
1

RTG-L: Dependably Scheduling Real-Time

Distributable Threads in Large-Scale, Unreliable

Networks

Kai Han?, Binoy Ravindran?, and E. D. Jensen‡

?ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA

{khan05,binoy}@vt.edu

‡The MITRE Corporation

Bedford, MA 01730, USA

jensen@mitre.org

Abstract

We consider scheduling real-time distributable threads in the presence of node/link failures and

message losses in large-scale network systems. We present a distributed scheduling algorithm called

RTG-L. The algorithm uses gossip-based communication for dynamically and dependably discovering

eligible nodes. Traditionally, gossip protocols incur high message overhead. We explain that this

problem is not that serious. We present a gossip-based message propagation protocol with lower

message overhead. In scheduling local thread sections, RTG-L exploits slacks to optimize gossip

time utilization. Thereby, it satisfies end-to-end time constraints with probabilistic assurance. Our

simulation studies verify our analytical results.

I. Introduction

Many applications in distributed real-time systems are naturally structured as sequential execution

flows, within or among objects, asynchronously or concurrently. The distributable thread program-

ming model, which is supported in Sun’s upcoming Distributed Real-Time Specification for Java

(DRTSJ) [1], directly supports such execution flows as its first-class abstraction.

A distributable thread is a single control flow movement with logical distinction(i.e., having a

globally unique identifier), extending and retracting through local and/or remote objects. In the rest

of this paper, we will refer to distributable threads as threads, unless qualified.

A thread carries its execution context as it transits node boundaries, including its scheduling

parameters (e.g., time constraints), identity, and security credentials. The propagated thread con-

text is used by real-time schedulers for resolving node-local resource contentions(e.g., CPU, I/O or

lock contention), and for providing acceptably system-wide timeliness. Thus, threads constitute an

abstraction for real-time scheduling. Figure 1 shows the execution of three threads [2].

2

Object A Object DObject B

DT1

Object C

DT2

DT3

1-Way
Invocation

Fig. 1. Three Distributable Threads

Except for the required execution context, the abstraction imposes no constraints on the presence,

size, or structure of any other data that may be propagated as part of the thread’s flow. Commonly,

input parameters may be propagated with thread invocations, and results may be propagated back

with returns. When movement of data associated with a thread is the principal purpose for a thread,

the abstraction can be viewed as a data flow one as much as, or more than, a control flow one.

Whether an instance of the abstraction is regarded as being an execution flow one or a data flow

one, the invariants are that: the (pertinent portion of the) application is structured as causal linear

sequence of invocations from one object to the next, unwinding back to the initial point; and there

are end-to-end properties that must be maintained, including timeliness, thread fault management,

and thread control (e.g., concurrency, pause/resume, signaling of state changes).

In terms of providing direct support for causal sequential behaviors, threads can be viewed as at

a higher level of abstraction than models such as Publish/Subscribe (P/S) [3]. With P/S, a causal

sequence can also arise—e.g., publication of topic A depends on subscription of topic B; publication of

B, in turn, depends on subscription of topic C, and so on. Enforcing end-to-end properties (timeliness,

integrity) on a causal P/S chain will require similar context-based mechanisms as that of threads.

Thus, the problem of enforcing end-to-end properties on causal chains — programmed using threads

or P/S — is conceptually similar.

We consider threads as the programming and scheduling abstraction in unreliable networks (e.g.,

those without a fixed network infrastructure, including mobile and wireless networks [4]), in the pres-

ence of application- and network-induced uncertainties. The uncertainties include arbitrary thread ar-

rivals, arbitrary node failures, and transient and permanent link failures (causing varying packet drop

rate behaviors). Another distinguishing feature of motivating applications for this model (e.g., [5])

is their relatively long thread execution time magnitudes—e.g., milliseconds to minutes. Despite the

uncertainties, such applications desire strong assurances on end-to-end thread timeliness behavior.

Probabilistic timing assurances are often appropriate.

When a thread encounters a node/link failure, partially executed thread sections may be blocked

3

on nodes that are upstream and downstream of the failure point, waiting for the thread to unwind

back from invocations that are further downstream. Such sections must be notified of the thread

failure, so that they can respond with application-specific exception handling actions—e.g., releasing

handlers for execution that abort the sections, after releasing/rolling-back resources held by them to

safe states (under a termination model). Untimely failure notifications can again be antagonistic to

timeliness optimization—e.g., threads unaffected by a partial failure may become indefinitely blocked

by sections of failed threads.

In this paper, we present an algorithm called Real-Time Gossip with Low Message Overhead (or

RTG-L), which provides assurances on thread time constraint satisfactions in large-scale unreliable

networks. At its core, RTG-L contains a gossip protocol (e.g., see [6] and references therein). The

algorithm uses this communication paradigm for propagating thread scheduling parameters, and for

discovering nodes (hosting thread sections), and node/link failures. Further, the algorithm schedules

thread sections by exploiting thread slack in a way that boosts the time available for gossiping.

Traditionally, gossip protocols incur high message overheads. We explain that this problem is not

that serious. We introduce a new message propagation protocol with low message overhead. Based

on this work, we present RTG-L to schedule threads in unreliable large scale systems. Our simulation

studies verify our analytical results.

Our work builds upon our prior work in [7] that presents the RTG-DS algorithm. Though RTG-L is

also a gossip-based algorithm, it differentiates itself from RTG-DS by redesigning its core component

— a message propagation protocol, in order to achieve fast propagation with less message overhead.

