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Abstract

We consider efficient real-time communication mechanisms for applications in unreliable

and partitionable networks, where network partitions can occur unpredictably and nodes can

join and leave arbitrarily. Utilizing quorum systems, we present a quorum-based protocol called

SOQ to let nodes update and query service information to a selected set of servers (a quorum).

Due to the intersection property of quorums, nodes can obtain latest updated information

by simply accessing a quorum. To make the protocol adaptive to network partitions, we

propose update/query triggering mechanisms to determine when nodes trigger updates/queries.

A quorum access strategy for nodes to judiciously select a quorum to access is designed

so that the probability that a query returns the latest service information is maximized.

We give in-depth analysis of the protocol, including the communication overhead, load and

availability relationship of quorum systems and timeliness analysis of distributed applications.

Our experimental studies show that SOQ is resilient to network partitions without incurring

large communication overhead. By carefully choosing the size of the quorum system, the

distributed application can be executed more quickly and the load of quorum system can be

reduced.

I. Introduction

Designing efficient real-time communication mechanisms in unreliable networks, e.g. mobile

ad-hoc networks (MANETs) is very challenging. Due to the mobility and dynamic characteristics

of such networks, existing real-time communication solutions under fixed infrastructure-based

networks cannot provide satisfying performance. The desired mechanism needs to provide end-

to-end timing assurance for distributed real-time applications in such networks.

One of the unique challenges in these networks is partitioning, which is the breakdown of

a connected network topology into two or more separate, unconnected topologies. In fixed



infrastructure-based networks, the occurrence of network partition is highly unlikely and only

possible if big parts of the infrastructure fail simultaneously.

One of the application of distributed real-time applications in MANETs is distributed mobile

games. [20] Such games are often played by people at arbitrary times (e.g., while waiting for

a bus or at a subway station) and by players who form groups dynamically and in an ad hoc

manner. At any time, a player may invoke a real-time application on his or her node (e.g., a

laptop; a PDA) and call for a service that may reside on another player’s (and often multiple

players’) node. For example, during an online mobile chess game, a player may invoke a request

to start a new game with another player in the network. Any player which is not engaged in

a game at the same time can provide this service. In this scenario, often significant number

of players may move, and thereby potentially partition the network. Thus, a robust real-time

communication mechanism would be beneficial which allows two or more separate games to be

established without having to restart a game.

Our design of real-time communication protocol for distributed applications is based on the

concept of a quorum system, which is a family of subsets that always intersect. For example,

consider a network of N nodes. We select n nodes (n ¿ N) from the network as servers. The

remaining nodes are ordinary nodes or clients. A quorum system is formed by the selected

servers. Each update by a client is sent to a subset of servers (a quorum). Similarly, each query

is also sent to a quorum. In the context of the mobile chess game example, when a client has

just finished a game, it sends an update to a quorum: ”I’m available to take part in a new

chess game”. The corresponding servers will keep the record until the next update. Thus, when

a client invokes a request to start a new game with another player, it will send the query to a

quorum to discover the available service provider. Due to the intersection property of quorum

systems, there is high probability that at least one server will keep the latest information of

the previous node. Thus, the appropriate service provider can be discovered. The challenge,

however, is to design efficient update/query mechanism as well as quorum access strategy so

that the probability of a hit (a query returning the latest record of a node) is maximized even

when the network is partitioned.

SOQ performs efficiently both when the network is connected and when it is partitioned.

Successive updates/queries by a node need not be sent to the same subset of servers. This

strategy can efficiently balance the load on the servers. On the other hand, because the set of

reachable servers changes with time, a node has to determine the reachable subset of servers

before each update/query based on its recent information about server reachability.



We make the following major contributions in this paper:

(1) We design a service-oriented quorum-based protocol: SOQ for resilient real-time commu-

nication of distributed applications in partitionable network;

(2) We design an efficient update/query triggering policy and quorum access strategy for

SOQ to improve the performance of the protocol;

(3) We analyze the protocol from various aspects including its communication overhead,

load and availability relationship of quorum systems and timeliness analysis for distributed

applications. The bound of the load of quorum incurred by SOQ is determined by partial

quorum availability. The expected delay for a distributed application is determined by the

quorum placement and access strategy; and

(4) We present experimental studies to evaluate the proposed protocol.When the probability

of network partition is large enough, the query accuracy and hit probability drops significantly;

the load of the quorum system arises dramatically; We can choose the size of quorum systems

to improve the query accuracy and hit probability and reduces the load of quorum systems.

