) = {0, 1},
since importance is not considered. Downward step TUFs generalize classical
deadlines where Ui(t) = {0, {m}}. We focus on downward step TUFs, and denote
the maximum, constant utility of a TUF Ui (t), simply as Ui. Each TUF has an
initial time Ii, which is the earliest time for which the TUF is defined, and a
termination time Xi, which, for a downward step TUF, is its discontinuity point.
Ui (t) > 0,∀t ∈ [Ii, Xi] and Ui (t) = 0, ∀t /∈ [Ii, Xi] , ∀i.

System Model. Our system consists of a set of client nodes
∐

= {1, 2, · · · , N}
and a set of server nodes Π = {1, 2, · · · , n} (server and client are logical des-
ignations given to nodes to describe the algorithm’s behavior). Bi-directional
logical communication channels are assumed to exist between every client-server
and client-client pair. We also assume that the basic communication channels
may loose messages with probability p, and communication delay is described
by some probability distribution. On top of this basic communication channel,
we consider a reliable communication protocol that delivers a message to its
destination in probabilistically bounded time provided that the sender and re-
ceiver both remain correct, using the standard technique of sequence numbers
and retransmissions. We assume that each node is equipped with two proces-
sors: a processor that executes thread sections on the node and a scheduling
co-processor as in [2]. We also assume that nodes in our system have access to
GPS clocks that provides each node with a UTC time-source with high preci-
sion (e.g., [9]) and are equipped with appropriately tuned QoS FDs [5]. Further
details about our system model are provided in [7].

Exceptions and Abort Model. Each section of a thread has an associated
exception handler. We consider a termination model for thread failures includ-
ing time-constraint violations and node failures. In the case of time constraint-
violation or node failure, these exception handlers are triggered to restore the
system to a safe state. The exception handlers we consider have time constraints
expressed as relative deadlines. See [7] for more details.

Failure Model. The nodes are subject to crash failures. When a process
crashes, it loses it state memory — i.e., there is no persistent storage. If a



crashed client node recovers at a later time, we consider it a new node since
it has already lost all of its former execution context. A client node is correct if
it does not crash; it is faulty if it is not correct. In the case of a server crash,
it may either recover or be replaced by a new server assuming the same server
name (using DNS or DHT — e.g, [10] — technology). We model both cases as
server recovery. Since crashes are associated with memory loss, recovered servers
start from their initial state. A server is correct if it never fails; it is faulty if it
is not correct. QBUA tolerates up to N − 1 client failures and up to fs

max ≤ n/3
server failures. The actual number of server failures is denoted as fs ≤ fs

max and
the actual number of client failures is denoted as f ≤ fmax where fmax ≤ N −1.

Scheduling Objectives. Our primary objective is to design a thread scheduling
algorithm to maximize the total utility accrued by all threads as much as pos-
sible. The algorithm must also provide assurances on the satisfaction of thread
termination times in the presence of (up to fmax) crash failures. Moreover, the
algorithm must exhibit the best-effort property (see Section 1 of [7] for details).

3 Algorithm Rationale

QBUA is a collaborative scheduling algorithm, which allows it to construct
schedules that result in higher system-wide accrued utility by preventing lo-
cally optimal decisions from compromising system-wide optimality. It also allows
QBUA to respond to node failures by eliminating threads that are affected by
the failures, thus allowing the algorithm to gracefully degrade timeliness in the
presence of failures. There are two types of scheduling events that are handled
by QBUA, viz: a) local scheduling events and b) distributed scheduling events.

Local scheduling events are handled locally on a node without consulting
other nodes. Examples of local scheduling events are section completion, section
handler expiry events etc. For a full list of local scheduling events please see
Algorithm 7 in [7]. Distributed scheduling events need the participation of all
nodes in the system to handle them. In this work, only two distributed scheduling
events exit, viz: a) the arrival of a new thread into the system and b) the failure
of a node. A node that detects a distributed scheduling event sends a START
message to all other nodes requesting their scheduling information so that it
can compute a System Wide Executable Thread Set (or SWETS). Nodes that
receive this message, send their scheduling information to the requesting node
and wait for schedule updates (which are sent to them when the requesting node
computes a new system-wide schedule). This may lead to contention if several
different nodes detect the same distributed scheduling event concurrently.

