
Universal Wait-Free Memory Reclamation
Ruslan Nikolaev, Binoy Ravindran

rnikola@vt.edu,binoy@vt.edu
Virginia Tech

Bradley Department of Electrical and Computer Engineering
Blacksburg, VA, USA

Abstract
In this paper, we present a universal memory reclamation
scheme, Wait-Free Eras (WFE), for deleted memory blocks
in wait-free concurrent data structures. WFE’s key innova-
tion is that it is completely wait-free. Although some prior
techniques provide similar guarantees for certain data struc-
tures, they lack support for arbitrary wait-free data struc-
tures. Consequently, developers are typically forced to marry
their wait-free data structures with lock-free Hazard Pointers
or (potentially blocking) epoch-based memory reclamation.
Since both these schemes provide weaker progress guaran-
tees, they essentially forfeit the strong progress guarantee of
wait-free data structures. Though making the original Haz-
ard Pointers scheme or epoch-based reclamation completely
wait-free seems infeasible, we achieved this goal with a more
recent, (lock-free) Hazard Eras scheme, which we extend to
guarantee wait-freedom. As this extension is non-trivial,
we discuss all challenges pertaining to the construction of
universal wait-free memory reclamation.

WFE is implementable on ubiquitous x86_64 and AArch64
(ARM) architectures. Its API is mostly compatible with Haz-
ard Pointers, which allows easy transitioning of existing data
structures into WFE. Our experimental evaluations show
that WFE’s performance is close to epoch-based reclamation
and almost matches the original Hazard Eras scheme, while
providing the stronger wait-free progress guarantee.

CCS Concepts • Theory of computation → Concur-
rent algorithms.

Keywords wait-free, non-blocking, memory reclamation,
hazard pointers, hazard eras

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’20, February 22–26, 2020, San Diego, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6818-6/20/02. . . $15.00
https://doi.org/10.1145/3332466.3374540

1 Introduction
Most modern general purpose systems use the shared-memo-
ry architecture, which stipulates solving the synchronization
problem when accessing shared data. The easiest way to
solve this problem is to use locks, but due to scalability issues,
non-blocking data structures have been studied over the
years. A downside of non-blocking data structures is that
they require a special memory reclamation scheme. Whereas
mutual exclusion locks can guarantee that no other thread
is using a memory block (node) that is in the process of
deletion, this is generally not true for non-blocking designs.

Wait-freedom, the strongest of non-blocking progress guar-
antees, is critically important in many latency-sensitive ap-
plications where execution time of all operations must be
bounded [22]. In wait-free algorithms, all threads must even-
tually complete any operation after a bounded number of
steps. Nonetheless, such algorithms have not had significant
practical traction due to a number of reasons. Tradition-
ally, wait-free algorithms were difficult to design and were
much slower than their lock-free counterparts. Kogan and Pe-
trank’s fast-path-slow-path methodology [24] largely solved
the problem of creating efficient wait-free algorithms. The
design of wait-free algorithms, however, is still challenging,
as the Kogan-Petrank methodology implicitly assumes wait-
free memory reclamation. A case in point: Yang and Mellor-
Crummey’s wait-free queue [40] uses the Kogan-Petrank
methodology. But, as pointed out by Ramalhete and Cor-
reia [32], [40]’s design is flawed in its memory reclamation
approach which, strictly speaking, forfeits wait-freedom.

Although a number of memory reclamation techniques [4–
10, 16, 19–21, 27, 28, 30, 33, 38, 39] have been proposed, only
a fraction of them can be used for arbitrary data structures
and are truly non-blocking [9, 20, 21, 27, 28, 30, 33, 38, 39].
At present, no universal memory reclamation technique ex-
ists that guarantees wait-freedom for arbitrary wait-free
data structures. Typically, prior efforts on wait-free data
structures have ignored the memory reclamation problem
entirely or have harnessed lock-free memory reclamation
schemes such as Hazard Pointers [27], essentially forfeit-
ing strict wait-freedom guarantees. The recently proposed
Ramalhete and Correia’s wait-free queue [35] can be im-
plemented using Hazard Pointers, but the approach is too
specific to the queue’s design and cannot be applied for other
data structures. [36] presents wait-free memory reclamation
for software transactional memory (STM), but the work does

https://doi.org/10.1145/3332466.3374540

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Ruslan Nikolaev, Binoy Ravindran

not consider wait-free memory reclamation for handcrafted
data structures. Although STM is an important general syn-
chronization technique, handcrafted data structures usually
perform better and still need wait-free memory reclamation.
We present a universal scheme, Wait-Free Eras (WFE),

that solves the wait-free memory reclamation problem for
arbitrary data structures. For the first time, wait-free data
structures such as the Kogan-Petrank queue [23] can be
implemented fully wait-free using WFE. Additionally, WFE
can help simplify memory reclamation for existing wait-free
data structures which use Hazard Pointers in a special way
to guarantee wait-freedom.
WFE is based on the recent Hazard Eras [33] memory

reclamation approach, which is lock-free. We demonstrate
howHazard Eras can be extended to guarantee wait-freedom.
In our evaluation, we observe that WFE’s performance is
close to epoch-based reclamation and almost matches the
original Hazard Eras scheme.

2 Background
For greater clarity and completeness, we discuss relevant
memory reclamation schemes and the challenges in design-
ing them with wait-free progress guarantees.

2.1 Progress Guarantees
Non-blocking data structures can provide different progress
guarantees. In obstruction-free algorithms, a thread performs
an operation in a finite number of steps if executed in isola-
tion from other threads. In lock-free algorithms, at least one
thread always makes progress in a finite number of steps.
Finally, wait-freedom – the strongest progress guarantee –
implies that all threads make progress in a finite number of
steps. Wait-free data structures are particularly useful for
latency-sensitive applications which usually have quality of
service constraints.

Memory reclamation adds extra requirements to progress
guarantees. Unless memory usage is bounded, threads will
be unable to allocate memory at some point. This effectively
blocks threads from making further progress. Thus, mem-
ory reclamation schemes must guarantee that stalled or pre-
empted threads will not prevent timely memory reclamation.
The epoch-based reclamation (EBR) scheme [16, 19] can

have unbounded memory usage, preventing its use in wait-
free algorithms. In contrast, reclamation schemes such as
Hazard Pointers [27] and Hazard Eras [33] provide strict
memory bounds as long as programs properly use these
schemes. However, both schemes lack wait-free progress
guarantees.

2.2 Atomic Operations
Typically, lock-free and wait-free data structures are imple-
mented using compare-and-swap (CAS) operations. CAS is

more general than other atomic operations such as fetch-
and-add (F&A), which can be emulated by CAS. Nonetheless,
x86_64 and AArch64 (ARM; as of version 8.1) implement F&A
natively due to its better efficiency in hardware. Moreover,
hardware’s F&A execution time is bounded, which makes it
appealing for wait-free algorithms.
In this paper, we also use wide CAS (WCAS), which up-

dates two adjacent memory words. WCAS is not to be con-
fused with double-CAS, which updates two arbitrary words
but is rarely supported in commodity hardware. WCAS, how-
ever, is available in x86_64 and AArch64 architectures. Fur-
thermore, WCAS is required by commodity OSes such as
Windows 8.1 or higher [2].

2.3 Hazard Eras
The Hazard Eras [33] memory reclamation scheme merges
EBR with Hazard Pointers. Each allocated object retains two
fields used by the reclamation scheme: “alloc_era” and “re-
tire_era”. When allocating a new object, its alloc_era is ini-
tialized with the global era clock value, which is periodically
incremented. When the object is retired, its retire_era is also
initialized with the global era value. The lifespan of the ob-
ject is determined by these two eras. When a thread accesses
a hazardous reference, it publishes the current era. Thus, if
the lifespan of an object falls within any of the published
eras, it will not be reclaimed.

Hazard Eras’ API is mostly compatible with that of Hazard
Pointers and consists of the following operations:

• get_protected(): safely retrieve a pointer to the pro-
tected object by creating a reservation; each object
needs an index that identifies the reservation.