The rest of the paper is organized as follows: In Section II, we discuss the related work. In

Section III we introduce the quorum system preliminaries. We present the system model in

Section IV. The protocol is described in Section V. We analyze the protocol in Section VI. In

Section VII we present our experimental studies. The paper concludes in Section VIII.

II. Related Work

Quorum system is a basic tool for reliable agreement in distributed systems [16], [18]. Re-

searchers have also designed quorum systems in a dynamic environment, e.g. [1], [6], [11].

To apply quorum systems in partitioned networks, Herlihy [9] presented dynamic quorum

adjustment method for partitioned data. This method permitted an object’s quorum to be

adjusted dynamically in response to failures and recoveries. A transaction that is unable to

progress using one set of quorums may switch to another, more favorable set, and transac-

tions in different partitions may progress using different sets. Karumanchi et al. [13] proposed

strategies that use local knowledge about the reachablility to judiciously select quorums in

partitionable mobile ad hoc networks. They designed an update/query protocol to let nodes

update their locations when needed. Epidemic quorums [3], [10] have also been applied for

managing replicated data, which enables highly available agreement even when a quorum is not

simultaneously connected. However, Barreto et al. [3] showed that Epidemic quorum systems

may not always be advantageous over classical quorum systems in partitioned networks.



Quorum system is widely used in ad hoc networks. One of the most popular applications is

implementing location service. In the work of Haas and Liang [6], a uniform random quorum

system is used for mobility management. Nodes form a virtual backbone. When a node moves, it

updates its location with one quorum containing the nearest backbone node. Each source node

then queries the quorum containing its nearest backbone for the location of the destination.

Luo et al. [15] present a Probabilistic quorum system for ad hoc networks (Pan), a collection

of protocols for the reliable storage of data in mobile ad hoc networks. A gossip-based protocol

is designed for quorum access and an asymmetric quorum construction is applied. These work

has noticed the highly dynamic and unpredictable topology changes in ad hoc networks. Our

work differs from them for that we focus on quorum-based protocol in network partitions.

To the best of our knowledge, our work is the first one to apply quorum systems for distributed

real-time applications. Han et al. [7] [8] present gossip-baseds protocol to counter network

failures and message losses. In this work, the possibility of network partitions is “coarsely”

handled by lumping the probability of message losses (due to partitions, among other things)

in one of the input variables of their analysis. Our work is based on our past work [21], where

we designed a quorum-based gossip protocol based on [7]. In [21], we applied quorums to limit

the range of each gossip round and thereby reduce the message overhead, resulting in improved

timeliness behavior of distributed tasks. Based on this work, in this paper, we design a quorum

based update/query protocol which is adaptive to network partitions and do not need to gossip

the query in the network. In this way, the message overhead is highly reduced and application

timeliness behavior is further improved.

III. Quorum Preliminaries

Given a universe U of elements, a quorum system Q = {Q1, ..., Qm} on U is a family of

subsets of U such that any two quorums Qi and Qj have a non-empty intersection [2]. Quorum

systems are widely used in distributed systems for achieving mutual exclusion, consistent data

replication, and dissemination of information. In typical quorum-based algorithms, each client

accesses the system by accessing all the elements in some quorum Qi belonging to Q. The

intersection property ensures that any Qi would suffice to operate on behalf of the system.

Usually, the client chooses Qi from a probability distribution p : Q → [0, 1] over Q; this p is

called the access strategy for the quorum system. The access strategy is typically chosen based

on two concerns: the load and availability of the quorum system.

Definition 1: Given a quorum system Q on U , the load on u ∈ U of access strategy p is

ΣQi3up(Qi). The load of the quorum system is the load of the most heavily loaded element



u ∈ U : LQ = maxu∈U ΣQi3up(Qi).

Definition 2: Given a quorum system Q on U and a client vi, the availability of the quorum

system is defined as the ratio of the number of quorums reachable from vi to the total number

of quorums.