For example, when a node fails, many nodes may detect the failure concur-
rently. It is superfluous for all these nodes to start an instance of QBUA. In
addition, events that occur in quick succession may trigger several instances of
QBUA when only one instance can handle all of those events. To prevent this,
we use a quorum system to arbitrate among the nodes wishing to run QBUA. In
order to perform this arbitration, the quorum system examines the time-stamp
of incoming events. If an instance of QBUA was granted permission to run later



than an incoming event, there is no need to run another instance of QBUA since
information about the incoming event will be available to the version of QBUA
already running (i.e., the event will be handled by that instance of QBUA).

4 Algorithm Description

As mentioned above, whenever a distributed scheduling event occurs, a node
attempts to acquire permission from the quorum system to run a version of
QBUA. After the quorum system has arbitrated among the nodes contending
to execute QBUA, the node that acquires the “lock” executes Algorithm 1. In
Algorithm 1, the node first broadcasts a start of algorithm message (line 1) and
then waits 2T time units4 for all nodes in the system to respond by sending
their local scheduling information (line 2). After collecting this information, the
node computes SWETS (line 3) using Algorithm 4. After computing SWETS,
the node contacts affected nodes (i.e. nodes that will have sections added or
removed from their schedule as a result of the scheduling event).

Algorithm 1: Compute SWETS

Broadcast start of algorithm message, START;1:
Wait 2T collecting replies from other nodes;2:
Construct SWETS using information collected;3:
Multicast change of schedule to affected nodes;4:
return;5:

Algorithm 2 shows the details of the algorithm that client nodes run when at-
tempting to acquire a “lock” on running a version of QBUA. The algorithm is
loosely based on Chen’s solution for FTME [11]. Upon the arrival of a distributed
scheduling event, a node tries to acquire a “lock” on running QBUA (the try1

part of the algorithm that starts on line 3).
The first thing that the node does (lines 4-5) is check if it is currently run-

ning an instance of QBUA that is in its information collection phase (line 2 in
Algorithm 1). If so, the new event that has occurred can simply be added to
the information being collected by this version of QBUA. However, if no current
instance of QBUA is being hosted by the node, or if the instance of QBUA being
hosted has passed its information collection phase, then the event may have to
spawn a new instance of QBUA (this starts at line 6 in the algorithm).

The first thing that Algorithm 2 does in this case is send a time-stamped
request to the set of server nodes, Π, in the system (lines 8-10). The time-stamp
is used to inform the quorum nodes of the time at which the event was detected
by the current node. Beginning at line 3, Algorithm 2 collects replies from the
servers. Once a sufficient number of replies have arrived (line 14), Algorithm 2
checks whether its request has been accepted by a sufficient (d 2n

3 e see Section 5)
number of server nodes. If so, the node computes SWETS (lines 15-16).

On the other hand, if an insufficient number of server nodes support the
request, two possibilities exist. The first possibility is that another node has

4 T is communication delay derived from the random variable describing the commu-
nication delay in the system.



been granted permission to run an instance of QBUA to handle this event. In
this case, the current node does not need to perform any additional action and
so releases the “lock” it has acquired on some servers (lines 17-21).

The second possibility is that the result of the contention to run QBUA at
the servers was inconclusive due to differences in communication delay. For exa

Algorithm 2: QBUA on client node i

timestamp; // time stamp variable initially set to nil1:
upon thread arrival or detection of a node failure:2:

try1:3:
if a current version of QBUA is waiting for information from other nodes then4:

Include information about event when computing SWETS;5:

else6:
timestamp ← GetTimeStamp;7:
for all rj ∈ Π do8:

resp[j] ← (nil, nil);9:
send (REQUEST, timestamp) to rj ;10:

repeat11:
wait until [received (RESPONSE, owner, t) from some rj ];12:
if (c1 6= owner or timestamp = t) then resp[j] ← (owner, t);13:
if among resp[], at least m of them are not (nil, nil) then14:

if at least m elements in resp[] are (c1, t) then15:
return Compute SWETS;16:

else if at least m elements in resp[] agree about a certain node then17:
for all rk ∈ Π such that resp[k] 6= (nil, nil) do18:

if resp[k].owner = c1 then19:
send (RELEASE,timestamp) to rk;20:

Skip rest of algorithm; //Event is already being handled21:

else22:
for all rk ∈ Π such that resp[k] 6= (nil, nil) do23:

if resp[k].owner = c1 then24:
send (YIELD,timestamp) to rk;25:

else26:
send (INQUIRE,timestamp) to rk;27:

resp[k] ← (nil, nil);28:

until forever ;29:
exit1:30:

oldtimestamp ← timestamp;31:
timestamp ← GetTimeStamp;32:
for all rk ∈ Π do33:

send (RELEASE, oldtimestamp) to rj ;34:
return;35:

upon receive (CHECK, t) from rj36:
if for all instances of QBUA running on this node, timestamp 6= t then37:

send (RELEASE, t) to rj ;38:

upon receive (START) from some client node39:

Update REi
j for all sections;40:

send σj and REi
j ’s to requesting node;41:

mple, assume that we have 5 servers and three clients wishing to run QBUA
and all three clients send their request to the servers at the same time, also
assume different communication delay between each server and client. Due to
these communication differences, the messages of the clients may arrive in such
a pattern so that two servers support client 1, another 2 servers support client
2 and the last server supports client 3. This means that no client’s request is
supported by a sufficient — i.e., 2n

3 — number of server nodes. In this case, the



client node sends a YIELD message to servers that support it and an INQUIRE
message to nodes that do not support it (line 22-28) and waits for more responses
from the server nodes to resolve this conflict. Lines 30-35 release the “lock” on
servers after the client node has computed SWETS, lines 36-38 are used to handle
the periodic cleanup messages sent by the servers and lines 39-41 respond to the
START of algorithm message (line 1, Algorithm 1).

Algorithm 3: QBUA on server node i

cowner[]; Array of nodes holding lock to run QBUA1:
towner[]; towner[i] contains time-stamp of event that triggered QBUA for node in cowner[i]2:
tgrant[]; tgrant[i] contains time at which node in cowner[i] was granted lock to run QBUA3:
Rwait[]; Rwait[i] is waiting queue for instance of QBUA being run by cowner[i];4:
upon receive (tag, t)5:

CurrentT ime ← GetTimeStamp;6:

if (c1, t′) appears in (cowner[],towner[]) or Rwait[] then7:
if t < t’ then Skip rest of algo; //This is an old message8:

if tag = REQUEST then9:
if ∃ tgrant ∈ tgrant[] such that t ≤ tgrant then10:

send (RESPONSE, c, tgrant) to c1; //where c ← cowner[i], such that11:
tgrant[i] = tgrant;
Enqueue (c1, t) in Rwait[i], such that tgrant[i] = tgrant;12:
Skip rest of algorithm;13:

else14:
AddElement(cowner[], c1);15:
AddElement(towner[], t);16:
AddElement(tgrant[], CurrentT ime);17:
send (RESPONSE, c1, t) to c1;18:

else if tag = RELEASE then19:
Delete entry corresponding to c1, t from cowner[], towner[], tgrant[], and Rwait[];20:

else if tag = YIELD then21:
if (c1, t) ∈ (cowner[], towner[]) then22:

For i, such that (c1, t) = (cowner[i], towner[i])23:
Enqueue (c1, t) in Rwait[i];24:
(cwait, twait) ← top of Rwait[i];25:
cowner[i] ← cwait; towner[i] ← twait;26:
tgrant[i] ← CurrentT ime;27:
send (RESPONSE, cwait, twait) to cwait;28:

if c1 /∈ cowner[] then29:
(c, tp) ← (cowner[i], towner[i]), for min i such that t ≤ tgrant[i];30:
send (RESPONSE, c, tp) to c1;31:

else if tag = INQUIRE then32:
(c, tp) ← (cowner[i], towner [i]), for min i such that t ≤ tgrant[i];33:
send (RESPONSE, c, tp) to c1;34:

upon suspect that cowner[i] has failed:35:
HandleFailure(cowner[i],cowner[], towner[],tgrant[],Rwait[]);36:

periodically:37:
∀ cowner ∈ cowner[]:38:

send (CHECK, towner) to cowner; //NB. towner is the entry in towner[] that39:
corresponds to cowner.