• retire(): mark an object for deletion; the retired object
must be deleted from the data structure first, i.e., only
in-flight threads can still access it.

• clear(): reset all prior reservations made by the current
thread in get_protected().

• alloc_block(): a special operation unique to Hazard
Eras; it allocates a memory block and initializes its
alloc_era to the global era clock value.

Figure 1 presents the Hazard Eras algorithm. In the al-
gorithm, we assume that the maximum number of threads
is max_threads. The maximum number of reservations per
each thread ismax_hes. All retired nodes are appended to the
thread-local retire_list. The algorithm periodically scans this
list to check if old nodes can be safely de-allocated by calling
cleanup(). To guarantee that the memory usage is bounded,
the algorithm periodically increments the global era clock
in alloc_block() and retire(). Arguments on correctness and
bounded memory usage can be found in [34].

In Figure 2, we present an example of Treiber’s stack [37]
implementation using Hazard Eras. The stack is a linked-list
of nodes which store pointers to inserted objects. Each node
also encapsulates a memory reclamation header block. When

Wait-Free Eras (WFE) PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

// Constants
const int era_freq, cleanup_freq;

// Global variables
thread-local int retire_counter = 0;
thread-local int alloc_counter = 0;
thread-local list retire_list = EMPTY;
int global_era = 0;
int reservations[max_threads][max_hes] = { ∞ };

// Read a block pointer
block* get_protected(block** ptr, int index) {

int prevEra = reservations[tid][index];
while (true) {

block* ret = *ptr;
int newEra = global_era;
if (prevEra == newEra) return ret;
reservations[tid][index] = newEra;
prevEra = newEra;

}
}

// Retire a memory block
void retire(block* ptr) {

ptr->retire_era = global_era;
retire_list.append(ptr);
if (retire_counter++ % cleanup_freq == 0) {

if (ptr->retire_era == global_era)
F&A(&global_era, 1);

cleanup();
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

// Clear all hazard eras for the current thread
void clear() {

for (int j = 0; j < max_hes; j++)
reservations[tid][j] = ∞;

}

// Allocate a memory block
block* alloc_block(int size) {

if (alloc_counter++ % era_freq == 0)
F&A(&global_era, 1);

block* ptr = new block(size);
ptr->alloc_era = global_era;
return ptr;

}

// Internal functions
void cleanup() {

foreach blk in retire_list
if (can_delete(blk, 0, max_hes))

free(blk);
}

bool can_delete(block* ptr, int js, int je) {
for (int i = 0; i < max_threads; i++) {

for (int j = js; j < je; j++) {
int era = reservations[i][j];
if (era ≠ ∞ && ptr->alloc_era ≤ era

&& ptr->retire_era ≥ era)
return false;

} }
return true;

}

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Figure 1. The Hazard Eras memory reclamation scheme.

enqueuing an object, we allocate a node using alloc_block(),
store a pointer to the object, and update the stack pointer.
When dequeuing, we dereference the top of the stack using
get_protected(). We only use index 0 since we dereference just
one pointer at a time. The top of the stack is then updated to
refer to the next node.We retrieve an object pointer and retire
the dequeued node. Finally, clear() resets all reservations
(i.e., index 0) for the current thread.

2.4 Challenges in Wait-Free Memory Reclamation
Only a few memory reclamation schemes are truly non-
blocking, i.e., do not use any OS mechanisms and also guar-
antee bounded memory usage. Although certain OS mecha-
nisms, such as signals, can transparently handle reclamation,
it is difficult to guarantee non-blocking behavior in general,
as locks are often used inside OS kernels when dispatching
signals. We also focus on manual memory reclamation tech-
niques, i.e., garbage collectors are beyond the scope of this
paper. Though EBR is almost wait-free for most operations, it
is blocking due to its potentially unbounded memory usage.
Since truly wait-free algorithms must also be non-blocking,
we only consider those algorithms. We narrow our scope to
Hazard Pointers [27], Hazard Eras [33], and Interval-Based
Reclamation (IBR) [39].

In both Hazard Pointers and Hazard Eras, most operations
are already wait-free. However, access to hazardous refer-
ences through get_protected() is a noticeable exception. Both

schemes need unbounded loops: Hazard Eras check that the
published global era value has not changed while reading the
reference; Hazard Pointers publish the reference itself but
still need to validate that the reference has not changed since
it was published. Despite this similarity, the two schemes dif-
fer drastically. To make Hazard Pointers wait-free, we must
ensure that the references do not change, which seems gen-
erally impossible to do in a wait-free manner. In Hazard Eras,
we only need to make sure that the global era value is un-
changed. Although the original Hazard Eras approach could
not solve this problem, we demonstrate a viable solution.
We also considered IBR, especially because of its sim-

pler API. However, we preferred to extend the Hazard Eras
scheme instead due to its strict memory usage guarantees,
even in the presence of starving or slow threads. (Wait-free
memory reclamation can still be used for ordinary, lock-
free data structures.) IBR requires additional changes to
data structures to guard against this condition [39]. Cer-
tain tagged versions of IBR also require more work to make
them wait-free. Nonetheless, our approach is applicable to
the 2GEIBR version where only hazardous reference accesses
need to be made wait-free.

3 Wait-Free Memory Reclamation
The proposed WFE algorithm employs the traditional fast-
path-slow-path idea but avoids the Kogan-Petrank method-
ology [24] due to the complexity of memory reclamation

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Ruslan Nikolaev, Binoy Ravindran

struct node_s { // Stack element:
block header; // 1. hazard eras header
node_s* next; // 2. next stack element
void* obj; // 3. stored object

};
node_s* stack = nullptr; // Top of the stack

// Remove an object from the stack
void* dequeue() {

void* obj = nullptr;
while (true) {

node_s* node = get_protected(&stack, 0);
if (node == nullptr) break;
if (CAS(&stack, node, node->next)) {

obj = node->obj;
retire(node);
break;

}
}
clear();
return obj;

}

// Insert an object onto the stack
void enqueue(void* obj) {

node_s* node = alloc_block(sizeof(node_s));
node->obj = obj;
do {

node->next = stack;
} while (!CAS(&stack, node->next, node));

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Figure 2. Usage example: Treiber’s lock-free stack.

and uniqueness of its challenges. The high-level idea is to
execute an almost unchanged Hazard Eras scheme on the
fast path. When get_protected() fails to complete after a spec-
ified number of steps, the slow path is taken where threads
collaborate to guarantee wait-freedom.

3.1 Assumptions
We assume that the hardware supports WCAS and wait-
free F&A. We also assume a 64-bit CPU since we need to
atomically manipulate eras (sometimes using WCAS) which,
for safety, are typically at least 64 bits wide in Hazard Eras.
Our assumptions are true for common-place x86_64 and
more recent versions of AArch64 (ARM) processors.

Although not all other microarchitectures currently satisfy
these requirements, they can easily fall back to the original
Hazard Eras algorithm to retain API compatibility at the cost
of losing wait-freedom.

To simplify our pseudo-code, we will further assume that
the memory model is sequentially consistent [25]. Our actual
implementation relaxes this requirement to benefit architec-
tures with weaker memory models such as AArch64.

Finally, we assume that the number of threads is bounded,
which is a reasonable assumption made by most reclamation
schemes.

era

reservations
Input: invptr tag

Output: block * era

state.result
tag

era tag

...

A B

A B

Figure 3. WFE state and reservations.

3.2 Data Fields and Formats
We inherit most existing data fields from Hazard Eras. How-
ever, we modify the reservations array to record pairs instead
of eras. Each pair consists of an era as well as a tag for the
current reservation. The tag is only accessed on the slow
path and identifies the slow-path cycle. The tag is monoton-
ically increased after each such cycle and protects against
spurious (delayed) data changes happening afterwards.
We also reserve a special pointer value, invptr, which

should never be used by data structures. Since nullptr is
still occasionally used, we reserve the maximum integer
value instead; it should never be stored in valid pointers (e.g.,
mmap(2) returns the same value for MAP_FAILED).
For the slow path, each reservation keeps state (in a sep-

arate array). We discuss all fields of state below. One of its
fields, result, is used for both input and output. On the input,
it records the tag of the current slow-path cycle. On the out-
put, it contains a dereferenced pointer as well as the era that
needs to be set in reservations for this pointer. To distinguish
these two cases, we place invptr in the place of the derefer-
enced pointer and tag in the place of era. The pointer value
distinguishes whether the result is already produced.