Since the accesses of one quorum by clients (which are themselves nodes in the network)

have to be implemented by messages sent along the network, the performance of quorum-based

systems now crucially depends on the delays introduced by these accesses [5]. In fact, we would

like the logical quorums Qi ∈ Q to be mapped to closely clustered physical nodes in the network

so that we do not incur large delays in trying to reach far-flung parts of the network.

We introduce the concept of Grid quorum systems for our discussion, which is defined as

follows:

Definition 3: On a universe U of k2 elements, a Grid quorum system is composed of k2

elements laid out on a k by k square grid M , and each quorum Q from Q is formed by taking

all the elements from some row and some column of M . Hence each quorum has 2k−1 elements,

and there are k2 quorums in Q.

The uniform access strategy yields the optimal load for the Grid. For a Grid quorum system

of n elements, this strategy will lead to the optimal load of O( 1√
n
). [17]

IV. Models

A. Application Model

We model a distributed application as T = {t1, t2, ...tn}, where ti is called an activity. An

activity is composed of a sequence of sections, i.e., ti = [si
1, s

i
2, ...s

i
m]. Sections of an activity

must be executed sequentially, i.e., si
1 ≺ si

2 ≺ ... ≺ si
m. A section constitutes the portion of

the service’s execution on a node. It is invoked on a service requestor, and finished on a service

provider. An activity’s most recent section — the activity’s current execution locus — is called

the activity’s head, and the node hosting the head is called the activity’s head node. The head

of a activity is the only section that is active.

When a section is created on its service requestor, it does not know the identity of its service

provider. Hence, the service requestor needs to discover the service provider which provides the

proper requested service in the network. Such a section involves three steps: (1) service requestor

queries; (2) service provider relies; and (3) service executions. The sequence is repeated in a

particular order and a set of such sequences running in the network concurrently forms an

application.



For example, in our previous mobile chess game scenario, a chess game held between two

players is an activity. A set of such concurrent activities, i.e., a chess game tournament, forms

a distributed online application.

B. Network Model

We assume a network of N nodes. A set of servers are selected from the network and a quorum

system Q = {Q1, ..., Qm} is constructed. The sets Qi are constructed a priori and every node

knows the membership of these sets by broadcast the request at the start of the protocol. Given

n servers, it is possible to form quorums of size O(
√

n).

A basic unicast routing protocol such as DSR [12] is assumed to be available for packet trans-

mission between nodes. MAC-layer packet scheduling is assumed to be done by a CSMA/CA-like

protocol (e.g., IEEE 802.11). We assume that node clocks are synchronized using an algorithm

such as [19].

We assume that nodes may fail by crashing, links may fail transiently or permanently, and

messages may be lost. Network partitions can occur, which is the breakdown of the connected

network topology into two or more separate, unconnected topologies. When the network is

partitioned, nodes in different partitions cannot communicate with each other.

V. SOQ: Service-Oriented Quorum-Based Protocol

A. Basic Protocol

The basic protocol of SOQ consists of three parts: service information update, service in-

formation query, and section execution. For each section of an activity, the service requestor

discovers the appropriate service provider based on service update/query protocol. We design

update/query protocol for service information update and query, and section execution protocol

for service executed on the service provider.

Service Information Update: When a node vi wishes to update its service information, it

timestamps the datum with its clock value. The format of the datum is < ID(i), addr(i), service(i),

timestamp(i) >. The ID field is unique for each node, e.g., the MAC address, which is used

to identify the node and doesn’t change. The addr field contains the network address the node

designated from the network. When the network partitions or merges with other networks,

the network address of the node may change. The service field represents the current available

service that the node provides. For example, an idle client in the mobile chess game may provide

“join a new game” service. The service field may change depending on the status of the client.



When an update is triggered on a node, it selects a quorum Qi from the set of quorums

and sends an UPDATE message, timestamped with its local clock value, to all servers in the

quorum. The servers, on receiving the UPDATE message, overwrite their old copy of the data

item with the new copy. If they do not have an old copy of that data item, they simply add

the information received in the message to their database.

Let an UPDATE message be first sent to quorum Qi. Later, let another UPDATE, for the

same data item, be sent to quorum Qj . Then, all servers in the set Qi − Qj have outdated

versions of the data item, while all servers in Qj have the latest version of the data item.