Algorithm 3 is run by the servers, the function of this algorithm is to arbi-
trate among the nodes contending to run QBUA so as to minimize the number
of concurrent executions of the algorithm. Since there may be more than one in-
stance of QBUA running at any given time, the server nodes keep track of these
instances using three arrays. The first array, cowner[], keeps track of which nodes
are running instances of QBUA, the second, towner[], stores the time at which a
node in cowner[] sends a request to the servers (i.e., the time at which that node
detects a certain scheduling event), and tgrant[] keeps track of the time at which



server nodes grant permission to client nodes to execute QBUA. In addition, a
waiting queue for each running instance of QBUA is kept in Rwait[].

When a server receives a message from a client node, it first checks to see
if this is a stale message (which may happen due to out of order delivery). A
message from a client node, c1, that has a time-stamp older than the last message
received from c1 has been delivered out of order and is ignored (line 7-8). Starting
at line 9, the algorithm begins to examine the message it has received. If it is a
REQUEST message, the server checks if the time-stamp of the event triggering
the message is less than the time at which a client node was granted permission
to run an instance of QBUA. If such an instance exists, a new instance of QBUA
is not needed since the event will be handled by that previous instance of QBUA.
Algorithm 3, inserts the incoming request into a waiting queue associated with
that instance of QBUA and sends a message to the client (lines 10-13).

However, if no current instance of QBUA can handle the event, a client’s
request to start an instance of QBUA is granted (lines 14-18). If a client node
sends a YIELD message, the server revokes the grant it issued to that client and
selects another client from the waiting queue for that event (lines 21-31). This
part of the algorithm can only be triggered if the result of the first round of con-
tention to run QBUA is inconclusive (as discussed when describing Algorithm 2).
Recall that this inconclusive contention is caused by different communication de-
lays that allow different requests to arrive at different severs in different orders.
However, all client requests for a particular instance of QBUA are queued in
Rwait[], therefore, when a client sends a YIELD message, servers are able to
choose the highest priority request (which we define as the request with the ear-
liest time-stamp and use node id as a tie breaker). Thus, we guarantee that this
contention will be resolved in the second round of the algorithm. Lines 32-34
show servers’ response to INQUIRE messages and lines 35-39 show the clean up
procedures to remove stale messages. See [7] for how we handle failures (line 36).

Algorithm 4 is used by a client node to compute SWETS once it has re-
ceived information from all other nodes in the system (line 2 in Algorithm 1). It
performs two basic functions, first, it computes a system wide order on threads
by computing their global Potential Utility Density (PUD). It then attempts to
insert the remaining sections of each thread, in non-increasing order of global
PUD, into the scheduling queues of all nodes in the system. After the insertion
of each thread, the schedule is checked for feasibility. If it is not feasible, then
the thread is removed from SWETS (after scheduling the appropriate exception
handler if necessary).

First we need to define the global PUD of a thread. Assume that a thread, Ti,
has k sections denoted {Si

1, S
i
2, · · · , Si

k}. We define the global remaining execu-
tion time, GEi, of the thread to be the sum of the remaining execution times of
each of the thread’s sections. Let {REi

1, REi
2, · · · , REi

k} be the set of remaining
execution times of Ti’s sections, then GEi =

∑k
j=1 REi

j . Assuming that we are
using step-down TUFs, and Ti’s TUF is Ui(t), then its global PUD can be com-
puted as Ti.PUD = Ui(tcurr + GEi)/GEi, where U is the utility of the thread
and tcurr is the current time. Using global PUD, we can establish a system wide



order on the threads in non-increasing order of “return on investment”. This
allows us to consider the threads for scheduling in an order that is designed to
maximize accrued utility [12].

We now turn our attention to the method used to check schedule feasibil-
ity. For a schedule to be feasible, all the sections it contains should complete
their execution before their assigned termination time. Since we are considering
threads with end-to-end termination times, the termination time of each section
needs to be derived from its thread’s end-to-end termination time. This deriva-
tion should ensure that if all the section termination times are met, then the
end-to-end termination time of the thread will also be met.