We summarize new data fields in Figure 3.

3.3 Bird’s-Eye View
Assuming the presence of wait-free F&A, as discussed in [34],
Hazard Eras is already wait-free for all operations except
get_protected(), which is used to dereference pointers. The
get_protected() operation contains a potentially unbounded
loop and, consequently, is only lock-free. The only reason
why this loop may never converge is due to the changing
value of the global era clock. The global era value changes
periodically when allocating new objects or retiring old ob-
jects. Thus, to make the Hazard Eras algorithm wait-free,
threads that call alloc_block() and retire() have to collaborate
with threads that call get_protected().

In other words, alloc_block() and retire() should not be
incrementing the global era clock unless they can guarantee
that all other running threads succeed in their get_protected()
call. However, global era increments cannot be simply post-
poned since they are crucial to guarantee that the memory
usage is bounded. Likewise, alloc_block() or retire() cannot
block on get_protected() either. The idea employed in WFE
is that before incrementing the global era, alloc_block() and
retire() will first check if any thread needs helping.

Wait-Free Eras (WFE) PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

int counter_start = 0;
int counter_end = 0;
int_pair // Each pair is { .A,.B }
 reservations[max_threads][max_hes+2] = { ∞,0 };

struct state_s {
int_pair result; // Initially: { nullptr,∞ }
int era; // Initially: ∞
void* pointer; // Initially: nullptr

};
state_s state[max_threads][max_hes];

// Read a block pointer
block* get_protected(block** ptr, int index,

 block* parent) {
int prevEra = reservations[tid][index].A;
int attempts = max_attempts;
while (--attempts ≠ 0) { // Fast path

block* ret = *ptr;
int newEra = global_era;
if (prevEra == newEra) return ret;
reservations[tid][index].A = newEra;
prevEra = newEra;

}
// Fetch parent’s era for [ptr] protection
if (parent == nullptr) alloc_era = ∞;
else alloc_era = parent->alloc_era;
// Slow path, request helping
F&A(&counter_start, 1);
state[tid][index].pointer = ptr;
state[tid][index].era = alloc_era;
int tag = reservations[tid][index].B;
state[tid][index].result = {invptr,tag};
do { // Bounded by # of in-flight threads

block* ret = *ptr;
int newEra = global_era;
if (prevEra == newEra &&

 WCAS(&state[tid][index].result,
 {invptr,tag}, {nullptr,∞}) {

reservations[tid][index].B = tag + 1;
F&A(counter_end, 1);
return ret;

}
// Ignore failures, the loop will exit
WCAS(&reservations[tid][index],

 {prevEra,tag}, {newEra,tag});
prevEra = newEra;
res_ptr = state[tid][index].result.A;

} while (res_ptr == invptr);
int res_era = state[tid][index].result.B;
reservations[tid][index].A = res_era;
reservations[tid][index].B = tag + 1;
F&A(&counter_end, 1);
return res_ptr;

}

void cleanup() { // A new cleanup() procedure
foreach blk in retire_list {

int ce = counter_end;
if (!can_delete(blk, 0, max_hes) ||
 !can_delete(blk, max_hes, max_hes+1))

continue;
if (ce == counter_start ||

 (can_delete(blk, max_hes+1, max_hes+2)
&& can_delete(blk, 0, max_hes))

free(blk);
} }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

// Allocate a memory block
block* alloc_block(int size) {

if (alloc_counter++ % era_freq == 0)
increment_era(tid);

block* ptr = new block(size);
ptr->alloc_era = global_era;
return ptr;

}

// Retire a memory block
void retire(block* ptr) {

ptr->retire_era = global_era;
retire_list.append(ptr);
if (retire_counter++ % cleanup_freq == 0) {

if (ptr->retire_era == global_era)
increment_era(tid);

cleanup();
}

}

// Help others before incrementing an era
void increment_era(int tid) {

int ce = counter_end;
int cs = counter_start;
if (cs – ce ≠ 0) {

for (int i = 0; i < max_threads; i++) {
for (int j = 0; j < max_hes; j++) {

void* ptr = state[i][j].result.A;
if (ptr == invptr)

help_thread(i, j, tid);
} } }
F&A(&global_era, 1);

}

// An internal function to help other threads
void help_thread(int i, int j, int tid) {

int_pair res = state[i][j].result;
if (res.A ≠ invptr) return;
int era = state[i][j].era;
reservations[tid][max_hes].A = era;
block** ptr = state[i][j].pointer;
int tag = reservations[i][j].B;
if (tag ≠ res.B) goto exit;
// All state data were read consistently
int prevEra = global_era;
do { // Bounded by # of in-flight threads

reservations[tid][max_hes+1] = prevEra;
block* ret_ptr = *ptr;
int newEra = global_era;
if (prevEra == newEra) {

if (WCAS(&state[i][j].result,
res, {ret_ptr,newEra}) {

do { // At most 2 iterations
old = reservations[i][j];
if (old.B ≠ tag) break;
ok = WCAS(&reservations[i][j],

old, {newEra,tag+1});
} while (!ok);

}
break;

}
prevEra = newEra;

} while (state[i][j].result == res);
reservations[tid][max_hes+1] = ∞;

exit:
reservations[tid][max_hes].A = ∞;

}

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

Figure 4. The Wait-Free Eras (WFE) memory reclamation scheme.

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Ruslan Nikolaev, Binoy Ravindran

3.4 Wait-Free Eras (WFE)
Figure 4 presents WFE’s pseudo-code for functions that di-
verge from Hazard Eras. All other operations that use the
reservations array need to be modified accordingly to access
the A component of the pair which retains an era. The reser-
vations array is also extended by two additional reservations
per each thread, i.e., its size is now max_hes+2. These two
new reservations should never be used by the application;
they are internal to help_thread().
WFE slightly alters the API for get_protected(). Its extra

argument, parent, needs to provide the area (block) where the
hazardous reference is located. Typical data structures keep
all references inside their blocks (e.g., a linked-list node keeps
the reference to the next node) and the parent parameter
simply refers to the previously retrieved hazardous reference.
Since the topmost references do not have any parent, we
also allow to pass nullptr for them.
Lines 16-24 of get_protected() represent the fast path and

are identical to the original implementation. Lines 26-27
retrieve the alloc_era from the parent block (if any), so that
the block can be saved from being reclaimed while retrieving
the hazardous reference from it by a helper method.
To facilitate fast detection if any thread needs helping,

we maintain global variables counter_start and counter_end,
which are atomically incremented using F&A. Their purpose
is twofold. First, the difference between these two variables
indicate the number of threads that need helping. Second,
if the value of counter_start changes, it indicates that some
new thread entered the slow path region.
On the slow path, a thread initializes state with a haz-

ardous reference pointer and the alloc_era from the parent
block where it is located. As the final step, the thread atomi-
cally flips the result pair from some valid (previously used)
pointer and era to invptr and the current slow-path cycle tag
obtained from the reservations array. Right after that instant,
concurrent threads in increment_era() (Line 96), called from
alloc_block() and retire(), can detect that this thread needs
helping.

While waiting for help, the thread resumes the loop where
it attempts to retrieve the hazardous reference. If the thread
succeeds, it simply cancels the request by flipping its state
to some valid pointer and era (nullptr and∞ in the pseudo-
code). At that point, only the tag from the reservations array
needs to be incremented to prepare for the next slow-path
cycle (Line 40). The corresponding WCAS (Line 38) call can
also fail, indicating that some helping thread already pro-
duced the output which must be used instead. Either way,
the thread attempts to update its current reservation by us-
ing WCAS (Line 45) which can only fail if a helping thread
already produced an output and modified the corresponding
entry in reservations. The loop exits when the pointer field
is no longer invptr. Finally, the thread modifies the entry in
reservations from the output value in the result pair. (Note

that the entry can already be set by the helping thread, in
which case the same value will be just written again.)