Service Information Query: When a query is triggered on a node, it selects a quorum Qj

and sends a QUERY message to all servers in the quorum. When a server receives a QUERY

for a specific service and has a copy of it, the server sends a REPLY containing the information

along with the timestamp associated with the datum. Otherwise, the server sends a NULL reply.

By receiving all the REPLY messages, the service requestor selects the value of the datum with

the greatest timestamp.

As two quorums always intersect in the fixed network, the set of queried servers is bounded

to contain at least one server that belonged to the quorum that received the latest update.

Hence, each query returns the latest value of the queried data item.

Section Execution: When the current service requestor selects the data, it extracts the

addr field of the data and sends that node the request to execute the service. The requested

node, upon receiving the request, will check whether it can execute the requested service. If so, it

executes it and sends back the acknowledgement. If not, it also sends back the acknowledgement

that it cannot provide the requested service. The service requestor will trigger the service

information query again to discover the service provider. The section is successfully executed

until the requested service is executed on the service provider.

B. Update/Query Triggering Mechanism

In unreliable and partitionable networks, we design appropriate update/query triggering

mechanisms for SOQ so as to mitigate the impact of network partitions.

Update Triggering: The aim for nodes updating service information is to propagate the

information such that other nodes, on querying for information, obtain as recent a version as

possible. We propose following three policies to trigger updates:

(1) The service type provided by the node has changed since the last update;

(2) The network address of the node has changed since the last update; and



(3) A certain number of links incident on it have been established or broken since the last

update

The first policy is very straight-forward. The service information must be updated whenever

it changes. For the second strategy, when the network partitions, the network address of the

client may change. Thus, an update is triggered to send the server its new network address

so that it can be communicated with other nodes. The last update policy is motivated by the

observation that in ad-hoc networks, the frequency of updates should reflect the dynamism

exhibited by the network. It is an attempt to capture the relative change in topology.

Query Triggering: The queries will only be sent by service requestors. We propose following

three policies to trigger queries:

(1) A section is invoked on a service requestor;

(2) No available service update information received since the last query; and

(3) The selected service provider cannot be reached, or doesn’t provide the service any more.

When a section of an activity is invoked, a query is triggered to discover the proper service

provider. When there is no service information matched in the servers that it queries, there are

two possibilities: (1) There is no node providing the requested service in the service requestor’s

network partition; or (2) The proper service provider exists, but the queried servers do not have

the latest information for some reason. The second phenomenon seems to contradict the quorum

intersection property. However, it is quite possible in partitioned networks. For example, let the

node update its service to Qi, and a service requestor sends the query to Qj . Hence, the updated

information will be saved on Qi ∩Qj . If those servers belong to another network partition, the

service requestor will not get the correct information. Thus, the second policy is applied to

trigger a query again.

The third policy is applied in the worst case: the selected service provider cannot be reached or

does not provide the service. This is because the service provider is selected by stale information.

The selected node is either located in another network partition, or cannot provide the requested

service. Thus, the service requestor has to trigger a query again.

C. Quorum Access Strategy

From the previous discussion, we observe that in a partitionable network, not all the servers

in the selected quorum are reachable from the node that sends the update or query. Thus, it

is crucial to design an efficient quorum access strategy to maximize the probability of a hit —

i.e., a query returning the latest information about a node.



Let node vi select quorum Qi to update the service information. If some elements of Qi are

in a different partition from vi at the time of the update, they will not receive the update. We

denote the set of servers which receive the update as Q
′
i. Subsequently, let another node vj select

a quorum Qj to query the service information, and we denote the set of servers which receive

the query as Q
′
j . Thus, there is a possibility that the query may not return any information, or

return stale information.

To alleviate this problem, we need to select quorums to maximize the hit probability. The

idea is to select quorums so that the sets Qi − Q
′
i and Qj − Q

′
j are as small as possible. The

smaller these sets, the greater the probability of the set of reachable queried servers intersecting

with the set that received the latest update.

We use the concept of disqualified list from [13] to select servers for updates and queries.

Node vi maintains a disqualified list, DQLi, containing servers that vi believes are unreachable.

The node selects servers for updates/queries on the basis of DQLi’s composition.