For the last section in a thread, we derive its termination time as simply the
termination time of the entire thread. The termination time of the other sections
is the latest start time of the section’s successor minus the communication delay.
Thus the section termination times of a thread Ti, with k sections, is:

Si
j .tt =

{
Ti.tt j = k
Si

j+1.tt− Si
j+1.ex− T 1 ≤ j ≤ k − 1

where Si
j .tt denotes section Si

j ’s termination time, Ti.tt denotes Ti’s termination
time, and Si

j .ex denotes the estimated execution time of section Si
j . The commu-

nication delay, which we denote by T above, is a random variable ∆. Therefore,
the value of T can only be determined probabilistically. This implies that if each
section meets the termination times computed above, the whole thread will meet
its termination time with a certain, high, probability (see Lemma 6 in [7]).

In addition, each section’s handler has a relative termination time, Sh
j .X.

However, a handler’s absolute termination time is relative to the time it is
released, more specifically, the absolute termination time of a handler is equal
to the sum of the relative termination time of the handler and the failure time
tf (which cannot be known a priori). In order to overcome this problem, we
delay the execution of the handler as much as possible, thus leaving room for
more important threads. We compute the handler termination times as follows:

Sh
j .tt =

{
Si

k.tt + Sh
j .X + TD + ta j = k

Sh
j+1.tt + Sh

j .X + T 1 ≤ j ≤ k − 1
where Sh

j .tt denotes section handler Sh
j ’s termination time, Sh

j .X denotes the
relative termination time of section handler Sh

j , Si
k.tt is the termination time of

thread i’s last section, ta is a correction factor corresponding to the execution
time of the scheduling algorithm, and TD is the time needed to detect a failure by
our QoS FD [5]. From this termination time decomposition, we compute latest
start times for each handler: Sh

j .st = Sh
j .tt − Sh

j .ex for 1 ≤ j ≤ k, where Sh
j .ex

denotes the estimated execution time of section handler Sh
j . In Algorithm 4,

each node, j, sends the node running QBUA its current local schedule σp
j . Using

these schedules, the node can determine the set of threads, Γ , that are currently
in the system. Both these variables are inputs to the scheduling algorithm (lines
1 and 2 in Algorithm 4). In lines 3-6, the algorithm computes the global PUD
of each thread in Γ .

Before we schedule the threads, we need to ensure that the exception handlers
of any thread that has already been accepted into the system can execute to



completion before its termination time. We do this by inserting the handlers of
sections that were part of each node’s previous schedule into that node’s current
schedule (lines 7-9). Since these handlers were part of σp

j , and QBUA always
maintains the feasibility of a schedule as an algorithm invariant, we are sure
that these handlers will execute to completion before their termination times.

In line 10, we sort the threads in the system in non-increasing order of PUD
and consider them for scheduling in that order (lines 11-21). In lines 13-14 we
mark as failed any thread that has a section hosted on a node that does not
participate in the algorithm. If the thread can contribute non-zero utility to the
system and the thread has not been rejected from the system, then we insert its
sections into the scheduling queue of the node responsible for them (line 17).

Algorithm 4: ConstructSchedule

input: Γ ; //Set of threads in the system1:
input: σp

j , Hj ← nil; //σp
j : Previous schedule of node j, Hj : set of handlers scheduled2:

for each Ti ∈ Γ do3:
if for some section Si

j belonging to Ti, tcurr + Si
j .ex > Si

j .tt then4:
Ti.PUD ← 0;5:

else Ti.PUD ← Ui(tcurr+GEi)
GEi

;6:

for each task el ∈ σp
j do7:

if el is an exception handler for section Si
j then Insert(el, Hj , el.tt);8:

σj ← Hj ;9:
σtemp ← sortByPUD(Γ );10:
for each Ti ∈ σtemp do11:

Ti.stop ←false;12:

if did not receive σj from node hosting one of Ti’s sections Si
j then13:

Ti.stop ←true;14:

for each remaining section, Si
j , belonging to Ti do15:

if Ti.PUD > 0 and Ti.stop 6=true then16:
Insert(Si

j , σj , Si
j .tt);17:

if Sh
j /∈ σp

j then Insert(Sh
j , σj , Sh

j .tt);18:

if isFeasible(σj)=false then19:
Ti.stop ←true;20:

Remove(Si
k, σk, Si

k.tt) for 1 ≤ k ≤ j;21:

if Si
j /∈ σp

j then Remove(Sh
j , σj , Sh

j .tt);22:

for each j ∈ N do23:
if σj 6= σp

j then Mark node j as being affected by current scheduling event;24:

After inserting the section into its corresponding ready queue (at a position
reflecting its termination time), we check to see whether this section’s handler
had been included in the previous schedule of the node. If so, we do not insert
the handler into the schedule since this has been already taken care of by lines
7-8. Otherwise, the handler is inserted into its corresponding ready queue (line
18). Once the section, and its handler, have been inserted into the ready queue,
we check the feasibility of the schedule (line 19). If the schedule is infeasible, we
remove the thread’s sections from the schedule (line 21). However, we first check
to see whether the section’s handler was part of a previous schedule before we
remove it (line 22). We perform this check before removing the handler because
if the handler was part of a previous schedule, then its section has failed and we
should keep its exception handler for clean up purposes. Finally, if the schedule



of any node has changed, these nodes are marked to have been affected by the
current instance of QBUA (lines 23-24). It is to these nodes that the current
node needs to multicast the changes that have occurred (line 4, Algorithm 1).
In order to test the feasibility of a schedule, we need to check if all the sections
in the schedule can complete before their derived termination times.

The full algorithm is depicted in Algorithm 6 in [7]. QBUA’s dispatcher is
shown in Algorithm 7 in [7]. Only two scheduling events result in collaborative
scheduling, viz: the arrival of a thread into the system, and the failure of a node,
all other scheduling events are handled locally. Since we are talking about a
partially synchronous system, the FD we use to detect node failures can make
mistakes. Thus, QBUA may be started due to an erroneous detection of fail-
ure. The this can be reduced by designing a QoS FD [5] with appropriate QoS
parameters.

5 Algorithm Properties

We establish several properties of QBUA. Due to space limitations, some of the
properties and all of the proofs are omitted here, and can be found in [7]. Below,
T is the communication delay, and Γ is the set of threads in the system.

Lemma 1. A node determines whether or not it needs to run an instance of
QBUA at most 4T time units after it detects a distributed scheduling event, with
high, computable probability, Plock.

Lemma 2. Once a node is granted permission to run an instance of QBUA, it
takes O(T + N + |Γ | log(|Γ |)) time units to compute a new schedule, with high,
computable, probability, PSWETS.

Theorem 3. A distributed scheduling event is handled at most O(T + N +
|Γ | log(|Γ |) + TD) time units after it occurs, with high, computable, probability,
Phand.

Lemma 4. The worst case message complexity of the algorithm is O(n + N).

Theorem 5. If all nodes are underloaded, no nodes fail (i.e. f = 0) and each
thread can be delayed O(T +N + |Γ | log(|Γ |)) time units once and still be schedu-
lable, QBUA meets all the thread termination times yielding optimal total utility
with high, computable, probability, Palg.

Theorem 6. If N − f nodes do not crash, are underloaded, and all incoming
threads can be delayed O(T + N + |Γ | log(|Γ |)) and still be schedulable, then
QBUA meets the execution time of all threads in its eligible execution thread set,
Γ , with high computable probability, Palg.

Lemma 7. QBUA has a quorum threshold, m, (see Algorithm 2) of d 2n
3 e and

can tolerate fs = n
3 faulty servers.

Theorem 8. QBUA has a better best-effort property than HUA and CUA and
a similar best-effort property to ACUA.



Theorem 9. QBUA has lower overhead than ACUA and its overhead scales
better with the number of node failures.

Theorem 10. QBUA limits thrashing by reducing the number of instances of
QBUA spawned by concurrent distributed scheduling event.

6 Experimental Results

We performed a series of simulation experiments on ns-2 to compare the perfor-
mance of QBUA to ACUA, CUA and HUA in terms of Accrued Utility Ratio
(AUR) and Termination-time Meet Ratio (TMR). We define AUR as the ratio
of the accrued utility (the sum of Ui for all completed threads) to the utility
available (the sum of Ui for all available jobs) and TMR as the ratio of the num-
ber of threads that meet their termination time to the total number of threads
in the system. We considered threads with three segments. Each thread starts
at its origin node with its first segment. The second segment is a result of a re-
mote invocation to some node in the system, and the third segment occurs when
the thread returns to its origin node to complete its execution. The periods of
these threads are fixed, and we vary their execution times to obtain a range
of utilization ranging from 0 to 200%. For fair comparison, all algorithms were
simulated using a synchronous system model, where communication delay var-
ied according to an exponential distribution with mean and standard deviation
0.02 seconds but could not exceed an upper bound of 0.5 seconds. Our system
consisted of fifty client nodes and five servers. In our experiments, the utilization
of the system is considered the maximum utilization experienced by any node.