End-to-end real-time scheduling has been studied in the past (e.g., [8]–[11]), but these are mostly

limited to fixed infrastructure networks. End-to-end timing assurances in unreliable networks are

considered in [7], [12], [13], but they do not deal with message overhead problems, which is precisely

what our work does.

The rest of the paper is organized as follows: In Section II, we discuss models and algorithm

objectives. Section III illustrates our gossip-based thread scheduling strategies. We present RTG-L

algorithm in Section IV. In Section VI, we report our simulation studies. We conclude the paper and

identify future work in Section VII.

II. Models and Algorithm Objectives

A. Distributable Thread Abstraction

Distributable threads execute in local and remote objects by location-independent invocations and

returns. A thread begins its execution by invoking an object operation. The object and the operation

are specified when the thread is created. The portion of a thread executing an object operation is

4

called a thread section. Thus, a thread can be viewed as being composed of a concatenation of thread

sections.

A thread’s initial section is called its root and its most recent section is called its head. A thread’s

head is the only section that is active. A thread can also be viewed as being composed of a sequence

of segments, where a segment is a maximal length sequence of contiguous thread sections on a node.

A segment’s first section results from an invocation from another node, and its last section performs

a remote invocation.

Execution time estimates of the sections of a thread are known when the thread arrives at the

respective nodes. The time estimate includes that of the section’s normal code as well as its exception

handler code, and can be violated at run-time (e.g., due to context dependence), causing CPU

overloads at the node.

Each object transited by threads is uniquely hosted by a node. Threads may be created at arbitrary

times at a node. Upon creation, the number of objects (and the object IDs) on which they will make

subsequent invocations are assumed to be known. The ID of the nodes hosting the objects, and the

sequence of the thread invocations are assumed to be unknown at thread creation time, as nodes

may dynamically fail, or join, or leave the network.

The application is thus comprised of a set of threads, denoted T = {T1, T2, T3, . . .}.

B. Timeliness Model and Utility Accrual Scheduling

Each thread’s time constraint is specified using a time/utility function (or TUF) [14]. A TUF

specifies the utility of completing a thread as a function of its completion time. Fig. 2 shows downward

“step” TUFs.

-
Time

6Utility

0

Fig. 2. Step TUFs

A TUF decouples importance and urgency of a thread—i.e., urgency is

measured as a deadline on the X-axis, and importance is denoted by utility

on the Y-axis. This decoupling is a key property of TUFs, as a thread’s

urgency is typically orthogonal to its relative importance—e.g., the most

urgent thread can be the least important, and vice versa; the most urgent

can be the most important, and vice versa.

A thread Ti’s TUF is denoted as Ui (t). Classical deadline is unit-valued—i.e., Ui(t) = {0, 1}, since

importance is not considered. Downward step TUFs generalize classical deadlines where Ui(t) =

{0, {n}}. We focus on downward step TUFs, and denote the maximum, constant utility of a TUF

Ui (), simply as Ui. Each TUF has an initial time Ii, which is the earliest time for which the TUF

is defined, and a termination time Xi, which, for a downward step TUF, is its discontinuity point.

Ui (t) > 0, ∀t ∈ [Ii, Xi] and Ui (t) = 0, ∀t /∈ [Ii, Xi] , ∀i.

5

If a thread has not completed by its termination time, a failure-exception is raised, and excep-

tion handlers are released for aborting all partially executed thread sections (for releasing system

resources). The handlers’ time constraints are also specified using TUFs.

C. System Model

The network consists of a set of nodes, denoted N = {n1, n2, n3, . . .}, communicating through

bidirectional links. A basic unicast routing protocol such as DSR [15] is assumed to be available

for packet transmission between nodes. MAC-layer packet scheduling is assumed to be done by a

CSMA/CA-like protocol (e.g., IEEE 802.11). We assume that node clocks are synchronized using an

algorithm such as [16].

Nodes may dynamically join or leave the network. We assume that the network communication

delay follows some non-negative probability distribution—e.g., the Gamma distribution [17]. Nodes

may fail by crashing, links may fail transiently or permanently, and messages may be lost, all

arbitrarily.

D. Objectives

Our goal is to design an algorithm that can schedule threads with probabilistic termination-time

satisfactions in the presence of message losses and node/link failures —i.e., establish probabilistically

satisfied end-to-end timing assurance for a thread. At the same time, we seek to reduce the message

overhead during the scheduling process as much as possible. Further, we desire to maximize total

thread accrued utility, and minimize the number of aborted threads.

III. Gossip-Based Thread Scheduling

Once a thread completes its execution on a node, referred to as the thread’s current head node,

that node determines the thread’s next head node—i.e., the node on which the thread will make its

next remote invocation, or return to, from its current invocation—to continue thread execution.

Since the next head node may crash, or may be unreachable, or may depart from the network,

the current head node must dynamically discover the next head node, and determine whether or not

the next head node can feasibly execute the thread section. This discovery is done using a gossip-

style protocol, where the current head node randomly selects a set of peer nodes and multicasts the

thread’s identity and scheduling parameters, for a finite number of synchronous gossip rounds. Upon

receiving the gossip message, a peer node repeats the gossip process, if it is not the next head node.

If it is the next head node, the node determines the feasibility of executing the next thread section

and replies back to the current head node with the result.