Initially, DQLi is empty. We propose the following steps for updates and queries based on

the disqualified list:

(1) Node vi first eliminates all quorums that have at least one node in DQLi;

(2) If there are quorums remaining, one of them is randomly selected and messages are sent to

servers in this quorum;

(3) If all quorums have at least one node in DQLi, then quorums having the smallest number

of elements in DQLi are located. One of them is randomly selected and messages are sent

to servers in this quorum;

(4) If at least one server sends an acknowledgement in the case of an update, or a non-NULL

time-stamped value in the case of a query, the operation is said to succeed; and

(5) If a reply is not received from a server within Ttimeout, node vi concludes that this server

is not reachable and adds it to the DQLi. Usually we set Ttimeout = Ω(E[δ(vi, vj)]), where

δ(vi, vj) is the round-trip time between nodes in the network. Once a server has been added

to DQLi, it stays in it for a disqualified duration, δDQL. At the end of δDQL, the server is

removed from DQLi. The value of δDQL can be adjusted to keep balance between updating

disqualified list in time and reasonable communication overhead.

VI. Protocol Analysis

A. Communication Overhead

Given n servers, there exists quorum formation schemes that give quorums of size O(
√

n).

Even if an update and query requires a constant number of retries before success, the commu-



nication complexity is O(
√

n). Note that n is usually much smaller than the total number of

nodes N . Thus, we believe that the communication overhead is reasonable.

B. Relationship between Quorum Load and Availability

The load of the servers in the quorum system describes the probability that a server is selected

in the given access strategy. The load of the most heavily loaded element evaluates the access

strategy. When the quorum system is fully available, i.e., no partition exists in the quorum

system, SOQ quorum access strategy transforms to uniform access strategy and the load of all

elements is O( 1√
n
). When the quorum system partitions, the load of the servers will increase

due to the decreased availability of quorums. The following examples reveal the relationship

between load and availability of Grid quorum system operates on SOQ protocol.

Fig. 1. Server placement in 4× 4 Grid quorum system with least quorum availability

An example of worst case of quorum availability of 4 × 4 Grid quorum system is shown in

Figure 1. Elements marked by “P” represent servers in other network partitions at the time

the node selects quorums to send update/query. Shaded elements represent the set of servers

nodes can select to access according to our quorum access strategy. In the quorum system with

ε such servers, Figure 1 illustrates the placement of these servers in the Grid quorum system

which results in least quorum availability. In this scenario,
√

n servers in other partitions are

adequate to make each quorum contain one element in other network partitions, and nodes in

this network partition cannot find a quorum from which it can access all its elements. According

to SOQ quorum access strategy, clients will randomly choose a quorum to access. Specifically,

for a Grid quorum system of n servers, if we use ε to denote the number of servers in the

disqualified list of the service provider, We have following lemmas:

Lemma 1: The number of elements in other network partitions and the size of the quorum

system determine the lower bound of the availability of Grid quorum systems.

Proof: In the worst case, when ε ≤ √
n− 1, if we use AQ to denote the availability of Grid



quorum system Q, we have:

AQ =
No. of available quorums

Total No. of quorums
=

(
√

n− ε)2

n
(1)

When ε ≥ √
n,

AQ = 0 (2)

Hence, in a quorum system where ε servers belong to other network partitions, the lower

bound of quorum availability is provided by Equations 1 and 2.

Based on the quorum access strategy of SOQ, the load incurred by this server placement is:

LQ =
2(
√

n− ε
′
)− 1

(
√

n− ε′)2
, ε

′
= ε mod

√
n (3)

This server placement, however, does not incur the heaviest load among all possible situations.

In fact, when ε = i
√

n, i = 0, 1, 2..., each quorum under this placement contains i unreachable

servers. In this case, the quorum access strategy becomes the uniform access strategy.

Fig. 2. Server placement in 4× 4 Grid quorum system with heaviest quorum load

On the other hand, the placement incurring the heaviest load does not necessarily imply

the worst quorum availability, as shown in Figure 2. Even if there is always at least 1 quorum

available, the load of the quorum will increase to 1 when the number of unreachable servers

increases. In this scenario, at least
√

n − 1 unreachable servers incur the heaviest load of the

quorum system.

Lemma 2: The number of elements in other network partitions and the size of the quorum

system determine the upper bound of the load of Grid quorum systems with access strategy of

SOQ.