We will now discuss the help_thread() procedure. First,
this procedure must set a reservation for the parent block,
so that it can be safely accessed (Line 107). While doing
so, the original get_protected() may already complete. Thus,
we check the tag (Line 110) before proceeding. Once the
reservation is set, the new cleanup() routine will make sure
that the parent block is not reclaimed (see Section 4). When
help_thread()’s loop converges and the output is produced
(Line 118), WCAS in Line 123 will attempt to update the
reservations array on behalf of the get_protected() thread. It
only succeeds if the tag still refers to the previous slow-path
cycle.

4 Correctness
We assume that programs are well-behaved, i.e., they call
provided API functions appropriately. We focus on the ar-
guments related to wait-freedom and reclamation safety.
General non-blocking and memory usage arguments remain
the same as in [34] since WFE is based on Hazard Eras. We
will denote the number of threads by n.

Lemma 1. The loop in Lines 34-49 is bounded by at most n
iterations.

Proof. A thread initiates the slow path in Line 33. The loop
can only become unbounded due to changing global_era.
At most n in-flight threads can already be executing incre-
ment_era(), from alloc_block() or retire(), prior to Line 99,
which increments global_era, but after Line 96, which detects
threads that need helping. Each of these in-flight threads will
execute Line 99, potentially causing the loop in get_protected()
to fail and repeat. Subsequent increment_era() calls detect
threads that need helping and only increment global_era
after help_thread() (Line 97) is complete. □

Lemma 2. The loop in Lines 113-130 is bounded by at most n
iterations.

Proof. The proof is similar to that of Lemma 1. The only
difference is that we need to also consider a case when the
loop potentially never terminates because the same thread
keeps requesting the slow path over and over again. How-
ever, Line 130 also checks the tag which guarantees that
help_thread handles just one slow-path cycle. □

Lemma 3. The loop in Lines 120-125 is bounded by at most 2
iterations.

Proof. For this loop to continue, the tag must remain in-
tact (Line 122), i.e., the corresponding get_protected() call
is still pending. The loop is only executed when WCAS in
Line 118 succeeds. Consequently, the output is produced,
which prompts Line 49 to terminate the slow-path loop in
get_protected(). Prior to that loop termination,WCAS can still

Wait-Free Eras (WFE) PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

change the reservations array one more time (Line 45). Thus,
the loop in Lines 120-125 may repeat one more time. □

Lemma 4. A parent object is not reclaimed while running
help_thread() as long as the object reclamation procedure first
checks normal reservations [0..max_hes-1] and then the first
special reservation.

Proof. For an object to be removed, no reservation should
overlap with it. By the API convention, the parent object
already has a corresponding reservation for it (except when
it is nullptr). However, this reservation is not guaranteed
to last after get_protected() is complete. If the tag in Line 110
matches the corresponding field in result, the reservation
was set while get_protected() was still active. For other cases,
we simply exit from help_thread(). Since the order of making
reservations coincides with the order of checks, the parent
object will be covered by at least one reservation. □

Lemma 5. An object referred to by a hazardous entry is not
reclaimed while handing over a reservation from help_thread()
to get_protected() as long as the object reclamation procedure
first checks the second special reservation and then normal
reservations [0..max_hes-1].

Proof. Similar to a parent object, a hazardous entry object ob-
tained in help_thread() is protected by a special and normal
reservations. Compared to Lemma 4, the order of reserva-
tions is different. Using similar arguments as in Lemma 4,
we conclude that the order of checks must also happen in
the opposite direction. □

Theorem 1. get_protected() is wait-free bounded.

Proof. The number of iterations on the fast path is bounded.
For the slow path, Lemma 1 guarantees that the output must
be produced at most after n iterations, or the correspond-
ing loop must converge due to the global era value staying
intact. When the output is produced, the slow-path loop
terminates (Line 49). □

Theorem 2. alloc_block() is wait-free bounded.

Proof. alloc_block() periodically calls increment_era(). Loops
inside increment_era() are already bounded. On each itera-
tion, help_thread() is called. The help_thread() function is
bounded due to Lemmas 2 and 3. □

Theorem 3. retire() is wait-free bounded.

Proof. The proof is similar to that of Theorem 2. □

Theorem 4. WFE’s cleanup() is safe for memory reclamation.

Proof. The reservation scanning discipline in cleanup() sat-
isfies both Lemmas 4 and 5. It also satisfies Hazard Eras’
original discipline for all other blocks. □

5 Performance Results
We performed all tests on an x86_64 machine with 256GB
of RAM and four Intel Xeon E7-8890 v4 (2.20GHz) proces-
sors, each with 24 cores. Processors have separate L1/L2
caches per each core and the L3 cache is shared across each
processor. We pinned the first 24 threads to one processor,
next 24 threads to another processor, and so on. We also
disabled SMT (simultaneous multithreading), i.e., splitting
one physical core into several virtual cores, as it is typically
recommended to disable SMT for more predictable measure-
ments.

We ran the benchmark in [39] that already implements ex-
isting reclamation approaches and additionally implemented
our approach. The schemes include:

WFE: our wait-free eras scheme presented in this paper.
HE: the hazard eras scheme [33], which WFE extends.
HP: the classical hazard pointers scheme [27].
EBR: the epoch-based reclamation scheme.
2GEIBR: the interval-based reclamation approach of [39];

we used the 2GEIBR version which does not tag pointers.
Leak Memory: a baseline which just leaks memory, i.e.,

provides no memory reclamation.

We have fixed a potential race condition in HE’s retire(),
which probably went unnoticed in the original benchmark
due to subtle differences in retire() between HE and IBR.
We compiled the benchmark, which is written in C++,

using g++ 8.3.0 (-O3 optimizations). Similar to [39], we used
jemalloc [15] due to its better performance.
The goal of our evaluation is twofold. First, we wish to

understand how universal our scheme is and its performance
when used with common lock-free data structures. Second,
we wish to understand the effectiveness of using our reclama-
tion scheme with wait-free data structures while providing
wait-free progress guarantees. Since wait-free data struc-
tures are typically much harder to implement, we focused
on a select few.
For lock-free data structures, we used the existing tests

from the benchmark: a sorted Linked List [18] (includes
a modification from [27]), Natarajan BST (binary search
tree) [29], and Hash Map [27]. For wait-free data structures,
we extended the benchmark to implement Kogan-Petrank
(KP) [23] and CRTurn [35] wait-free queues for all reclama-
tion schemes; we based our implementation on the existent
code for Hazard Pointers [1]. The original KP queue uses a
garbage collector, for which no known wait-free implemen-
tation exists; thus, we are the first to evaluate the KP queue
with wait-free reclamation.

In the evaluation, we used both write-dominated tests,
where one half of all operations are insertions and the other
half are deletions, as well as read-mostly tests, where 90% of
all operations are get() and the remaining 10% are put(). Each
data structure implements an abstract key-value interface
with the corresponding operations, i.e., insert(), delete(), get(),

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Ruslan Nikolaev, Binoy Ravindran

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●● ●●●●●
●●●●●

●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

>>>>>

>>>>>

>>>>>
>>>>>

>>>>>

>>>>>
>>>>>

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

0.0

0.5

1.0

1.5

2.0

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Number of Threads

M
o

p
s
 /

 s
e

c
o

n
d

>
●WFE

EBR
HE
HP

2GEIBR
Leak Memory

(a) KP (throughput)

●●●●●
●●●●●

●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●
●●●●● ●●●●● ●●●●●

>>>>>
>>>>> >>>>> >>>>> >>>>> >>>>>

>>>>>
>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>
>>>>> >>>>>

>>>>>

0

200

400

600

800

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Number of Threads

N
u

m
b

e
r

o
f

U
n

re
c
la

im
e

d
 O

b
je

c
ts >

●WFE
EBR

HE
HP

2GEIBR

(b) KP (unreclaimed objects)

