
Brief Announcement: Hyaline: Fast and Transparent Lock-Free
Memory Reclamation

Ruslan Nikolaev
Virginia Tech, USA
rnikola@vt.edu

Binoy Ravindran
Virginia Tech, USA

binoy@vt.edu

ABSTRACT
We present a new lock-free safe memory reclamation algorithm,
Hyaline, which is fast, scalable, and transparent to the underlying
data structures. Hyaline easily handles virtually unbounded num-
ber of threads that can be created and deleted dynamically, while
retaining O(1) reclamation cost. We also extend Hyaline to avoid
situations where stalled threads prevent others from reclaiming
newly allocated objects, a common problemwith epoch-based recla-
mation. Our evaluation reveals that Hyaline’s throughput is high
– it steadily outperformed other reclamation schemes by > 10% in
one test and yielded even higher gains in oversubscribed scenarios.

CCS CONCEPTS
• Theory of computation→ Concurrent algorithms.

KEYWORDS
lock-free; memory reclamation; concurrent data structures
ACM Reference Format:
Ruslan Nikolaev and Binoy Ravindran. 2019. Brief Announcement: Hya-
line: Fast and Transparent Lock-Free Memory Reclamation. In 2019 ACM
Symposium on Principles of Distributed Computing (PODC ’19), July 29–
August 2, 2019, Toronto, ON, Canada. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3293611.3331575

1 INTRODUCTION
One of the most fundamental problems for lock-free data structures
that use dynamic memory allocation is that memory blocks need to
be safely deallocated. Safe memory reclamation (SMR) techniques
are typically needed for unmanaged (C/C++) code. Many existing
approaches for SMR originate from or improve upon epoch-based
reclamation (EBR) [4, 5] and hazard pointers (HP) [6]. EBR provides
a simple API but lacks protection against stalled threads that can
prevent timely reclamation and lead to memory exhaustion. HP
does not suffer from this problem, but is harder to use and slower
in practice. (SMR schemes that defend against stalled threads are
called robust [1, 10].) Furthermore, some algorithms [1, 2] rely on
special OS abstractions, making it difficult to use them in certain
cases, such as within OS kernels or platform-independent code.

We present Hyaline, a new algorithm that is not based on EBR
or HP directly, has very low overhead, and scales well. Unlike most

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6217-7/19/07.
https://doi.org/10.1145/3293611.3331575

SMR algorithms, which typically reserve per-thread entries, Hyaline
supports virtually unbounded number of threads using a small
number of slots. Moreover, Hyaline bounds the cost of reclamation
to ≈ O(1) per operation, irrespective of the total number of threads.

In oversubscribed scenarios, Hyaline particularly shines due to
its unique asynchronous block tracking mechanism (we saw more
than 30% gain over other algorithms). Threads do not need to peri-
odically check if block(s) can be safely freed. Instead, tracking is
reminiscent of reference counting, but Hyaline avoids the prohibi-
tive cost of classical reference counting [9].

Hyaline is well suited for preemptive environments where the
number of threads substantially exceeds the number of cores and
can change dynamically such as in OS kernels and server applica-
tions. Unlike many other techniques, in Hyaline, threads that delete
blocks (nodes) are not necessarily those that end up freeing them.
This results in better transparency, as threads are “off the hook” as
soon as they complete data structure operations. Unlike in EBR or
HP, Hyaline’s threads can immediately be recycled or destroyed
without worrying about the fate of their previously deleted blocks.

2 OVERALL DESIGN
In Hyaline, programs explicitly retire objects and ensure that retired
objects are not reachable from subsequent operations on the data
structures. Each operation on the data structures must be enclosed
between enter and leave calls. Hyaline’s use of reference counters
is triggered only when handling retired nodes.

We first present Hyaline’s simpler version that manipulates just a
single retirement list. Hyaline’s key idea is that all threads participate
in the tracking of retired nodes between enter and leave in this
global list even if they are not actively retiring any nodes themselves.
A special Head tuple is associated with this list. The HPtr field of
this tuple is a pointer to the beginning of the list, and the HRef field
counts the number of active threads. When each thread enters, it
atomically increments the HRef field to indicate that a new thread
has arrived. At the same time, the thread records a snapshot value
of HPtr into a special per-thread Handle variable.

Each node for a data structure incorporates a special header
which contains Next and NRef fields. Next is a pointer to the next
node in the list, and NRef of every non-Head node counts threads
that can still access this node. For the very first node, HRef itself
serves this purpose. When retiring a new node, its NRef is set to 0.
After appending the node, the current thread atomically adds the
snapshot value of HRef to the NRef field of the predecessor node
(Head no longer points to the predecessor node).