Proof: Based on the quorum access strategy of SOQ, when ε ≤ √
n− 1, we have:

LQ =
2(
√

n− ε)− 1
(
√

n− ε)2
(4)

When ε ≥ √
n− 1,

LQ = 1. (5)



Hence, in a quorum system where ε servers belong to other network partitions, the upper

bound of the load of the quorum system is provided by Equations 4 and 5.

When ε ≤ √
n−1, the availability of this placement is the same as that given by Equation 1.

When ε ≥ √
n, we have AQ = 1

n . Similar to the previous case, this placement does not incur the

worst quorum availability. The placement always yields at least one quorum available, which

implies that clients can always find a quorum in which all elements can be accessed.

From these arguments, we note that there exists some relationship between the availability

and the load of the quorum system. We can extend the definition of quorum availability to

partial quorum availability to deduct this relationship:

Definition 4: Partial Quorum Availability: For a quorum system with quorum size k, partial

quorum availability is a vector A = {A0, A1, ..., Ak−1}, where Ai represents the portion of

quorums where k − 1 elements are available.

From this definition, we see that
∑

0≤i≤k−1 Ai = 1.

With this definition, we have the following theorem:

Theorem 3: The lower and upper bounds of the load of the Grid quorum system operating

on SOQ is determined by the partial availability and the size of the quorum system.

Proof: According to SOQ quorum access strategy, the set of quorums with the least number

of unreachable elements is chosen. For Grid quorum systems, we can immediately derive the

relationship between load and partial quorum availability:

LQ =
ai + aj − 1

Ai∗n
(6)

where

i∗ = arg min
Ai=0

i;

aiaj = Ai∗n;

1 ≤ ai, aj ≤
√

n− 1

Note that ai and aj are integer factors of Ai∗n. Thus, the load of the quorum can have several

possibilities based on the knowledge of partial quorum availability. This is because, we only know

the number of reachable quorums, but do not know the configuration of these quorums. For

example, if Ai∗n = 12, we have no idea whether these quorums are formed by 3 columns and 4

rows or 2 columns and 6 rows. Generally speaking, different quorum configurations can result

in different loads.



Although the load of the quorum cannot be determined through the knowledge of quorum

availability, we can lower-bound and upper-bound it based on simple inequalities. Note that ai

and aj are integers. Thus, we have:

d2√aiaje ≤ ai + aj ≤ ai∗ + aj∗

where

ai∗ = max
ai≤√n−1

ai

Note that aiaj = Ai∗n. Hence, the load of the quorum system with the quorum access strategy

is bounded by:
d2√Ai∗n− 1e

Ai∗n
≤ LQ ≤ ai∗ + aj∗ − 1

Ai∗n
(7)

C. Timeliness Analysis

The performance of SOQ protocol depends on how fast the application is executed. Hence,

the expected time needed for section executions significantly affects the global performance. We

have the following theorem:

Theorem 4: The expected delay incurred on each section is bounded by three factors:

(1) The expected delay for a service requestor to access quorums;

(2) The expected number of query attempts for a hit; and

(3) The expected number of queries returning stale information.

Proof: Using Di to denote the delay incurred on service provider vi, we have

Di =
qi∑

j=1

δ(vi, Qj) +
hi∑

k=1

δ(vi, vk) (8)

where δ(vi, Qj) denotes the access delay from node vi to quorum Qj . qi is the number of query

attempts for a hit, and hi is the number of times vi selecting a service provider.

Nodes access a quorum by reaching all its elements:

δ(vi, Qj) = max
u∈Q

δ(vi, u)

Then, the expected delay (under specific quorum access strategy p) for vi to access Q is:

∆(vi) =
∑

Q∈Q
p(Q)δ(vi, Q)

In the best case, the service requestor gets the latest service information by just sending one

query. Thus, the optimal delay of node vi is:

D0
i = δ(vi, Qo) + δ(vi, vo) (9)



Therefore, the penalty delay incurred on the service requestor is:

D1
i =

qi−1∑

j=1

δ(vi, Qj) +
hi−1∑

k=1

δ(vi, vk)

Note that qi − 1 is the number of query attempts before a hit, and hi − 1 is the number of

times that a service requestor selects a service provider based on stale information. So we have

qi ≥ hi.

By the quorum intersection property and the triangle inequality, we have

δ(vi, vk) ≤ ∆(vi) + ∆(vk).