●●●●● ●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●● ●●●●●
●●●●●

●●●●●
●●●●● ●●●●●

●●●●● ●●●●● ●●●●● ●●●●●

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>
>>>>>

>>>>>
>>>>> >>>>>

>>>>>
>>>>> >>>>>

>>>>> >>>>> >>>>> >>>>>
0

1

2

3

4

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Number of Threads

M
o

p
s
 /

 s
e

c
o

n
d

>
●WFE

EBR
HE
HP

2GEIBR
Leak Memory

(c) CRTurn (throughput)

●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●>>>>> >>>>> >>>>>
>>>>> >>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>
>>>>>

>>>>>

>>>>>

>>>>> >>>>>

>>>>>

0

2000

4000

6000

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Number of Threads

N
u

m
b

e
r

o
f

U
n

re
c
la

im
e

d
 O

b
je

c
ts >

●WFE
EBR

HE
HP

2GEIBR

(d) CRTurn (unreclaimed objects)

Figure 5. Wait-free queues (50% insert() and 50% delete()).

and put(). Following the methodology from [39], each test
measured a single data point by pre-filling the data structure
with 50K elements and then ran 10 seconds (repeated 5 times).
The key for each operation is randomly chosen from the
range (0, 100000).
The benchmark allows tuning of certain parameters for

each test. Specifically, the epoch counter for WFE, HE, EBR,
and 2GEIBR is incremented aftern×ν , where n is the number
of all active threads and ν is the per-thread frequency of
epoch or era increments. Similar to [39], we used ν = 150,
which is large enough to avoid performance bottlenecks for
the epoch counter increments in our setup. Similar to [39],
the per-thread scanning frequency of retired lists is at least
30 but depends on the algorithm due to differences in retire().
Finally, for WFE, we set the number of attempts on the fast-
path to 16. Even if the number of attempts is that small, the
slow path is taken rarely. (We also tested our algorithm by
forcing the slow path to be taken all the time to validate

that our implementation still works correctly under stress
conditions.)
Figure 5 shows the throughput for wait-free queues. For

queues, typically, only insert() and delete() operations make
sense. Thus, we only present results for the write-dominated
workload. Generally speaking, both KP and CRTurn queues
show similar throughput (Figures 5a and 5c) for all schemes
except HP, which is sometimes slower. Queues generally do
not scale very well. With respect to the average number of
unreclaimed objects per operation, a metric which measures
the memory reclamation speed, we found that HE and WFE
are slightly less efficient than HP, but better than EBR and
2GEIBR (Figures 5b and 5d).
For Linked-List (Figures 6 and 9), we found that EBR is

marginally better than all other schemes except HP, which ex-
hibits the worst performance. WFE is marginally worse than
HE. Our investigation has shown that an average linked-
list traversal operation is long (due to sequential search)
and dereferences many pointers. Consequently, (inlined)

Wait-Free Eras (WFE) PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●● ●●●●● ●●●●● ●●●●●

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>
>>>>> >>>>> >>>>> >>>>>

0.00

0.03

0.06

0.09

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Number of Threads

M
o

p
s
 /

 s
e

c
o

n
d

>
●WFE

EBR
HE
HP

2GEIBR
Leak Memory

●●●●●

●●●●●
●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

>>>>>
>>>>>

>>>>>

>>>>>
>>>>>

>>>>>

>>>>> >>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>
>>>>>

>>>>>

>>>>>

0

500

1000

1500

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Number of Threads

N
u

m
b

e
r

o
f

U
n

re
c
la

im
e

d
 O

b
je

c
ts >

●WFE
EBR

HE
HP

2GEIBR

Figure 6. Linked List (50% insert() and 50% delete()).

●●●●●

●●●●●

●●●●●

●●●●● ●●●●●
●●●●●

●●●●● ●●●●●
●●●●●

●●●●● ●●●●● ●●●●●
●●●●●

●●●●●
●●●●● ●●●●●

>>>>>

>>>>>

>>>>>

>>>>> >>>>>
>>>>>

>>>>> >>>>>
>>>>>

>>>>>
>>>>> >>>>>

>>>>>

>>>>> >>>>> >>>>>

0

50

100

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Number of Threads

M
o

p
s
 /

 s
e

c
o

n
d

>
●WFE

EBR
HE
HP

2GEIBR
Leak Memory

●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

●●●●●
●●●●● ●●●●●

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

>>>>>

>>>>>

>>>>>

0

5000

10000

15000

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Number of Threads

N
u

m
b

e
r

o
f

U
n

re
c
la

im
e

d
 O

b
je

c
ts >

●WFE
EBR

HE
HP

2GEIBR

Figure 7. Hash Map (50% insert() and 50% delete()).

●●●●●

●●●●●

●●●●●

●●●●● ●●●●●
●●●●●

●●●●● ●●●●●
●●●●●

●●●●● ●●●●● ●●●●● ●●●●●

●●●●●
●●●●●

●●●●●

>>>>>

>>>>>

>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>

>>>>> >>>>>

0

20

40

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Number of Threads

M
o

p
s
 /

 s
e

c
o

n
d

>
●WFE

EBR
HE
HP

2GEIBR
Leak Memory

●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

●●●●●

●●●●●
●●●●●

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

>>>>>

>>>>>

>>>>>

0

1000

2000

3000

4000

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Number of Threads

N
u

m
b

e
r

o
f

U
n

re
c
la

im
e

d
 O

b
je

c
ts >

●WFE
EBR

HE
HP

2GEIBR

Figure 8. Natarajan BST (50% insert() and 50% delete()).

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Ruslan Nikolaev, Binoy Ravindran

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●● ●●●●● ●●●●● ●●●●●

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>> >>>>> >>>>> >>>>>

0.00

0.03

0.06

0.09

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Number of Threads

M
o

p
s
 /

 s
e

c
o

n
d

>
●WFE

EBR
HE
HP

2GEIBR
Leak Memory

●●●●●

●●●●●

●●●●●
●●●●●

●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

>>>>>

>>>>>

>>>>> >>>>>

>>>>> >>>>>

>>>>> >>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

0

200

400

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Number of Threads

N
u

m
b

e
r

o
f

U
n

re
c
la

im
e

d
 O

b
je

c
ts >

●WFE
EBR

HE
HP

2GEIBR

Figure 9. Linked List (90% get() and 10% put()).

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●
●●●●●

●●●●●
●●●●● ●●●●●

●●●●● ●●●●●

●●●●●

●●●●●
●●●●●

>>>>>

>>>>>

>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>

0

50

100

150

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Number of Threads

M
o

p
s
 /

 s
e

c
o

n
d

>
●WFE

EBR
HE
HP

2GEIBR
Leak Memory

●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

>>>>>

>>>>>
>>>>>

0

1000

2000

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Number of Threads

N
u

m
b

e
r

o
f

U
n

re
c
la

im
e

d
 O

b
je

c
ts >

●WFE
EBR

HE
HP

2GEIBR

Figure 10. Hash Map (90% get() and 10% put()).

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●

>>>>>

>>>>>

>>>>>

>>>>>
>>>>>

>>>>>

>>>>>

>>>>>

>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>

>>>>>

>>>>>

0

20

40

60

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Number of Threads

M
o

p
s
 /

 s
e

c
o

n
d

>
●WFE

EBR
HE
HP

2GEIBR
Leak Memory

●●●●●
●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

●●●●●

●●●●●

●●●●●

>>>>>
>>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>> >>>>>

>>>>>

>>>>>

>>>>>
>>>>>

0

500

1000

1 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Number of Threads

N
u

m
b

e
r

o
f

U
n

re
c
la

im
e

d
 O

b
je

c
ts >

●WFE
EBR

HE
HP

2GEIBR

Figure 11. Natarajan BST (90% get() and 10% put()).

Wait-Free Eras (WFE) PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

get_protected() calls have to be very efficient. Since WFE
also needs to call the slow-path procedure, higher register
pressure forces the compiler to generate less efficient code.
However, this overhead is still quite insignificant. If desired,
the overhead can be eliminated by customizing a calling con-
vention for the slow-path procedure: the customized call can
reduce the register pressure on the fast path by ensuring that
no registers need to be saved by callees. With respect to the
average number of unreclaimed objects per operation, except
for smaller concurrency, HE and WFE are less efficient than
HP, but better than EBR and 2GEIBR.