6

The current head node waits for a decision from its successor head node, but adds a deadline on this

waiting time interval. If it does not receive a decision within that deadline, it will consider the next

head node as crashed or unreachable. The current head node will immediately release the exception

handler of the thread section for aborting the section, and will inform all previous thread head nodes

regarding the thread abortion through a gossip process (so that they can release handlers).

The key aspect in determining the next head node in large unreliable networks, is to realize reliable

and real-time (gossip) message propagation. As the network size increases, frequently keeping track

of routes or link states will be less possible, and message losses will occur frequently and arbitrarily

due to the inherent unreliability of the untethered network infrastructure. Since node crash failures

are also assumed to occur arbitrarily, direct node-to-node communication would be inefficient, unless

nodes monitor each other very frequently, which would be too expensive for network communication.

As previously mentioned, gossip-based protocols offer a scalable, robust, fault-tolerant, and proba-

bilistically reliable message propagation design paradigm for large-scale, unreliable systems. In order

to propagate a message in a system, informed nodes simply “gossip” to randomly selected targets,

without requiring any confirmation from those targets regarding message reception.

Gossip-based algorithms incur relatively high message overheads. However, for message propagation

in large-scale, unreliable networks, gossip does have attractive features. First, the random nature of

gossip reduces the (lower-layer) overhead for gathering, storing, and updating massive amounts of

information in a vast network—e.g., nodes update their link state tables less frequently. Second,

gossip reliably spreads information all over the system (with computable probability), which helps

head nodes determine their unknown successors, and propagates successors’ information to potential

users, despite node failures and message losses. Third, gossip is robust against a set of Byzantine

attacks (e.g., blackhole attacks [18]).

IV. The RTG-L Algorithm

In RTG-L, nodes gossip when they need to determine their successor nodes. Also, they gossip when

message loss ratio in the system is high. RTG-L makes nodes directly communicate with each other if

message loss ratio is relatively low. However, the former condition is common in unreliable networks;

thus we focus on gossip-based RTG-L in the paper.

A. Building Local TUF

RTG-L decomposes the thread’s end-to-end TUF based on the execution time estimates of the

thread sections and the thread’s termination time. Let a thread Ti arrive at a node nj at time t. Let

Ti’s total execution time of all the remaining thread sections (including the local section on nj) be

7

Eri, the total remaining slack time be Sri, the number of remaining thread sections (including the

local section on nj) be Nri, and the execution time of the local section be Eri,j . RTG-L computes a

local slack time LSi,j for Ti as LSi,j = Sri

Nri−1 , if Nri > 1; LSi,j = Sri, if 0 6 Nri 6 1.

RTG-L determines the local slack for a thread in a way that allows the remaining thread sections to

have a fair chance to complete their execution, given the current knowledge of section execution-time

estimates, in the following way. When the execution of Ti’s current section is completed at the node

nj , RTG-L determines the next node for executing the thread’s next section, through a set of gossip

rounds. The network communication delay incurred by RTG-L for the gossip rounds must be limited

to at most the local slack time LSi,j . The algorithm equally divides the total remaining slack time

to give the remaining thread sections a fair chance to complete their execution.

The local slack is used to compute a local termination time for the thread section. The local

termination time for a thread Ti is given by LXi,j = t + Eri,j + LSi,j . The local termination time is

used by RTG-L to test for schedule feasibility, while constructing local thread section schedules.

B. Constructing Local Schedule

RTG-L constructs local schedules of thread sections, with the goal of maximizing the total accrued

utility, maximizing the number of local termination times that are violated, and increasing the

likelihood for the global thread termination time to be satisfied. Note that maximizing the number of

satisfied local termination times contributes to increasing the likelihood for meeting global termination

times, but that by itself is not sufficient. This is because of the communication delay incurred

by RTG-L. While a section can be scheduled at its latest start time to complete before its local

termination time, this can potentially waste the section’s available local slack time, thereby prolonging

the section’s completion, and decreasing the available gossiping time for subsequent sections and thus

the likelihood for the entire thread to complete before its global termination time. The problem of

maximizing total accrued utility itself is NP-hard [19]. Thus, RTG-L considers two heuristics in

constructing local section schedules: 1) Potential Utility Density (or PUD) and 2) remaining local

slack time. A section’s PUD is the utility that can be accrued by executing the section, per unit

of execution time. For a section Si, at a scheduling event that occurs at time t, its PUD is given

by PUDi(t) = Ui(t + LEri(t)) = LEri(t), where LEri(t) is Si’s remaining (local) execution time

at t. Thus, a section’s PUD measures its return on “investment”. RTG-L constructs local section

schedules at two scheduling events: 1) the arrival of a message that signals the release of the section

for execution on the node; and 2) completion of the section’s execution.

RTG-L constructs local schedules as follows. The algorithm sorts all sections in the ready queue

in the descending order of their PUDs. The sorted sections are then examined, highest PUD first,

8

and inserted into a tentative schedule. The tentative schedule is sorted in the ascending order of the

section termination times, to minimize termination time misses (since deadline ordering is optimal for

that objective), and tested for feasibility. A schedule is said to be feasible, if the predicted completion

time of each section in the schedule does not exceed its local termination time. (This feasibility testing

is similar to that in [19].) If the schedule is infeasible, the section is removed from the schedule. The

process is repeated until all sections in the ready queue are examined, while preserving the invariant

of schedule feasibility. The section with the least slack in the resulting schedule is then selected

for execution, thereby allowing greater gossiping time for determining the thread’s next node. The

algorithm is shown in Algorithm 1.