Thus, the delay incurred on service provider vi is bounded by

Di ≤
qi∑

j=1

δ(vi, Qj) + hi∆(vi) +
hi∑

k=1

∆(vk).

Now, taking expectations over quorum access strategy p, we obtain:

E(Di) ≤ E(qi + hi)∆(vi) +
E(hi)∑

k=1

∆(vk). (10)

Hence, E(Di) is bounded by ∆(vi), E(qi) and E(hi).

∆(vi) is determined by the network topology and quorum system placement. When the servers

are selected and the quorum system is determined, it solely depends on the network topology.

E(qi) and E(hi) depend on the specific quorum access strategy. The SOQ quorum access strategy

maximizes the probability of intersection between a query and an update based on the local

knowledge of reachability.

From Equation 10, the expected delay for activity ti is

E(Di) =
∑
sj∈ti

E(Dj).

Hence, the expected delay for an application T is

E(T ) = max
ti∈T

E(Di).

VII. Experimental Studies

In this section, we present results of simulation studies that we conducted to evaluate SOQ.

We conducted simulation experiments to evaluate the accuracy of the query, the hit probability,

and the load of the quorum system.

We considered a network composed of 200 mobile nodes randomly distributed in a round

region with radius of 50 length units. Nodes were allowed to move within this region. Some



nodes were selected as servers to form a Grid quorum system. In our experiments, we varied

the number of servers to form 4× 4, 6× 6, and 8× 8 Grid quorum systems.

We simulated node mobility by setting the duration for which a node stays at a location to

be exponentially distributed with mean 0.5 time units. At the end of this duration, the node

randomly selects another location within the round region that is at most 10 length units away

from its current location.

A wireless link was assumed to be present between a pair of nodes if they are in the wireless

communication range of each other. We varied the different values of wireless range to measure

the impact of network partitions.

Distributed activities were created in this network, with a sequence of sections to be executed

on network nodes. We varied the number of sections of distributed activities to measure how

they affected the performance of SOQ.

Each node in the network is assigned an unique ID which does not change during network

partitioning and merging. Mobile nodes are able to self-configure their IP address due to the lack

of centralized administration in MANETs and by using IP address autoconfiguration protocol

such as [4]. When network partitions or merges, nodes change their IP address when they detect

address conflicts, i.e., two different nodes in the same network partition share one IP address.

When a query is triggered on the service requestor, a specific type of service is queried to be

executed in the network.

We considered 8 types of service, and each type of service is provided by 4 randomly selected

nodes in the network. The duration for which a node provides a service was exponentially

distributed with mean 1 time unit. The update and query messages were sent to servers based

on quorum access strategy of SOQ. If a node discovers that a server is unreachable, the node

places that server in its disqualified list for a period δDQL. This value can be adjusted to

mitigate the tradeoff between the up-to-date maintenance of the disqualified list and reasonable

communication overhead. In our experiments, we set δDQL = 0.25 time units.

The average number of attempts for a successful query with different wireless communication

ranges and different Grid quorum system sizes is shown in Figure 3. The data points were

calculated from 100 successful queries. A successful query returns a non-NULL data containing

the requested service information. When the wireless communication range is equal to 25, 20,

and 15 length units, just 1-2 attempts are only needed for a successful query, regardless of the

applied Grid quorum system. This is because, for these values of wireless communication range,

the probability of network partitioning is relatively low. Even if the network partitions, the
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partitions may get merged quickly. However, the number of attempts increases dramatically

when the wireless communication range equals 10 and 5 time units. For these values, the

probability of network partitioning increases significantly and most of the queries return NULL

data. For three different sizes of Grid quorum systems, when the wireless communication range

is large (e.g., 15, 20, 25), the average number of attempts are almost the same. When the

communication range is small (e.g., 5, 10), 4 × 4 Grid quorum needs more attempts for a

successful query because the probability that no server exists in a network partition increases.

Thus, the Grid quorum system of smaller size suffers more than quorum systems of larger size.

Under the same condition, Figure 4 shows the average number of query attempts for a hit,

calculated from 100 hits. A successful query does not imply a hit due to the existence of

stale information. When all queried servers return stale service information or NULL data,

the querying node will select the stale information with the highest timestamp. In this case,

the query is successful but the selected target is not a proper service provider. In other words,

a “successful” query doesn’t necessarily return “correct” data. Hence, the average number of

attempts for a hit is larger for a successful query, as shown in Figure 4. Similar to Figure 3,

4× 4 Grid quorum system suffers the most from increasing probability of network partitioning

among the three Grid quorum systems.