When a thread leaves, it decrements HRef. At the same time, it
retrieves the HPtr pointer and traverses a sublist of nodes from
HPtr to Handle that were retired since it entered. While traversing,
the thread decrements NRef counters for every non-Head node.

https://doi.org/10.1145/3293611.3331575
https://doi.org/10.1145/3293611.3331575


PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada Ruslan Nikolaev and Binoy Ravindran

1 forall head_t Head ∈ Heads[k] do // Initialization
2 Head.HRef = 0, Head.HPtr = Null;

3 handle_t enter(int slot)
4 Last = FAA(&Heads[slot], { .HRef=1, .HPtr=0 });
5 return Last.HPtr; // Returns a handle

6 void leave(int slot, handle_t handle)
7 do // Decrement HRef and fetch Next
8 Head = Heads[slot];
9 Curr = Head.HPtr;

10 if ( Curr , handle )
11 Next = Curr->Next;

12 New.HPtr = Curr;
13 if ( Head.HRef = 1 ) New.HPtr = Null;
14 New.HRef = Head.HRef - 1;
15 while not CAS(&Heads[slot], Head, New);
16 if ( Head.HRef = 1 and Curr , Null ) // Treat Curr as
17 adjust(Curr, Adjs); // if it were a predecessor

18 if ( Curr , handle ) // Non-empty list
19 traverse(Next, handle);

20 handle_t trim(int slot, handle_t handle)
21 Head = Heads[slot]; // Do not alter head

22 Curr = Head.HPtr;
23 if ( Curr , handle ) // Non-empty list
24 traverse(Curr->Next, handle);

25 return Curr; // Returns a new handle

26 void retire(batch_t *batch)
27 doAdj = False, Empty = 0, Inserts = 0;
28 batch->NRefNode()->NRef = 0;
29 forall int slot ∈ 0..k-1 do
30 do // Add the batch to this slot
31 Head = Heads[slot];
32 if ( Head.HRef = 0 ) // REF #1#
33 doAdj = True, Empty += Adjs;
34 continue with the next slot;

35 New.HPtr = batch->NextNode();
36 New.HRef = Head.HRef;
37 New.HPtr->Next = Head.HPtr;
38 while not CAS(&Heads[slot], Head, New);
39 adjust(Head.HPtr, Adjs + Head.HRef); // REF #2#

40 if ( doAdj ) adjust(batch->FirstNode(), Empty); // REF #3#

41 void adjust(node_t *node, int val)
42 Ref = node->NRefNode;
43 if ( FAA(&Ref->NRef, val) = -val ) free_batch(Ref->First);

44 void traverse(node_t *next, handle_t handle)
45 do // Traverse the retirement sublist
46 Curr = next;
47 if ( Curr = Null ) break;
48 next = Curr->Next;
49 Ref = Curr->NRefNode;
50 if ( FAA(&Ref->NRef, -1) = 1 ) free_batch(Ref->First);
51 while Curr , handle;

Figure 1: Hyaline for double-width CAS.

1 handle_t enter(int slot)
2 Heads[slot] = { .HRef=1, .HPtr=Null };
3 return Null; // Returns a handle

// Replace #2# in retire() with: Inserts++

4 void leave(int slot, handle_t handle)
5 Head = SWAP(&Heads[slot], { .HRef=0, .HPtr=Null });
6 if ( Head.HPtr , Null ) traverse(Head.HPtr, handle);

// Replace #3#: adjust(batch->FirstNode(), Inserts)

Figure 2: Hyaline-1 for single-width CAS.

1 int AllocEra = 0; // Initialization

2 thread int AllocCounter = 0;
3 forall int Access ∈ Accesses[k] do Access = 0;
4 forall signed int Ack ∈ Acks[k] do Ack = 0;

5 node_t *deref(int slot, node_t **ptr_node)
6 Access = Accesses[slot];
7 while True do
8 node_t * Node = (*ptr_node);
9 Alloc = AllocEra;

10 if ( Access = Alloc ) return Node;
11 Access = touch(slot, Alloc);

12 void retire(batch_t *batch)
// Replace #1# in retire() with:

13 Access = Accesses[slot];
14 Min = batch->MinBirth();
15 if ( Head.HRef = 0 or Access < Min ) ...;
16 FAA(&Acks[slot], Head.HRef); // Skip in Hyaline-1S

17 void init_node(node_t *node)
18 if ( AllocCounter++mod Freq = 0 ) FAA(&AllocEra, 1);
19 node->BirthEra = AllocEra; // Shares space with Next

20 int touch(int slot, int era)
21 do // Hyaline-1S: touch is ordinary memory write
22 Access = Accesses[slot];
23 if ( Access ≥ era ) return Access;
24 while not CAS(&Accesses[slot], Access, era);
25 return era

// Changes below are for Hyaline-S, not Hyaline-1S

26 handle_t enter(int *slot)
27 while Acks[*slot] ≥ Threshold do
28 *slot = (*slot + 1)mod k; // Try out all k slots

29 void traverse(int slot, node_t *next, handle_t handle)
30 Counter = 0;
31 do Counter++ ... while ...;
32 FAA(&Acks[slot], −Counter);

Figure 3: Hyaline-S: dealing with stalled threads.