Algorithm 1: Local RTG-L Scheduling Algorithm [Local SCHEDULE()]

Create an empty schedule φ;1

Let t be the time of the scheduling event;2

Sort sections in ready queue according to PUDs;3

for each section in decreasing PUD order do4

Insert section in φ at its termination time position (maintaining φ’s increasing termination-time order);5

if schedule is infeasible then6

Remove section from φ;7

Select least-slack section from σ for execution;8

C. Discovering the Next Head Node for Thread Execution

We first introduce a gossip protocol with optimal message overhead, then describe the gossip-based

RTG-L algorithm.

1) A Gossip Protocol with Low Message-Overhead: We describe the protocol by first introducing

the necessary definitions.

Definition 1. Gossip Round r: Denotes the rth gossip time interval, at the beginning of which nodes

send out messages. All messages are considered to arrive at their destination nodes when the round r

ends.

We assume that the message delay follows a non-negative distribution, e.g., the Gamma distribu-

tion [17]. Many distributions have infinite tails, and therefore, to determine the length of a gossip

round, application users need to decide a termination time point tend, after which message arrivals

can be ignored. This is done by determining a threshold on the message arrival ratio, which is referred

to as Θ. For instance, if Θ = 98%, we can determine the relative tend in a given distribution. The

9

length of a gossip round is then equal to the time interval between the round start time point (the

value is often 0) and tend in the distribution function.

Definition 2. Ir : Denotes the number of newly informed nodes during gossip round r.

Definition 3. Ur : Denotes the number of uninformed nodes at the end of gossip round r.

Definition 4. Fr : The number of messages a node sends out at the beginning of gossip round r.

At the end of gossip round r, the possibility that an uninformed node does not receive a message

from a certain informed node, η, is

η = 1− Fr

N − 1
(1)

where N denotes the total number of nodes in the system. As a way similar to [17], we compute

the expected number of uninformed nodes at the end of gossip round r:

Ur = Ur−1 × ηIr−1 = Ur−1 × (1− Fr

N − 1
)Ir−1 (2)

When Fr ¿ N − 1, we have:

Ur = Ur−1 × exp (
−Fr × Ir−1

N − 1
) (3)

The fan out and the number of messages issued during gossip round r (Mr), are shown in Equa-

tions 4 and 5, respectively:

Fr =
N − 1
Ir−1

× ln(
Ur−1

Ur
) (4)

Mr = Fr × Ir−1 = (N − 1)× ln(
Ur−1

Ur
) (5)

Different from gossip protocols with fixed fan out number at each round, here, Fr can be adjusted

by application users.

Gossip protocols are fault-tolerant, but they have high message overheads — many informed nodes

send messages to more target nodes — that may cause traffic congestion in the network.

The above gossip protocol can reduce the message overheads — it only lets the most recently

informed nodes gossip once in the following round, instead of letting all informed nodes gossip

repeatedly [7]. Besides, if Ir is large, the number of messages issued during round r can be adjusted

by using Equations 4 and 5.

In gossip protocols, a message is supposed to be sent at the beginning of a round, and arrive at

its destination before the end of the same round. This message should not be counted in the next

round. Thus, the number of messages existing at the same time is much less than the total number.

10

In addition, randomly selecting gossip targets makes messages uniformly distributed in the network,

thus, the likelihood of network congestion is reduced. Round Message Density at round r (RMDr)

is computed as following:

RMDr =
Mr

N
(6)

2) Protocol Description: When the message loss ratio is high, a head node utilizes gossip to

determine the next head node. The informed next head node gossips its decision. Descriptions of

the RTG-L on head nodes and intermediate nodes are shown in Algorithms 2, 3 and 4, respectively.

Algorithm 2: Gossip Protocol [GOSSIP()]

On gossiping a message msg:1

msg.r++ ;2

Randomly selects msg.f targets ;3

for each i ∈ [1, . . ., msg.f] do4

SEND (targeti, msg);5

Algorithm 3: RTG-L on Head Node

Upon receiving a message msg:1

accept = LOCAL SCHEDULE(msg);2

/* the node decides whether to provide the required service*/3

msg.accept = accept;4

GOSSIP(msg);5

/*the node sends back its decision*/6

if accept == TRUE then7

EXECUTE();8

BUILD(msg’);9

/* build new queries to determine the next head node */10

WAIT(d);11

/* wait till a designated deadline */12

if msg’.accept == TRUE then13

ABORT(holding section);14

GOSSIP();15

/* inform upstream former head nodes */16

After sending out a query message to determine the next head node, a thread’s current head waits

for a reply till a certain deadline d (d should not be later than the thread’s end-to-end termination

time). If it does not receive any reply after this deadline, it will regard that the thread cannot be

11

finished, abort the thread section, and uses gossip to inform the thread’s upstream head nodes. For

intermediate nodes, if a query message has been replied, they will not gossip it any more.

Algorithm 4: RTG-L on Intermediate Node

Upon receiving a message msg:1

if (msg is a query message) then2

if no reply yet then3

GOSSIP(msg);4

else5

GOSSIP(msg);6

V. Algorithm Analysis

1. RTG-L’s Message Overhead Properties

Lemma 1. The number of messages issued during all gossip rounds is Θ(N log N).