QBUA is a collaborative scheduling algorithm, as such, its strength lies in its
ability to give priority to threads that will result in the most system-wide accrued
utility even if the sections of those threads do not maximize local utility on the
nodes they are hosted. The thread set that highlights this property contains
threads that would be given low priority if local scheduling is performed but
should be assigned high priority due to the system-wide utility they accrue.
Therefore, we chose a thread set that contains high utility threads that have
one section with above average execution time (resulting in low PUD for that
section) and other sections with below average execution times (resulting in high
PUD for those sections). Such thread sets test the ability of the algorithm to take
advantage of collaboration to avoid making locally optimal decisions that would
compromise global optimality. We also conducted experiments under a broad
range of thread sets. Those results are omitted here due to space constraints;
they can be found in [7] and they all exhibit the same trend.

As Figures 1 and 2 show, the performance of QBUA during underloads, in
the absence of failure, is similar to that of other algorithms. However, during
overloads, QBUA begins to outperform other algorithms due to its better best
effort property. During overloads, QBUA accrues, on average, 17% more utility
that CUA, 14% more utility than HUA and 8% more utility than ACUA. The
maximum difference between the performance of QBUA and other algorithms in
our experiment was the 22% difference between ABUA’s and CUA’s AUR at the



1.88 system load point. Throughout our experiment, the performance of ACUA
was the closest to QBUA with the difference in performance between these two
algorithms getting more pronounced as system load increases (the largest differ-
ence in performance is 11.7% and occurs at about 2.0 system load). The reason
for this is that QBUA has a similar best-effort property to ACUA (see Theo-
rem 8). In addition, the difference between these two algorithms becomes more
pronounced as system load increases because the scheduling overhead becomes
more apparent at high system loads, allowing QBUA, with its lower overhead,
to scale better with system load. Also, QBUA does not accrue 100% utility dur-
ing all cases of underload; as the load approaches 1.0 some deadlines are missed
because the overhead of QBUA becomes more significant at this point. This is
also true for other collaborative scheduling algorithms such as CUA and ACUA,
and, to a lesser extent, for non-collaborative scheduling algorithms such as HUA.
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Figures 3 and 4 show the effect of failures on QBUA. In these experiments we
programmatically fail fmax = 0.2N nodes — i.e., we fail 20% of the client nodes.
From Figure 3, we see that failures do not degrade the performance of QBUA
compared to other scheduling algorithms — i.e., the relationship between the
utility accrued by QBUA to the utility accrued by other scheduling algorithms
remains relatively the same in the presence of failures. However, QBUA accrues,
on average, 18.5% more utility than CUA, 13.6% more utility than HUA and
9.9% more utility than ACUA. Both ACUA and CUA suffer a further loss in
performance relative to QBUA in the presence of failures because their time
complexity is a function of the number of node failures, therefore they have
higher overheads in the presence of failures. In Figure 4 we compare the behavior
of QBUA in the presence of failure to its behavior in the absence of failure.

As can be seen, QBUA’s performance suffers a degradation in the presence of
failures. This degradation is most pronounced during underloads, and becomes
less pronounced as the system load is increased. This occurs because, during
underloads all threads are feasible and therefore the failure of a node deprives
the system of the utility of all the threads that have a section hosted on that
node. However, during overloads, not all sections hosted by a node are feasible,
thus the failure of that node only deprives the system of the utility of the feasible
threads that have a section hosted by that node. Thus the loss of utility during
overloads is less than during underloads.



7 Conclusions

We presented a collaborative scheduling algorithm for distributed real-time sys-
tems, QBUA. We showed that QBUA has better best-effort properties and mes-
sage and time complexities than previous distributed scheduling algorithms. We
validated our theoretical results using ns-2 simulations. The experiments show
that QBUA outperforms other algorithms most during overloads in the presence
of failure, due to its better best-effort property and its failure invariant overhead.
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