To alleviate contention due to retire, threads retire nodes in
batches and keep a single reference counter per batch rather than
individual node. To alleviate contention due to enter and leave, we
introduce the concept of slots, which a thread chooses randomly.
Each slot has its own Head, and thus, we end up with multiple
retirement lists. When a batch is retired, it is added to every slot
that has its HRef , 0 (i.e., slots with active threads). Since slots may
end up with non-identical order of batches, we require the number
of nodes in batches to be strictly greater than the number of slots.
Each node in a batch keeps the Next pointer for the corresponding
slot’s list, and a dedicated node keeps the per-batch NRef counter
instead. All nodes in the batch are linked together, and each node

has an extra pointer to the node with NRef. Thus, each node keeps
three variables irrespective of batch sizes and total number of slots.

We generalize the idea of NRef adjustments to accommodate
Hyaline’s multiple-list version. When adjusting a predecessor in
slot i , we add Adjs +HRe fi rather than just HRef i , where Adjs is a
special constant which prevents the adjustment for the predecessor
to complete until all slots are handled. Assuming that the number of
slots, k , is a power of 2, and the maximum representable unsigned
integer value is 2N − 1, we calculate: Adjs =

⌊
2N −1
k

⌋
+ 1.

Hyaline-1 for Single-width CAS. If every thread allocates
its own unique slot, we can squeeze HRef into a single bit and
merge it with HPtr. This approach simplifies enter and leave, and



Hyaline: Fast and Transparent Lock-Free Memory Reclamation PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

adjustments. Instead of adjusting predecessors and empty slots, we
count the number of slots a batch is added to. After adding the
batch to the last slot, NRef of the batch is adjusted by this counter.

3 ALGORITHM DESCRIPTIONS
In Figure 1, we present pseudocode. (Hyaline-1 in Figure 2 replaces
enter and leave with simpler equivalents.) Hyaline requires double-
width CAS but can also be implemented with LL/SC; see [7] for
details. Correctness arguments are given in [7]. enter atomically
increments HRef while fetching the current pointer in a given slot.
retire inserts a batch to all slots. leave decrements HRef and derefer-
ences preceding nodes in the traverse helper method. An optional
trim operation (we do not use it in Section 4) is equivalent to leave
followed by enter, but avoids the unwanted alteration of Head.

To deal with stalled threads in Hyaline, we create Hyaline-S
(Figure 3) by partially adopting the idea from hazard eras (HE) [8]
and interval-based reclamation (IBR) [10] to record birth eras when
allocating memory. However, we do not use retire eras and also
support multiple threads per each slot. Our API is similar to 2GE-
IBR [10]: all pointer dereferences must be wrapped in deref. The
eras are 64-bit numbers which are assumed to never overflow in
practice. When nodes are allocated, init_node initializes their birth
eras with the era clock value. Threads must share per-slot eras, and
the maximum era needs to be set (when dereferencing) using the
touch helper function. retire uses the minimum birth era across all
nodes in a batch, and skips slots with stale eras.

Since threads share per-slot eras in Hyaline-S, enter avoids slots
occupied by stalled threads by using Ack values. To retain robust-
ness, we adaptively change the number of slots; see [7].

●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●● ●●●●● ●●●●● ●●●●●
●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●

●●●●●

0.10

0.15

0.20

0.25

1 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144

Threads

T
h
ro

u
g
h
p
u
t 
(M

 o
p
s
/s

e
c
)

●Leaky
Epoch

Hyaline
Hyaline−1

Hyaline−S
Hyaline−1S

IBR

(a) Throughput

●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●●
●●●●●

●●●●●

●●●●●
●●●●●

●●●●● ●●●●● ●●●●● ●●●●●
●●●●●

0

500

1000

1500

1 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144

Threads

R
e
ti
re

d
 O

b
je

c
ts

 p
e
r 

O
p
e
ra

ti
o
n ●Epoch

IBR
Hyaline
Hyaline−1

Hyaline−S
Hyaline−1S

(b) Average number of unreclaimed objects per operation

Figure 4: Bonsai Tree (50% insert, 50% delete).

4 EVALUATION
We extended the test framework of [10] to support Hyaline. We
present results for Bonsai Tree [3] under write-intensive workload
(50% insert, 50% delete). For more results, see [7]. We ran our tests for
up to 144 threads on a 72-core machine consisting of four Intel Xeon
E7-8880 v3 2.30 GHz (45MB L3 cache) CPUs with hyper-threading

disabled and 128GB of RAM. Threads are pinned in order, socket
by socket. We use jemalloc and clang 6.0 with -O3. For each data
point, the experiment starts by prefilling the data structure with
50,000 elements and runs 10 seconds (5 times). Each thread then
randomly performs the aforementioned operations. The key used
in each operation is randomly chosen from the range of 0 to 100,000
with equal probability.

We compare all Hyaline variants against a variant [10] of EBR
and 2GE-IBR. The benchmark parameters [10] for these algorithms
already appear to be optimized for high throughput.We also present
Leaky which does not perform any memory reclamation. For
Hyaline(-S), we cap the number of slots, k , at 128 (rounded number
of cores). We use batches of at least 64 nodes and at most k + 1.

Throughput (Figure 4a) decreases for all schemes as we approach
18 per-CPU cores. Hyaline has the best performance and steadily
outperforms Epoch by ≈10%. IBR, Hyaline-S, and Hyaline-1S have
similar performance; it is worse than their non-robust counterparts
due to a substantial number of pointer dereferences. The number
of unreclaimed objects in Figure 4b for Hyaline and Hyaline-S is
generally smaller than that of Epoch and IBR, respectively.

5 CONCLUSION
We presented Hyaline, a new algorithm for memory reclamation
which has a number of advantages: great performance and scalabil-
ity, easy integration with underlying data structures, and handling
of stalled threads (in Hyaline-(1)S). All Hyaline schemes are trans-
parent and suitable for environments where threads are created,
recycled, and deleted dynamically: threads are “off-the-hook” as
soon as they leave and need not check retirement lists afterwards.

We thank the anonymous reviewers for their valuable feedback.
We also thank Mohamed Mohamedin for helping with experiments
for an early version of the algorithm. This work is supported in part
by AFOSR under grants FA9550-15-1-0098 and FA9550-16-1-0371.

Complete details of the algorithms, analysis, and experimental
results are available in [7]. We provide code for all Hyaline variants
at https://github.com/rusnikola/lfsmr.

REFERENCES
[1] Oana Balmau, Rachid Guerraoui, Maurice Herlihy, and Igor Zablotchi. 2016. Fast

and Robust Memory Reclamation for Concurrent Data Structures. In The 28th
ACM Symp. on Parallelism in Algorithms and Architectures (SPAA ’16). 349–359.

[2] Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free Data Struc-
tures: There Has to Be a Better Way. In Proceedings of the 2015 ACM Symposium
on Principles of Distributed Computing (PODC ’15). 261–270.

[3] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2012. Scalable
Address Spaces Using RCU Balanced Trees. In The 17th Inter. Confer. on Architec-
tural Support for Programming Languages and OS (ASPLOS XVII). 199–210.

[4] Keir Fraser. 2004. Practical Lock-freedom (Ph.D. dissert.). University of Cambridge.
[5] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and JonathanWalpole.

2007. Performance ofmemory reclamation for lockless synchronization. J. Parallel
and Distrib. Comput. 67, 12 (2007), 1270 – 1285.

[6] Maged M. Michael. 2004. Hazard pointers: safe memory reclamation for lock-free
objects. IEEE Trans. on Parallel and Distributed Systems 15, 6 (June 2004), 491–504.

[7] Ruslan Nikolaev and Binoy Ravindran. 2019. Hyaline: Fast and Transparent Lock-
Free Memory Reclamation (full paper, arXiv). http://arxiv.org/abs/1905.07903.

[8] Pedro Ramalhete and Andreia Correia. 2017. Brief Announcement: Hazard Eras -
Non-Blocking Memory Reclamation. In Proceedings of the 29th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA ’17). 367–369.

[9] John D. Valois. 1995. Lock-free Linked Lists Using Compare-and-swap. In The 14th
ACM Symposium on Principles of Distributed Computing (PODC ’95). 214–222.

[10] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and Michael L.
Scott. 2018. Interval-based Memory Reclamation. In Proceedings of the 23rd ACM
Symposium on Principles and Practice of Parallel Programming (PPoPP ’18). 1–13.

https://github.com/rusnikola/lfsmr
http://arxiv.org/abs/1905.07903

	Abstract
	1 Introduction
	2 Overall Design
	3 Algorithm Descriptions
	4 Evaluation
	5 Conclusion
	References