Proof: From Equation 5, we have

Σr=R
r=1 Mr = (N − 1)× Σr=R

r=1 ln(
Ur−1

Ur
) (7)

The number of issued messages during all gossip rounds is Θ(N log N).

According to [6], RTG-L’s gossip has the optimal message overhead among all gossip protocols.

Theorem 2. The number of issued messages is independent of R, Ir, Ur or Fr.

Proof: The result is directly derived from Equation 5 and Lemma 1.

2. RTG-L’s Timeliness Properties

Theorem 3. If all nodes in the system are underloaded, the probability for a distributable thread d to

successfully complete its execution, PSd
, and that for a thread set D to complete its execution, PSD

, is

determined by giving the expected number of informed nodes during gossip periods.

Proof: Let p be the largest number of rounds a head node must wait for a reply. Let p1 and p2

be the number of rounds needed to determine the next head node and receive a decision. A section

k’s probability to satisfy its time constraint is:

psk
=

IT
p1
× IT

p2

N2
(8)

where p1 ≥ 0 and p2 ≥ 0, and IT
p1

and IT
p2

are total number of nodes during the current and next head

node gossiping period, respectively. Thus, the probability PSd for a thread d to successfully complete

12

its execution through m + 1 head nodes, and that for a thread set D, PSD, is given by:

PSd
=

∏

1≤k≤m

psk
PSD

=
∏

d∈D

PSd
(9)

To establish the algorithm’s timeliness under overload condition, we first introduce the concept of

UA scheduling and “best-effort” scheduling, then define the concept of Non Best-effort time Interval

(or NBI) and Non Best-effort Ratio (or NBR).

When thread time constraints are expressed with Time Utility Functions (or TUFs, Section II-B),

the scheduling optimality criteria are based on maximizing accrued thread utility—e.g., maximizing

the sum of the threads’ attained utilities. Such criteria are called utility accrual (or UA) criteria, and

sequencing (scheduling, dispatching) algorithms that consider UA criteria are called UA sequencing

algorithms(see [7] for example algorithms).

UA algorithms that maximize total utility under downward step TUFs (Section II-B) default to

EDF during underloads, since EDF satisfies all deadlines during underloads. Consequently, they

obtain the optimum total utility during underloads. During overloads, they inherently favor more

important threads over less important ones (since more utility can be attained from the former),

irrespective of thread urgency, and thus exhibit adaptive behavior and graceful timeliness degradation.

This behavior of UA algorithms is called “best-effort” in the sense that the algorithms strive their

best to feasibly complete as many high importance threads — as specified by the application through

TUFs — as possible. Consequently, high importance threads that arrive at any time always have a

very high likelihood for feasible completion (irrespective of their urgency). Note also that EDF ↪aŕs

optimal timeliness behavior is a special-case of UA scheduling.

For reading convenience, we redefine Potential Utility Density (PUD) here. This term first appears

in Section IV-B. Denote U(Ti) the utility of a thread Ti. Denote ETrj(Ti) the remaining local

execution time of Ti on node j. Ti’s PUD on node j, PUDj(Ti), is:

PUDj(Ti) =
U(Ti)

ETrj(Ti)
(10)

For convenience, we use “PUD” in the following descriptions.

Definition 5. NBI : Consider a distributable thread scheduling algorithm A. Let a thread Ti be created

at a node at a time t with the following properties: (a) Ti and all threads in A′s execution-eligible thread

set at time t are not feasible (system-wide) at t, but Ti is feasible just by itself; and (b) Ti has the

highest PUD among all threads in A′s execution-eligible thread set at time t.

Now, A′s NBI, denoted NBIA, is defined as the duration of time that Ti will have to wait after t,

before it is included in A′s execution-eligible thread set. Thus, Ti is assumed to be feasible at t+NBIA.

13

Note that RTG-L belongs to the independent node scheduling paradigm (i.e., it make its scheduling

decisions using propagated thread scheduling parameters and without collaborating with other nodes).

Theorem 4. RTG-L’s worst-case NBI is δ, where δ is the algorithm scheduling overhead.

Proof: RTG-L will examine Ti at t, since the arrival of a new thread is a scheduling event. Since

Ti has the highest PUD and is feasible system-wide, it will include Ti’s first section in its feasible

(local) schedule at t, yielding a worst-case NBI of δ, the time constant involved for the algorithm to

arrive at the local decision.

Now we establish the definitions of Non Best-effort Ratio (or NBR):

Definition 6. NBR : Let a thread Ti be created at a node at a time t, under a certain distributable

thread scheduling algorithm A. When Ti is created, there are a certain number of threads which have

higher PUDs than Ti, disregarding whether the node is underloaded or overloaded.

Denote ETt(Ti) the time duration of time that Ti will have to wait after t before its execution.

Denote ETtmin(Ti) the minimum time duration among ETt. Algorithm A’s NBR for Ti, NBRA(Ti)

is:

NBRA(Ti) = MIN(
ETtmin(Ti)

ETt(Ti)
) (11)

disregarding whether Ti is feasible or infeasible, and whether the node is underloaded or overloaded.

Theorem 5. Disregarding the difference of scheduling overheads between different thread sets, a

distributable thread scheduling algorithm A is a “best-effort” algorithm, if and only if its NBR = 1,

for any thread Ti.