Figure 5 illustrates the relationship between the success ratio of distributed activities and

different wireless communication ranges. The success ratio of an activity is the probability that

an activity is successfully executed in a designated time period d. In our experiments we set
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Fig. 6. Load of the Grid quorum system

d = 100 time units. Distributed activities are composed of different number of sections. In our

experiments, we set the number of sections from 2 to 6, under 5 different values of wireless

communication range. Success ratio is calculated from 100 tasks with the same parameters.

The figure shows that the task success ratio decreases when the wireless communication range

decreases and the number of sections increases. When network partitioning occurs frequently,

e.g., when the wireless communication range equals 5 or 10 length units, the success ratio drops

dramatically. Generally, the success ratio suffers more from decreasing wireless communication

range than from increasing number of sections.

We measured the load of different sizes of Grid quorum systems. Figure 6 shows this simulation

result. The data point is the mean value of 100 queries. The figure illustrates that a quorum

system of larger size implies a smaller load, which verifies the analytical result. As we expected,

the load of the server increases significantly when the probability of network partitioning

increases. This is because, when network partitioning occurs, less number of servers are available

in one network partition, which increases the probability that a server is selected to access.

We measured the distribution of server load for different wireless communication ranges, as

shown in Figure 7 and Figure 8. The load of each server (identified by its server number) is

measured as the total query message it received in 100 queries. When the wireless communication

range is relatively high (e.g., 20 length units), the distribution is almost the uniform distribution

and all servers share the same load. When the value is low (e.g., 10 time units) and the

network partitions, different servers receive different number of messages and the load is no

longer uniformly distributed across all servers.
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munication range = 20 length units
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VIII. Conclusions and Future work

In this paper, we designed SOQ protocol for real-time communication of distributed ap-

plications in unreliable and partitionable networks. By employing quorum systems, a subset

of the servers suffices to operate on behalf of the quorum system. In this way, the message

complexity for communication is highly reduced. To make the protocol adaptive to dynamic

network environments, we proposed a set of mechanisms to determine the time when nodes

trigger updates and queries. In partitioned networks, it is important to maximize the accuracy

that a query returns the latest information about a node. Based on this concern, we proposed a

quorum access strategy, which makes the best effort to maximize the hit probability based on the

node’s knowledge of reachablity. We analyzed SOQ from three aspects: message overhead, load,

and availability relationship of quorum system and task timeliness analysis. From theoretical

analysis and experimental results, we concluded that:

(1) SOQ is resilient for real-time communications in partitionable network without incurring

large communication overhead.

(2) The load of quorum systems incurred by SOQ is determined by the availability of the

system;

(3) The delay needed for an application execution incurred by SOQ is determined by the

quorum system placement and access strategy;

(4) When the probability of network partition is large enough, the query accuracy and hit

probability drops significantly; the load of the quorum system arises dramatically; and



(5) The larger size of quorum systems improves the query accuracy and hit probability when

network partitions and reduces the load of quorum systems. On the other hand, it will also

increase the communication overhead.

Our work can be extended immediately by relaxing the assumption on the (known) selection

of servers. The set of servers can be selected based on two concerns: (1) The capacity of quorum

access; and (2) The ability to reflect all possible network partitions. The first one is straight-

forward. The second one stems from the fact that, if no server belongs to one network partition,

there would be no updated data for nodes in this partition. Thus, the quorum system should

“witness” any network partition. Such set of elements are called detection set. By using (ε, k)-

detection model, Kleinberg et al. [14] show that there is an (ε, k)-detection set if the size is

bounded by a polynomial in k and ε, independent of the size of the network.

Another assumption that we made is that the quorum placement is known, which represents

the map from elements of quorums to physical nodes in the network. This assumption, however,

can be also relaxed. The quorum placement can be determined to minimize the average delay

for nodes to access quorums. Gupta et al. [5] provide approximation algorithms for the max-

delay and total delay to place quorums in a physical network. However, in dynamic networks,

where network topology changes over time, the quorum placement problem becomes much more

complicated and challenging.
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