For Hash-Map (Figures 7 and 10), we found that EBR is at
the same level as or marginally outperforms other schemes
(except HP which has the worst performance). WFE is at
the same level as HE or even marginally outperforms it.
Natarajan BST (Figures 8 and 11) shows similar trends, except
that the gap between EBR and HE (or WFE) is larger. For the
write-dominated tests, we found that EBR is significantly
less memory efficient than all other schemes when threads
are preempted.

Overall, the results show that WFE’s performance is com-
parable to that of other high-performant non-blocking al-
gorithms such as HE and 2GEIBR. At the same time, WFE
provides the stronger wait-free progress guarantee.

6 Related Work
The literature presents a number of memory reclamation
techniques for concurrent data structures. We classify them
into different categories.

The first category includes schemes that use epochs such
as EBR [16], which originates from RCU [26]. In these ap-
proaches, a thread records the global epoch value to make a
reservation at the beginning of an operation. Then, at the end
of the operation, it resets the reservation. A related approach,
quiescent-state reclamation [19], increments the counter af-
ter all threads transition through a state where they hold no
pointers. Stamp-it [31] extends EBR to bound reclamation
cost to O(1).
Due to potentially unbounded memory usage, all these

techniques can be blocking when threads are preempted
or stalled. Hazard Eras [33] and IBR [39] implement a non-
blocking epoch-based approach. Our Wait-Free Eras scheme
extends Hazard Eras, but the same idea can also be straight-
forwardly applied to certain versions of IBR, e.g., 2GEIBR.

The second category includes reclamation techniques that
deal with pointers. Hazard Pointers [27] record all pointers
that are currently in use. The technique has a relatively high
overhead due to its extensive use of memory barriers for
each pointer dereference. The original paper presents Haz-
ard Pointers as a “wait-free” scheme. However, the difficult
part comes during traversals, when an advertised pointer
changes and needs to be read again. (Granted, [27] sidesteps
an explicit get_protected() operation, which we discuss in

this paper.) Pass-the-buck [20, 21] uses a similar model. An-
other technique, drop-the-anchor [7], is designed specifically
for linked-lists, and outperforms hazard pointers. This ap-
proach, however, does not seem to be directly applicable to
other data structures. Optimistic Access [11] is more gen-
eral, and leverages a “dirty” flag instead of publishing hazard
pointers, but requires data structures to be written in a “nor-
malized form.” Automatic Optimistic Access [10] relies on
a data structure-specific garbage collector to make reclama-
tion more automatic, but still requires data structures to be
written in a normalized form. FreeAccess [9] forgoes this
requirement by extending the LLVM compiler to make the
process fully automatic.

We considered making Hazard Pointers wait-free. Just like
Hazard Eras, the Hazard Pointers scheme is also mostly wait-
free except the get_protected() operation. However, Hazard
Pointers use pointers instead of epochs, and there does not
seem to be a straightforward way to adopt our approach for
Hazard Pointers or any other technique that tracks pointers
in the same manner.
The third category is reference counting [12, 17, 28, 38].

A memory object is reclaimed when the reference counter,
associated with the object, reaches zero. General-purpose
reference counting is typically lock-free and very intrusive:
a pointer and a reference counter are adjacent and need to be
both atomically updated using WCAS. Reference counting
typically performs poorly on read-dominated workloads, as
read operations must update reference counters, which re-
quires additional memory barriers. Hyaline [30], an approach
that implements distributed reference counting, forgoes this
requirement and achieves excellent performance. However,
Hyaline is still only lock-free.

Reclamation schemes of the fourth category use special OS
mechanisms. For these reclamation schemes, it is generally
hard to guarantee non-blocking behavior since an OS can
use locks internally. DEBRA+ [8] uses signals to add fault
tolerance to EBR, i.e., a stalled thread which does not ad-
vance its epoch is interrupted by an OS signal. This signal
triggers a restart operation, for which special recovery code
needs to be written. ThreadScan [5] implements a mecha-
nism which uses a shared delete buffer. A thread triggers
reclamation by sending signals to all other active threads,
which scan their stacks and registers to mark deleted nodes
in the shared buffer if they are still used. ForkScan [4] also
uses signals as well as copy-on-write OS optimizations for
fork(2). A reclaimer thread creates a child process which
contains a “frozen” memory snapshot; this process can scan
deleted nodes in parallel. QSense [6] uses quiescent-state
reclamation in its fast path, but hazard pointers back it up
when threads do not respond. It also relies on the specific
behavior of an OS scheduler, which needs to context switch
threads periodically. Yet another approach [13] uses an OS
page fault mechanism to alleviate the costs related to mem-
ory barriers in hazard pointers.

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Ruslan Nikolaev, Binoy Ravindran

Software transactional memory (STM) can simplify con-
current programming andmemory reclamation. OneFile [36]
is a recent wait-free STM implementation with its own, STM-
specific memory reclamation. While OneFile’s framework
enables the implementation of a wide range of wait-free algo-
rithms by directly converting sequential data structures, cus-
tomized wait-free data structures can often better utilize par-
allelism and achieve higher overall performance. Our work,
which presents a universal memory reclamation scheme for
such arbitrary data structures, closes this gap.

Hardware transactional memory (HTM) mechanisms are
also widely used in concurrent programming. For example,
reference counting can be accelerated using HTM [14]. An-
other approach, StackTrack [3], encapsulates read operations
in HTM transactions; a concurrent thread will abort an HTM
transaction when an object is no longer live but still in use.
Since typical HTMs lack wait-free progress guarantees, it is
not clear how to use HTMs for wait-free memory reclama-
tion.

7 Conclusion
We presented the first practical wait-free memory reclama-
tion scheme called Wait-Free Eras (WFE). Like Hazard Eras,
it achieves great performance while providing compatibility
with Hazard Pointers. Unlike Hazard Eras or any other ex-
isting universal technique, WFE guarantees that all memory
reclamation operations are wait-free.

Since WFE eliminates a serious obstacle in wait-free pro-
gramming, i.e., wait-free memory reclamation, we hope that
it spurs further research in this area and the practical adop-
tion of wait-free algorithms.

Availability
WFE’s code is available at https://github.com/rusnikola/wfe.

Acknowledgments
We thank the anonymous reviewers for their insightful com-
ments, which helped improve the paper. This work is sup-
ported in part by ONR under grants N00014-16-1-2711 and
N00014-18-1-2022 and AFOSR under grant FA9550-16-1-0371.

References
[1] 2016. KPQueue and CRTurnQueue for Hazard Pointers. https://github.

com/pramalhe/ConcurrencyFreaks.
[2] 2017. Windows 8.1 System Requirements. https://support.microsoft.

com/en-us/help/12660/windows-8-system-requirements/.
[3] Dan Alistarh, Patrick Eugster, Maurice Herlihy, Alexander Matveev,

and Nir Shavit. 2014. StackTrack: An Automated Transactional Ap-
proach to Concurrent Memory Reclamation. In Proceedings of the Ninth
European Conference on Computer Systems (EuroSys ’14). ACM, New
York, NY, USA, Article 25, 14 pages. https://doi.org/10.1145/2592798.
2592808

[4] Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit.
2017. Forkscan: Conservative Memory Reclamation for Modern Oper-
ating Systems. In Proceedings of the Twelfth European Conference on
Computer Systems (EuroSys ’17). ACM, New York, NY, USA, 483–498.
https://doi.org/10.1145/3064176.3064214

[5] DanAlistarh,WilliamM. Leiserson, AlexanderMatveev, andNir Shavit.
2015. ThreadScan: Automatic and Scalable Memory Reclamation. In
Proceedings of the 27th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA ’15). ACM, New York, NY, USA, 123–132.
https://doi.org/10.1145/2755573.2755600

[6] Oana Balmau, Rachid Guerraoui, Maurice Herlihy, and Igor Zablotchi.
2016. Fast and Robust Memory Reclamation for Concurrent Data
Structures. In Proceedings of the 28th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA ’16). ACM, New York, NY, USA,
349–359. https://doi.org/10.1145/2935764.2935790