Proof: As stated above, if algorithm A is“best-effort”, it inherently favors more important threads

over less important ones, irrespective of thread urgency. For a feasible thread Ti, the algorithm will

schedule it according to its PUD, disregarding whether the node is overloaded or not. For an infeasible

Ti, it is impossible to execute, and both ETt(Ti) and ETtmin(Ti) are ∞. Therefore, for a “best-effort”

algorithm, its NBR is always 1.

Assume a “best-effort” algorithm B has NBRB(Ti) > 1. That means for the thread Ti, there exists

a time t, at which when Ti arrives, the algorithm will not schedule Ti according to its PUD — thus,

the algorithm does not inherently favor more important threads over less important ones at any time.

This contradicts the nature of “best-effort” algorithms.

Theorem 6. RTG-L is a “best-effort” distributable thread scheduling algorithm.

Proof: In local RTG-L scheduling, the algorithm always executes threads according to their

relative PUD order (relative importance). Therefore, NBRRTGL(Ti) = 1 for any thread Ti. According

14

TABLE I

Gossip Protocol with Low Message Overhead

N IT
R,Thry IT

R,Sim StdDev Avg.RMD

300 299.5 298.62 0.75 0.95

400 399.5 399.58 0.67 1.03

500 499.5 499.54 0.69 1.19

600 599.5 598.58 0.66 1.07

700 699.5 699.38 0.73 1.01

to Theorem 5, RTG-L is a “best-effort” distributable thread scheduling algorithm.

From Theorem 6 we conclude that RTG-L first executes more important threads under overload

condition, and thus possibly gain the maximum benefit from a certain thread set.

VI. Experimental Studies

In this section, we present simulation studies to evaluate RTG-L, including the gossip protocol

with low message overhead, Local RTG-L algorithm, and finally, the RTG-L algorithm itself.

For the gossip protocol with low message overhead, we considered systems with different number

of nodes. The pattern of Ir in each system at each round is arbitrarily selected. We obtained Fr from

Equation 4, and computed average RMD using Equations 5 and 6. Note that Fr can be fractional.

For instance, if Fr = 2.5, we use 2 and 3 interchangeably; thus over some gossip rounds, the expected

Fr is 2.5. Table I compares theoretical results (IT
R,Thry) with the simulation results (IT

R,Sim), and

presents the standard deviation (StdDev) and average round message densities (Avg.RMD) over 100

simulation experiments. From Table I, we observe that in large-scale systems (in Table I, each system

contains 300-700 nodes), each IT
R,Sim complies well with its IT

R,Thry with a relatively small StdDev.

Thus, the simulation results validate the analytical results presented in Section IV-C1. In addition,

we also observe in Table I that the value of Avg.RMD is approximately 1 for all systems. This

means that, on the average, a node sends out only 1 message during each gossip round, which is the

designated maximum message propagation delay. Also, because nodes select gossip targets uniformly

and randomly, the message overhead is uniformly distributed in the whole system. Thus, it is less

possible for gossip to create traffic congestion in the network.

We evaluated the Local RTG-L algorithm (described in Section IV-B) by comparing it with the LSF

and EDF algorithms. The simulation is also called “U/U Distribution” simulation, in order to feature

thread sections that have interarrival times and execution times drawn from uniform probability

distributions. In fact, these times always lie between zero and their designated maximum values. The

15

TABLE II

Processor Load

Max Interarrival Time (TUs) Expected Interarrival Time (TUs) Processor Load

400 200 0.25

200 100 0.5

133.2 66.6 0.75

100 50 1.0

80 40 1.25

66.6 33.3 1.5

50 25 2.0

maximum values are varied to examine algorithm behavior under different processor loads. All times

in the following simulations are expressed in terms of Time Units (TUs).

The termination times for each thread is also drawn from uniform probability distributions. The

processor load metric (Load) is simply the expected time required to complete a thread section

divided by the expected time between successive thread section arrivals. For the U/U Distribution

simulations, the expected interarrival time is half of the maximum interarrival time. Similarly, the

expected time remaining until a termination time when a thread section arrives is half of the maximum

time remaining until that termination time. In this case, this is set to 100 TUs for our 100 created

tasks. The required computation time for a given thread section is expected to be half of the time

remaining until its termination time, or 50 TUs. By selecting maximum interarrival times from 800

to 50 TUs, the range of processor loads that can be examined extends from 0.25 to 2.0, respectively.

The interarrival times and corresponding processor loads are shown in Table II.

Figures 3 shows the Accrued Utility Ratio (AUR) and the Termination time Meet Ratio (TMR)

of the thread section set under increasing Message Loss Rate (MLR) and Intermediate Node Failure

Rate (NFR) in a 700-node system, respectively. AUR is the ratio of the total accrued section utility

to the maximum possible total section utility, and TMR is the ratio of the number of sections meeting

their local termination times to the total number of thread sections on the node.

From Figures 3(a) and 3(b), we observe that Local RTG-L performs better than the other two

algorithms. When Load < 0.5, the difference is not obvious — the workload is light, so each of the

three algorithms can feasibly execute all existing sections. When Load ≥ 0.5, the difference becomes

much larger. When the workload increases, Local RTG-L drops sections with low PUD in favor of

high-PUD sections, whereas LSF and EDF do not have a mechanism to check section feasibility

and drop less important sections. Local RTG-L first executes high-PUD sections, thus, it can obtain

more total utility from the same set of sections. Although using uniform distribution to model section

16

0.0 0.5 1.0 1.5 2.0
0

10

20

30

40

50

60

70

80

90

100

A
cr

ru
ed

 U
til

ity
 R

at
io

 (
%

)

Load

 Local RTG-L
 Least Slack First
 Earliest Deadline First

(a) AUR

0.0 0.5 1.0 1.5 2.0
0

10

20

30

40

50

60

70

80

90

100

T
er

m
in

at
io

n
T

im
e

M
ee

t R
at

io
 (

%
)

Load

 Local RTG-L
 Least Slack First
 Earliest Deadline First

(b) TMR

Fig. 3. AUR and TMR of Local RTG-L, LSF and EDF

behavior makes this gain not that obvious, Local RTG-L’s AUR in Figure 3(a) still exceeds its TMR

in Figure 3(b) under the same workload.

We evaluated the overall performance of the RTG-L algorithm in a 700-node unreliable system.

We used a baseline algorithm called “Tree-Based Multicast” (or TBM), which propagates messages

using a tree structure. The tree is constructed before message propagation, and the construction is

based on the following rules:

1) Each parent node has at most 6 children;

2) To speed message propagation, each child node selects the highest-level available parent;

3) If there are more than one available parent at the same level, a child contacts the one with the

shortest path.

We set the average message delay between a parent and its children as 0.2 gossip round, and the

average time for a child to detect parent failure and find a new parent as 0.6 gossip round. Threads

in the simulation environment executed through four nodes in a 700-node system, so it should make

three remote invocations to find next head nodes. During any invocation, if a head node cannot

timely receive a reply from the next head node, it will abort the thread section and announce the

failure of the thread. Thus, a thread is successfully finished, only if all of its head nodes find their

next head nodes on time. The designated time interval for a remote invocation is represented by the

number of rounds. Success Ratio (SR) is the number of successfully executed sections over the total

number of sections.

17

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

S
uc

ce
ss

 R
at

io
 (

%
)

Number of Rounds

 RTG-L
 Tree-Based Multicast

(a) Condition of Message Losses

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

S
uc

ce
ss

 R
at

io
 (

%
)

Number of Rounds

 RTG-L
 Tree-Based Multicast

(b) Condition of Node Failures

Fig. 4. SR of RTG-L and TBM

Figures 4(a) and 4(b) depict the SR of Local RTG-L and TBM under message losses and node

failures, respectively. We set the message loss ratio and node failure ratio as 35%. From both figures,

we observe that RTG-L performs much better than TBM. TBM depends on a fixed tree structure,

thus, it cannot adjust the number of messages according to different time constraints. In addition,

message losses and node failures happen frequently. If a message is lost during propagation, the parent

has to wait for some time, and retransmit the same message if it does not receive a confirmation from

a child. This not only delays the child, but also delays all nodes in that child’s subtree. In both figures,

if the time interval is only 1 round, in an unreliable environment, it is less possible to inform the next

head node on time. Thus, both algorithms’ have a low SR (RTG-L’s SR is about 4%, while TBM’s SR

is about 1%). When the time interval becomes longer, both algorithms perform better, but RTG-L’s

SR increases much faster. If a node failure occurs, TBM’s performance becomes worse — a child has

to spend 0.6 gossip round to determine a new parent, and then wait for the message transmission

(we observe this in Figure 4(b)). The performance of RTG-L also degrades, but not significantly. So

the difference between these two algorithms is larger in Figure 4(b) than that in Figure 4(a).

We compared the RTG-L algorithm with a previously presented scheduling algorithm called RTG-

DS [7], under the condition of different Message Execution Time (MET) and Message Loss Ratio

(MLR), in a 700-node unreliable system. Here, MET is the time taken to process ONE received

message or send ONE new message during a gossip round. Because message propagation is the key

process in distributed real-time scheduling, message processing is always given the highest priority

18

0
1

2

3

4

5

50

55

60

65

70

75

80

85

90

95

100

0
10

20
30

40
50

A
cr

u
ed

 U
ti

lit
y

R
at

io
 (

%
)

Message Loss Ratio (%)

M
essage Execution Tim

e (TU)

(a) RTG-L

0
1

2

3

4

5

40

45

50

55

60

65

70

75

80

85

90

95

100

0

10

20
30

40
50

A
cr

u
ed

 U
ti

lit
y

R
at

io
 (

%
)

Message Loss Ratio (%
)

Message Execution Time (TU)

(b) RTG-DS

Fig. 5. AUR of RTG-L/RTG-DS

to execute. In the following simulation, MET varies from 0 to 5 TUs, while the designated max

execution time of each thread section is 400 TUs. In addition, there are totally 50 thread sections in

the simulated system, and they may gossip messages at the same time. Thus, the possible maximum

message-processing overhead on a node is the sum of sending and receiving messages, that is, 100 ∗
MET (a node sends messages at the beginning a gossip round, and receives messages during the

whole round).

RTG-DS is very different from RTG-L, in the sense that in RTG-DS, the fan out number (Fr) at

each gossip round is fixed, while in RTG-L Fr can be varied at different rounds. In addition, in RTG-

DS, every “infected” node gossips till the end, while it only gossips once in RTG-L. Thus, RTG-L has

a lower message overhead in communication processes.