[7] Anastasia Braginsky, Alex Kogan, and Erez Petrank. 2013. Drop the
Anchor: Lightweight Memory Management for Non-blocking Data
Structures. In Proceedings of the Twenty-fifth Annual ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA ’13). ACM, New
York, NY, USA, 33–42. https://doi.org/10.1145/2486159.2486184

[8] Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free
Data Structures: There Has to Be a Better Way. In Proceedings of the
2015 ACM Symposium on Principles of Distributed Computing (PODC
’15). ACM, New York, NY, USA, 261–270. https://doi.org/10.1145/
2767386.2767436

[9] Nachshon Cohen. 2018. Every Data Structure Deserves Lock-free
Memory Reclamation. Proc. ACM Program. Lang. 2, OOPSLA, Article
143 (Oct. 2018), 24 pages. https://doi.org/10.1145/3276513

[10] Nachshon Cohen and Erez Petrank. 2015. Automatic Memory Recla-
mation for Lock-free Data Structures. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2015). ACM, New York,
NY, USA, 260–279. https://doi.org/10.1145/2814270.2814298

[11] Nachshon Cohen and Erez Petrank. 2015. Efficient Memory Man-
agement for Lock-Free Data Structures with Optimistic Access. In
Proceedings of the 27th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA ’15). ACM, New York, NY, USA, 254–263.
https://doi.org/10.1145/2755573.2755579

[12] David L. Detlefs, Paul A. Martin, Mark Moir, and Guy L. Steele Jr. 2002.
Lock-free reference counting. Distributed Computing 15, 4 (01 Dec
2002), 255–271. https://doi.org/10.1007/s00446-002-0079-z

[13] Dave Dice, Maurice Herlihy, and Alex Kogan. 2016. Fast Non-intrusive
Memory Reclamation for Highly-concurrent Data Structures. In Pro-
ceedings of the 2016 ACM SIGPLAN International Symposium on Mem-
ory Management (ISMM 2016). ACM, New York, NY, USA, 36–45.
https://doi.org/10.1145/2926697.2926699

[14] Aleksandar Dragojević, Maurice Herlihy, Yossi Lev, and Mark Moir.
2011. On the Power of Hardware Transactional Memory to Simplify
Memory Management. In Proceedings of the 30th Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing (PODC ’11).
ACM, New York, NY, USA, 99–108. https://doi.org/10.1145/1993806.
1993821

[15] Jason Evans. 2006. A scalable concurrent malloc (3) implementation
for FreeBSD. In Proc. of the BSDCan Conference, Ottawa, Canada.

[16] Keir Fraser. 2004. Practical lock-freedom. Technical Report UCAM-
CL-TR-579. University of Cambridge, Computer Laboratory. http:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf

[17] A. Gidenstam, M. Papatriantafilou, H. Sundell, and P. Tsigas. 2009. Effi-
cient and Reliable Lock-Free Memory Reclamation Based on Reference
Counting. IEEE Transactions on Parallel and Distributed Systems 20, 8
(Aug 2009), 1173–1187. https://doi.org/10.1109/TPDS.2008.167

[18] Timothy L. Harris. 2001. A Pragmatic Implementation of Non-blocking
Linked-lists. In Distributed Computing, Jennifer Welch (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 300–314.

https://github.com/rusnikola/wfe
https://github.com/pramalhe/ConcurrencyFreaks
https://github.com/pramalhe/ConcurrencyFreaks
https://support.microsoft.com/en-us/help/12660/windows-8-system-requirements/
https://support.microsoft.com/en-us/help/12660/windows-8-system-requirements/
https://doi.org/10.1145/2592798.2592808
https://doi.org/10.1145/2592798.2592808
https://doi.org/10.1145/3064176.3064214
https://doi.org/10.1145/2755573.2755600
https://doi.org/10.1145/2935764.2935790
https://doi.org/10.1145/2486159.2486184
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/3276513
https://doi.org/10.1145/2814270.2814298
https://doi.org/10.1145/2755573.2755579
https://doi.org/10.1007/s00446-002-0079-z
https://doi.org/10.1145/2926697.2926699
https://doi.org/10.1145/1993806.1993821
https://doi.org/10.1145/1993806.1993821
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
https://doi.org/10.1109/TPDS.2008.167

Wait-Free Eras (WFE) PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

[19] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and
Jonathan Walpole. 2007. Performance of memory reclamation for
lockless synchronization. J. Parallel and Distrib. Comput. 67, 12 (2007),
1270 – 1285. https://doi.org/10.1016/j.jpdc.2007.04.010

[20] Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir. 2005.
Nonblocking Memory Management Support for Dynamic-sized Data
Structures. ACM Trans. Comput. Syst. 23, 2 (May 2005), 146–196. https:
//doi.org/10.1145/1062247.1062249

[21] Maurice Herlihy, Victor Luchangco, and Mark Moir. 2002. The Repeat
Offender Problem: A Mechanism for Supporting Dynamic-Sized, Lock-
Free Data Structures. In Proceedings of the 16th International Conference
on Distributed Computing (DISC ’02). Springer-Verlag, Berlin, Heidel-
berg, 339–353. http://dl.acm.org/citation.cfm?id=645959.676129

[22] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

[23] Alex Kogan and Erez Petrank. 2011. Wait-free Queues with Multiple
Enqueuers and Dequeuers. In Proceedings of the 16th ACM Symposium
on Principles and Practice of Parallel Programming (PPoPP ’11). ACM,
New York, NY, USA, 223–234. https://doi.org/10.1145/1941553.1941585

[24] Alex Kogan and Erez Petrank. 2012. A Methodology for Creating Fast
Wait-free Data Structures. In Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP
’12). ACM, New York, NY, USA, 141–150. https://doi.org/10.1145/
2145816.2145835

[25] L. Lamport. 1979. How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs. IEEE Trans. Comput. 28, 9
(Sept. 1979), 690–691. https://doi.org/10.1109/TC.1979.1675439

[26] Paul E. McKenney, Jonathan Appavoo, Andi Kleen, O. Krieger, Orran
Krieger, Rusty Russell, Dipankar Sarma, and Maneesh Soni. 2001. Read-
Copy Update. In In Ottawa Linux Symposium. 338–367.

[27] MagedM.Michael. 2004. Hazard pointers: safememory reclamation for
lock-free objects. IEEE Transactions on Parallel and Distributed Systems
15, 6 (June 2004), 491–504. https://doi.org/10.1109/TPDS.2004.8

[28] Maged M. Michael and Michael L. Scott. 1995. Correction of a Memory
Management Method for Lock-Free Data Structures. Technical Report.
University of Rochester, Computer Science.

[29] Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-
free Binary Search Trees. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP
’14). ACM, New York, NY, USA, 317–328. https://doi.org/10.1145/
2555243.2555256

[30] Ruslan Nikolaev and Binoy Ravindran. 2019. Brief Announcement:
Hyaline: Fast and Transparent Lock-Free Memory Reclamation. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing (PODC ’19). ACM, New York, NY, USA, 419–421. https:
//doi.org/10.1145/3293611.3331575

[31] Manuel Pöter and Jesper Larsson Träff. 2018. Brief Announcement:
Stamp-it, a More Thread-efficient, Concurrent Memory Reclamation
Scheme in the C++ Memory Model. In Proceedings of the 30th on
Symposium on Parallelism in Algorithms and Architectures (SPAA ’18).
ACM, New York, NY, USA, 355–358. https://doi.org/10.1145/3210377.
3210661

[32] Pedro Ramalhete and Andreia Correia. 2016. A Wait-Free
Queue with Wait-Free Memory Reclamation (Full Paper).
https://github.com/pramalhe/ConcurrencyFreaks/blob/master/
papers/crturnqueue-2016.pdf

[33] Pedro Ramalhete and Andreia Correia. 2017. Brief Announcement:
Hazard Eras - Non-Blocking Memory Reclamation. In Proceedings of
the 29th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’17). ACM, New York, NY, USA, 367–369. https://doi.org/10.
1145/3087556.3087588

[34] Pedro Ramalhete and Andreia Correia. 2017. Hazard
Eras - Non-Blocking Memory Reclamation (Full Paper).

https://github.com/pramalhe/ConcurrencyFreaks/blob/master/
papers/hazarderas-2017.pdf

[35] Pedro Ramalhete and Andreia Correia. 2017. POSTER: A Wait-Free
Queue with Wait-Free Memory Reclamation. In Proceedings of the
22Nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’17). ACM, New York, NY, USA, 453–454. https:
//doi.org/10.1145/3018743.3019022

[36] P. Ramalhete, A. Correia, P. Felber, and N. Cohen. 2019. OneFile:
A Wait-Free Persistent Transactional Memory. In 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). 151–163. https://doi.org/10.1109/DSN.2019.00028

[37] R. K. Treiber. 1986. Systems Programming: Coping with Parallelism.
Technical Report RJ 5118. IBM Almaden Research Center.