In this simulation, as in the above Local RTG-L simulation, we used U/U distribution to model

threads, and set a processor’s thread section execution load Load = 1. If MET = 0, each node is

probabilistically underload. Otherwise, a node has to process messages and drop thread sections.

Figure 5(a) and 5(b) shows the AUR of RTG-L and RTG-DS, respectively. From both figures, we

may observe that as MET and MLR increase, both AURs decrease. When MET increases, a node has

to use more time to handle messages, and decrease the time for executing thread sections. When MLR

increases, a node has less chance to receive messages for thread execution, thus AUR also decreases.

We can make a clearer observation in Figure 6 that shows cross section figures in Figure 5. In

Figure 6(a) (MLR is fixed to 40%), we observe that when MET = 0, RTG-DS performs better. Under

19

RTG-DS, an“infected”node gossips at each round instead of gossiping only once. Without considering

MET, messages containing scheduling information propagated more reliably under RTG-DS. However,

when MET increases, RTG-L performs better, because nodes have lower message overhead, and have

more time to execute thread sections. In Figure 6(b) (MET is fixed to 4 TUs), we observe that RTG-L

always performs better. Since less received messages always means less message-processing overhead.

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

A
cc

ru
ed

 U
ti

lit
y

R
at

io
 (

%
)

Message Execution Time (TU)

 RTG-L
 RTG-DS

(a) AUR under different METs

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

A
cc

ru
ed

 U
ti

lit
y

R
at

io
 (

%
)

Message Loss Ratio (%)

 RTG-L
 RTG-DS

(b) AUR under different MLRs

Fig. 6. AUR under different MET/MLR

VII. Conclusions and Future Work

In this paper, we present a gossip-based algorithm called RTG-L, for scheduling distributable

threads in unreliable networks. RTG-L especially focuses on lowering message overhead in gossip,

and uses low-overhead gossip protocol to propagate thread scheduling parameters, and determine

successive nodes for feasible thread execution. In addition, it constructs local thread section schedules

by exploiting thread slack in a way that enhances time available for message propagation. Our

simulation studies validate the algorithm’s effectiveness.

Immediate directions for extending our work are designing lower message overhead and faster

gossip-based protocols, and allowing node anonymity, unknown number of thread sections, and non-

step TUFs.

References

[1] J. Anderson and E. D. Jensen, “The distributed real-time specification for java: Status report,” in JTRES, 2006,

Available: http://www.real-time.org/docs/jtres06/jtres06.pdf.

[2] OMG, “Real-time corba 2.0: Dynamic scheduling specification,” Tech. Rep., OMG, September 2001, Final Adopted

Specification, http://www.omg.org/docs/ptc/01-08-34.pdf.

20

[3] OMG, “Data distribution service for real-time systems, v1.1,” Tech. Rep., OMG, 2005, formal/2005-12-04.

[4] F. Baker, “An outsider’s view of manet,” Internet-Draft, Work In Progress draft-baker-manet-review-01.txt, IETF

Network Working Group, March 2002.

[5] CCRP, “Network centric warfare,” http://www.dodccrp.org/html2/research ncw.html, Last accessed, May 2006.

[6] H. Li et al., “Bar gossip,” in OSDI, November 2006.

[7] K. Han et al., “Exploiting slack for scheduling dependent, distributable real-time threads in mobile ad hoc networks,”

in International Conference on Real-Time and Network Systems (RTNS), March 2007.

[8] J. Sun, Fixed-Priority End-To-End Scheduling in Distributed Real-Time Systems, Ph.D. thesis, UIUC, 1997.

[9] A. Bestavros and D. Spartiotis, “Probabilistic job scheduling for distributed real-time applications,” in IEEE Works.

on Real-Time Applications, May 1993.

[10] R. Bettati, End-to-End Scheduling to Meet Deadlines in Distributed Systems, Ph.D. thesis, UIUC, 1994.

[11] T. Abdelzaher et al., “A feasible region for meeting aperiodic end-to-end deadlines in resource pipelines,” in ICDCS,

2004, pp. 436–445.

[12] B. S. Manoj et al., “Real-time traffic support for ad hoc wireless networks,” in IEEE ICON, 2002, pp. 335 – 340.

[13] N. Wang and C. Gill, “Improving real-time system configuration via a qos-aware corba component model,” in

HICSS, 2004, p. 10.

[14] E. D. Jensen et al., “A time-driven scheduling model for real-time systems,” in RTSS, Dec. 1985, pp. 112–122.

[15] D. Johnson et al., “Dsr: The dynamic source routing protocol for multihop wireless ad hoc networks,” in Ad Hoc

Networking, C. E. Perkins, Ed., chapter 5, pp. 139–172. Addison-Wesley, 2001.

[16] K. Romer, “Time synchronization in ad hoc networks,” in MobiHoc, 2001, pp. 173–182.

[17] S. Verma and W. Ooi, “Controlling gossip protocol infection pattern using adaptive fanout,” in The 25th IEEE

International Conference on Distributed Computing Systems (ICDCS), 2005.

[18] B. Awerbuch, Reza Curtmola, et al., “Mitigating byzantine attacks in ad hoc wireless networks,” Tech. Rep. I, JHU

CS Dept., March 2004.

[19] R. K. Clark, Scheduling Dependent Real-Time Activities, Ph.D. thesis, CMU, 1990, CMU-CS-90-155.