[38] John D. Valois. 1995. Lock-free Linked Lists Using Compare-and-swap.
In Proceedings of the Fourteenth Annual ACM Symposium on Principles
of Distributed Computing (PODC ’95). ACM, New York, NY, USA, 214–
222. https://doi.org/10.1145/224964.224988

[39] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and
Michael L. Scott. 2018. Interval-based Memory Reclamation. In Pro-
ceedings of the 23rd ACMSIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP ’18). ACM, New York, NY, USA, 1–13.
https://doi.org/10.1145/3178487.3178488

[40] Chaoran Yang and John Mellor-Crummey. 2016. A Wait-free Queue
As Fast As Fetch-and-add. In Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP
’16). ACM, New York, NY, USA, Article 16, 13 pages. https://doi.org/
10.1145/2851141.2851168

https://doi.org/10.1016/j.jpdc.2007.04.010
https://doi.org/10.1145/1062247.1062249
https://doi.org/10.1145/1062247.1062249
http://dl.acm.org/citation.cfm?id=645959.676129
https://doi.org/10.1145/1941553.1941585
https://doi.org/10.1145/2145816.2145835
https://doi.org/10.1145/2145816.2145835
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1145/2555243.2555256
https://doi.org/10.1145/3293611.3331575
https://doi.org/10.1145/3293611.3331575
https://doi.org/10.1145/3210377.3210661
https://doi.org/10.1145/3210377.3210661
https://github.com/pramalhe/ConcurrencyFreaks/blob/master/papers/crturnqueue-2016.pdf
https://github.com/pramalhe/ConcurrencyFreaks/blob/master/papers/crturnqueue-2016.pdf
https://doi.org/10.1145/3087556.3087588
https://doi.org/10.1145/3087556.3087588
https://github.com/pramalhe/ConcurrencyFreaks/blob/master/papers/hazarderas-2017.pdf
https://github.com/pramalhe/ConcurrencyFreaks/blob/master/papers/hazarderas-2017.pdf
https://doi.org/10.1145/3018743.3019022
https://doi.org/10.1145/3018743.3019022
https://doi.org/10.1109/DSN.2019.00028
https://doi.org/10.1145/224964.224988
https://doi.org/10.1145/3178487.3178488
https://doi.org/10.1145/2851141.2851168
https://doi.org/10.1145/2851141.2851168

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Ruslan Nikolaev, Binoy Ravindran

A Artifact appendix
A.1 Abstract
The artifact includes our extended version of the bench-
mark [39]. It includes our new WFE scheme as well as ex-
isting schemes: HE, HP, EBR, and 2GEIBR. The test set of
lock-free data structures is extended with KP and CRTurn
wait-free queues. The benchmark requires Linux with libje-
malloc and libhwloc (on an x86_64 machine that supports
cmpxchg16b). The gcc compiler must support C++11 as well
as extended inline assembly features for cmpxchg16b (we
tested gcc 8.3.0).

A.2 Artifact check-list (meta-information)
• Algorithm: New algorithm, Wait-Free Eras (WFE).
• Program: The benchmark with WFE implementation.
• Compilation: gcc with GCC_ASM_FLAG_OUTPUT
and C++11 support.

• Binary: Linux ELF (x86_64) executables.
• Run-time environment: Ubuntu 18.04.3 LTS.
• Hardware: Any multi-core x86_64 with cmpxchg16b
support; we tested it on 4x24 Intel Xeon E7-8890 v4
(2.20GHz).

• Execution: The execution time is passed through a
program parameter.

• Output: The output is produced in the CSV format.
PDF plots can be generated from CSV files.

• Experiments: A single python script runs all pre-
sented test cases.

• Workflow frameworks used?: No.
• Publicly available?: Yes.
• Artifacts publicly available?: Yes.
• Artifacts functional?: Yes.
• Artifacts reusable?: Yes.
• Results validated?: Yes.

A.3 Description
A.3.1 How delivered
The artifact is available through the public repository:

https://github.com/rusnikola/wfe.

A.3.2 Hardware dependencies
Any multi-core x86_64 with cmpxchg16b support; we tested
the benchmark on 4x24 Intel Xeon E7-8890 v4 (2.20GHz).
For the Leak Memory experiment, 256GB of RAM is recom-
mended, albeit RAM can still be much smaller if occasional
outliers are acceptable.

A.3.3 Software dependencies
Linux with gcc (C++11 and GCC_ASM_FLAG_OUTPUT sup-
port), python, libjemalloc, and libhwloc. In our setup with
Ubuntu 18.04.3, the following packages were installed: g++-8,
gcc-8, libhwloc-dev, libjemalloc-dev, python. (The default

gcc version was set to 8.) To draw charts, R is required: littler,
r-cran-plyr, r-cran-ggplot2.

A.4 Installation
make [Release Version]
make debug [Debug Version]

A.5 Experiment workflow
• Compile the benchmark.
• Run tests. We provide testscript_wfe.py which runs all
tests presented in the paper.

• For individual tests, you can also invoke tests directly.
For example, for WFE’s hash map test (10 seconds):
./bin/main -i 10 -m 3 -v -r 1 -o hashmap.csv

-t 4 -d tracker=WFE

For HE’s hash map:
./bin/main -i 10 -m 3 -v -r 1 -o hashmap.csv

-t 4 -d tracker=HE

(You can see all options by running ./bin/main -h.)
• Plot the results. See below.

A.6 Evaluation and expected result
Throughput and the number of unreclaimed objects of WFE
should roughly correspond to HE. Other algorithms such as
2GEIBR and EBR should have relatively similar performance
to WFE and HE, i.e., the gap is typically not very large. HP,
on the other hand, should typically have significantly worse
throughput but a smaller number of unreclaimed objects.

Running all tests:
cd ./ext/parharness/scripts
mkdir -p data/final
nohup ./testscript_wfe.py &

The results will be in data/final/*.csv. Note that this script
takes long time to complete. For rough results, the number
of iterations in testscript_wfe.py can be reduced.

Drawing PDF plots:
mv ./ext/parharness/scripts/data/final

./data/final
cd ./data/scripts
./genplots.sh

PDF plots will be placed in ./data/final/*.pdf. Note that
genplots.sh runs *.R scripts from the same directory. These
scripts are adjusted for the parameters in ./testscript_wfe.py.
When you change ./testscript_wfe.py, these scripts may need
to be changed accordingly.

A.7 Experiment customization
The original benchmark we used [39] is highly-customizable.
New reclamation schemes can be added to src/trackers (we
added WFE), whereas new data structure tests can be added
to src/rideables (we added KP and CRTurn queues).

https://github.com/rusnikola/wfe

	Abstract
	1 Introduction
	2 Background
	2.1 Progress Guarantees
	2.2 Atomic Operations
	2.3 Hazard Eras
	2.4 Challenges in Wait-Free Memory Reclamation

	3 Wait-Free Memory Reclamation
	3.1 Assumptions
	3.2 Data Fields and Formats
	3.3 Bird's-Eye View
	3.4 Wait-Free Eras (WFE)

	4 Correctness
	5 Performance Results
	6 Related Work
	7 Conclusion
	References
	A Artifact appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization

