
Rethinking Communication in Multiple-kernel OSes
for New Shared Memory Interconnects

Antonio Barbalace
Stevens Institute of Technology
antonio.barbalace@stevens.edu

Pierre Olivier
Virginia Tech
polivier@vt.edu

Binoy Ravindran
Virginia Tech
binoy@vt.edu

Abstract
Future computer platforms will likely be built with a multi-
tude of on-chip and off-chip processing units being poten-
tially of different ISAs, OS-capable, and sharingmemorywith
a form of consistency. Multiple-kernel OSes, from multiker-
nels to single-system image OSes, have been demonstrated to
mange such platforms efficiently, but they assume no shared
memory between kernels as a founding principle. This posi-
tion paper proposes a new multiple-kernel OS design, which
leverages consistent shared memory across homogeneous
and heterogeneous processing units in a machine. Among
other benefits, this design enables porting commodity SMP
OSes to such future platforms, capitalizing on their shared
memory programming model, and extend them to multiple-
kernel OSes. Herein we present such design, based on two
new software primitives tackling the problem of sharing and
data format differences between eventually heterogeneous
computing units: typed shared memory and type-morphable
executable code. We also describe an initial implementation
built around Popcorn Linux for x86 and ARM.

1 Introduction
Differences between memory and peripheral interconnects
are becoming more blurry, due to lower latencies and higher
bandwidths of emerging technologies, such as PCIe 5.0 [63].
Moreover, memory coherency extends outside the memory
interconnect, now encompassing external accelerators and
I/O devices through technologies such as OpenCAPI [49],
CCIX [16], GenZ [26], or CXL [22]. This enables discrete
processing units, including CPU, GPU, “smart” peripheral
devices, etc., to operate on the same data without burdening
the programmer with additional memory operations (i.e.,
data copy, conversions). Similarly, modern on-chip coherent
interconnects, including CCI [3], IF [13], and the NoC in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLOS ’19, October 27, 2019, Huntsville, ON, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7017-2/19/10. . . $15.00
https://doi.org/10.1145/3365137.3365399

OpenPiton [5], link together on-chip CPU cores, GPU cores,
accelerators, etc., facilitating their operations on data.

All such processing units are increasingly offering OS-like
functionalities, while I/O devices are becoming “smart", i.e.,
programmable. For instance, near data/on-stream processing
capabilities are now available within storage [24, 28] and net-
work [15, 40, 42, 47] devices; and with GPUs becoming more
OS-friendly [29], several studies [36, 56] tried to have them
run non-strictly mathematical but control code. Hence, those
I/O devices and accelerators may run Operating System (OS)
code other than application code [8, 55]. Additionally, SoCs
combining multiple heterogeneous-ISA general-purpose pro-
cessors with cache coherent shared memory have been sim-
ulated [60], and prototyped on FPGAs [38]. The upcoming
Intel Skylake [31] and Enzian project [53] open additional
prototyping possibilities such as RISC-V and x86 or ARM.
Each general-purpose processor on the SoC may run OS and
application code.
On platforms that integrate multiple, perhaps heteroge-

neous, processing units, the classic approach is to run an
entire software stack (SMP OS and applications) for each
group of homogeneous processing units arranged on the
same coherent interconnect sharing memory (processor is-
land). OSes are independent, and applications need rewriting
to run among them. However, pioneered by the multiker-
nel [12, 48, 61], multiple-kernel OS designs [9, 11, 12, 39, 48,
50, 54, 59, 61, 64], which run a kernel instance per (group of)
processing unit(s) while providing the same OS and OS ser-
vices among all instances, demonstrated to be a more general
OS architecture. In fact, unlike SMP OSes, multiple-kernel
OSes are capable of seamlessly manage groups of homoge-
neous and heterogeneous processing units, from a single
to multiple machines – thus, they are ideal for emerging
platforms.

In today’s multiple-kernel OSes, inter-kernel communica-
tion happens via message-passing because kernel instances
assume no shared memory – they "share-nothing": their OS
services are written to implement a distributed protocol. Hence,
such OSes are unable to fully exploit the benefits of perva-
sive coherent shared memory on emerging platforms, where
similarly to existent SMPs, communication by messages is
expected to be more expensive than using shared memory
itself [32, 35, 46]. On the other hand, SMP OSes that are
built to exploit coherent shared memory cannot run among
heterogeneous processing units [10]. With the perspective

https://doi.org/10.1145/3365137.3365399

PLOS ’19, October 27, 2019, Huntsville, ON, Canada Antonio Barbalace, Pierre Olivier, and Binoy Ravindran

hardware, is it possible to merge the multiple-kernel OS and
classic SMP OS designs to support heterogeneous platforms
while capitalizing on shared memory and benefit from the
widespread deployability, large developer community, code
maturity, large driver base, etc. of classic SMP OSes?
In this position paper we advocate that multiple-kernel

OSes, currently based on message passing, should be re-
thought in order to capitalize on the consistent shared mem-
ory offered by emerging computing platforms – similarly to
SMP OSes. Consequently, inter-kernels communication on
shared memory will perform faster than paying the overhead
of 1) marshalling and unmarshalling data to accommodate
the inevitable issue of different data formats implemented by
heterogeneous processing units; 2) sending/receiving data,
including data copies, notify and wake up of the recipient; 3)
running a distributed protocol for control and synchroniza-
tion, etc. Notwithstanding, the problem of how to manage
inter-kernel shared memory, perhaps with different data
formats, has not been solved before.
Contribution. We propose a new OS architecture targeting
emerging platforms with multiple (heterogeneous) groups
of processing units interconnected via a form of coherent
shared memory: a multiple-kernel based on shared memory.
Focusing on the issues of sharing memory among kernel in-
stances, and data format differences between heterogeneous
processing units, the newmultiple-kernel OS is based on two
new primitives: typed shared memory, and type-morphable ex-
ecutable code. Together, these primitives may enable a stock
SMP OS to be re-architected as a multiple-kernel OS with
minimal effort – i.e., without the necessity of rewriting OS
services for distribution. In the long run, we believe that the
proposed technique will be streamlined in commodity SMP
OSes, and thus maintained at a low cost. We foresee that the
new multiple-kernel OS would ease the port of legacy ap-
plications using the shared memory programming model to
platforms with multiple (heterogeneous) processing islands.

2 Background

The multikernel [12] is the principal example of a multiple-
kernel OS – it operates a multicore/processor computer as
a network of computing nodes, a “distributed OS in a box".
Multiple-kernel OS implementations are either microkernels
built from scratch [12, 48, 50, 54, 61, 64], or modifications
of classic monolithic SMP kernels [9, 11, 39, 59]. Using ex-
clusively message passing as the communication primitive
between kernel instances – while shared memory can be
used as an optimization [12], such OSes were conceived
to boost scalability on large-SMP machines as well as to
support platforms with multiple heterogeneous processing
units/memory areas (e.g., Xeon and Xeon Phi, ARM and
x86) [9, 11].

An OS that extends among ISA-heterogeneous process-
ing units may face the problem of distribution/migration of

applications among those. In fact, applications natively com-
piled for an ISA cannot run on another, nor span/migrate
processes or threads among ISAs, due at least to the instruc-
tion and data format differences [9]. Managed code solves
the first problem, but not the latter. Therefore, already in
the 80s/90s, multiple projects studied the migration of appli-
cations in a network of heterogeneous machines [4, 33, 57].
During migration, data conversion to accommodate different
formats adds large overheads. More recent works, such as
HSA [52] or Popcorn Linux [9], improved the state-of-the-art
by imposing a common data format, but this is not doable in
all situations and may lead to a large memory overhead.

3 Platform Model
We target a hardware platform in which each processor has
its own private memory, and it is sharing memory with
a group of possibly heterogeneous processors. Memory is
organized in memory islands, areas of memory with homo-
geneous access characteristics. Those are interconnected
via emerging peripheral buses [16, 22, 26, 49] that provi-
sion shared memory with a sort of consistency [3, 13, 21,
30, 44]. Based on real prototype profiling [46] and previous
work [2, 5] we assume that such platforms will be char-
acterized by memory access latencies, locking scalability,
and inter-processor interrupt times similar to existing multi
NUMA-node SMPs. While memory access latencies and con-
sistency guarantees vary based on the interconnection and
the processor units, we will address these in future work.

Processing units may implement different ISAs, different
word sizes (e.g., 32bit, 64bit), and support diverse data for-
mats. Formats are defined by endianness and primitive data
types sizes as well as alignment. Concerning endianness, we
assume all processors support little-endian as the majority
of modern processors does. Despite our multiple-kernel OS
applies to platforms with homogeneous and heterogeneous-
ISA processor islands, the rest of the paper focuses on the
latter, for which we introduce a richer set of features.

4 Design Principles
We propose a new OS design at the midpoint of multiple-
kernel and classic SMP OSes: a multiple-kernel OS based
on shared memory, founded on two design principles: 1) for
inter-kernel communication, avoid or minimize the use of mes-
saging, hence prefer hardware-implemented consistent shared
memory (the opposite of the multikernel); 2)when dealing with
the same data having different formats and layouts among
processors, instead of keeping codes as-is and convert the data,
do the inverse: adapt the code to the data format.
Communication. The first design principle is motivated

by the observation that future computers will provide a form
of consistent shared memory between diverse processing
units. Despite message passing code being generally con-
sidered to scale better than shared memory code [12] on
consistent shared memory, message passing has its own,
non-negligible sources of overheads: when using messages

Rethinking Communication in Multiple-kernel OSes PLOS ’19, October 27, 2019, Huntsville, ON, Canada

a conspicuous amount of time is spent in marshaling and
unmarshalling, serializing and deserializing, or just convert-
ing data – which may outweigh the scalability benefits [35].
Moreover, a lot of work has been devoted to solve the shared
memory scalability problems [1], some of which has been
integrated in classic SMP OSes, including Linux [23]. Finally,
when using shared memory processors are decoupled: they
can independently operate on shared data with minimal
overhead, if not for synchronizations. Instead with messages,
any operation on data creates overhead for both sender and
receiver, even without synchronizations [35]. In fact, a mes-
sage have to be placed in a buffer, a notification sent (e.g.,
an IPI that may cost tens of us [41]), the receiver interrupts
processing needs to handle the message, and it may have to
send a message back in the same way. Thus, for performance,
shared memory is preferable than message passing.

Using sharedmemory at the base of a multi-kernel calls for
a possible easy adoption of commodity SMP OSes to hetero-
geneous platforms, which currently have to be re-designed
as multiple-kernel OSes: SMP OSes have to be rewritten to
support messaging, the standard communication method in
today’s multiple-kernel OSes. Such rewriting is expensive
and requires the addition of distributed protocols as well as
the code to handle each data structure [11]. On the contrary,
relying on consistent shared memory should allow porting
commodity SMP OSes with minimal effort.

Data Format. The second design principle is motivated
by the observation that most of the software that we are
producing has a fixed data format and a cast in stone exe-
cutable code segment. In virtue of this, previous approaches
to migrate code among heterogeneous processors focused
on keeping the code as-is and adapting the data to the new
format [4, 33, 57], incurring significant overheads at every
migration. A fixed data format and executable code seg-
ment ease debugging, and potentially simplify the scan of
latent virus signatures. However, previous work on compil-
ers claimed the possible advantages of having continuously
optimized code, thus changing the executable code at run-
time [37]. Updating code rather than data holds the promise
of significant runtime overheads reduction, especially in sce-
narios where the amount of data to process is significant.

5 Architecture
The proposedOS architecturemerges concepts frommultiple-
kernel and classic SMP OSes by running a different SMP OS
kernel instance per processor island, while kernel instances
communicates via shared memory. Among other goals, this
architecture aims at improving the performance of multiple-
kernel OSes adapted from commodity SMP OSes, such as
Popcorn Linux [9, 11], reducing the overhead due to message
passing by exploiting emerging hardware shared memory.
Because the OS problems of booting and creating a sin-

gle system environment have been solved already [6, 9, 11,
12, 43], herein we focus on two new software primitives

ISA A ISA B ISA C

Krn ISA A
Code
Priv Data

Multiple-kernel
Shared Data

Processors

Virtual
Memory
Spaces

Typed Shared Memory Allocations

Krn ISA B
Code
Priv Data

Krn ISA C
Code
Priv Data

Figure 1. Virtual address space in our design.

for “transparent" inter-kernel shared memory, namely typed
shared memory and type-morphable executable code, which
implement the above design principles, and together the con-
tract abstraction [7]. A contract is metadata that describes
the format of a memory area, all processors accessing that
memory area adhere to the format by virtue of the contract
– the supervisor code on each processor island is responsible
to make sure all software running on it observes the contract.

Heterogeneous processing platforms are characterized by
processors of various ISA and ABI, thus with incompatible
executable code, address space layout, data conventions, etc.
Each of such processors requires a different kernel executable
code, and processor-specific handling. Because of this, for
each kernel’s address space we enforce a private part and
a public part. The latter, contains data shared with other
processors. Figure 1 illustrates such virtual address space.
Overview. A multiple-kernel OS boots a kernel image per
(group of) processing unit(s). Kernel images are produced
from a mostly common codebase, with architecture depen-
dent and independent code. For example, for x86-64 94% of
the Linux’s (4.9.0) source code is architecture independent
(99% for Arm64), not including drivers.

In the proposed architecture, OS services that share data
structures among kernel instances still allocate memory
through the traditional OS’s memory allocators, such as
the page or slab allocators. These allocators are extended to
take an additional parameter representing a description of
the format of the memory object to be allocated. The object
description is produced at compile time, and it can be in any
format. When a first kernel, called creator, allocates a spe-
cific shared memory area, the same area does not have to be
reallocated neither reinitialized by another kernel wishing
to attach to that shared area. Attaching kernels are called at-
taché. The kernel source code is edited to bypass the regular
initialization process so that attaché kernels may instead use
suspend/resume functionalities already available in some
OS kernel subsystems. Moreover, sharing of global variables
(.bss, .data) is supported by an extended kernel loader.
Each shared memory area is identified by a global name, a
list of which, including an area description, is globally shared
among kernels on shared memory. When an attaché kernel
attaches to a shared memory area, it checks the object format
first. If the format is different from the one the code has been

PLOS ’19, October 27, 2019, Huntsville, ON, Canada Antonio Barbalace, Pierre Olivier, and Binoy Ravindran

ISA 2

arm64 x86-32 arm32

ISA
1

x86-64 0.21 MB / 5% 1.71 MB / 55% 1.12 MB / 27%

arm64 1.2 MB / 34% 1.58 MB / 41%

x86-32 0.12 MB / 4%

Table 1. Static data memory overhead (in MB and as a per-
centage of total static data) in bi-ISA heterogeneous systems
for a unified data format.

compiled for, the code accessing the data (accessor code) have
to be updated at runtime, thus keeping the data as-is. Hence,
the data format for a memory area is chosen at allocation
time. That choice can be made towards different objectives.
For example, in order to optimize for memory usage, in a het-
erogeneous setup including 32 and 64 bits ISAs, one would
choose the 32 bit format. Instead, if the data is expected to
be mostly manipulated by a particular ISA, to optimize for
performance one would choose this ISA’s native format.

We believe the described architecture can be integrated in
most of the existent SMP OS kernel code bases transparently.
However, compiler and runtime code have to be extended to
support the proposed functionalities.
Why Not a Pre-defined Unified Format? A unified data
format may be enforced [9, 60], but at the cost of memory
overhead to satisfy ISA combinations: maximum sizes need
to be selected for primitive types, and for alignment con-
straints the least common multiple must be chosen [9, 60].
This may also impact performance: because the maximum
sizes are chosen, ISAs with smaller word size have to use
several instructions to access data types.

To demonstrate the negative impact of a unified data for-
mat, we studied the static data of the Linux kernel (4.19.0) in
the x86-64, arm64, x86-32 and arm32 ISAs. We considered the
core kernel (no modules) from the Debian repositories. We
found very large numbers of data symbols that are present in
all ISAs but have different sizes: from 33% of the total symbols
when comparing x86-64 to arm64 up to 80% when compar-
ing arm32 to x86-64. We estimated the memory overhead
brought by selecting the largest size to create an hypothetical
unified format for a bi-ISA system. Results are presented in
Table 1. As one can observe, a unified data format can incur
large (up to 55%) memory footprint increases when consid-
ering systems composed of 64 and 32 bits processors. This
overhead is also a lower bound as we only consider size and
not alignment in this study. Thus, sticking with one native
format is the best solution – with the observation that in our
system the format choice is realized according to memory
consumption or performance considerations.
ProgrammingModel. With consistent shared memory be-
tween processor islands it would be ideal to use the shared
memory programming model for a multiple-kernel OS. How-
ever, because of processing units’ heterogeneity it is not

possible to share the entire memory among kernels, e.g., pro-
cessor specific boot up variables and routines shouldn’t be
shared. Thus, the programming model is not straight shared
memory, but it incorporates the same memory splitting of
PGAS [17, 18, 25]. The proposed typed shared memory is the
global part of the PGAS address space, while the partitioned
part of the PGAS is the rest (cf. Figure 1). Differently from
most PGAS runtimes, there are no explicit remote memory
accesses, memory management is still transparent to the
programmer and handled by the compiler. Similarly, there
are different allocators for local and global memory.
Typed Shared Memory. Typed shared memory is an at-
tempt to create a (shared) memory allocator that associates
a data format with an area of memory and a global name.
The format describes the exact data types (with sizes), fields
offsets in structures, item offsets in arrays, array’s memory
layout, etc. All accesses to such memory must enforce the
specified data type format. The data type format of a typed
shared memory is defined at creation time, together with a
global name (hash) used to tag the area so that an attaché
kernel can look it up and attach to it. When attaching to a
typed shared memory area a kernel receives the data type
format that it has to use accessing that memory. Below we
describe how this information is used by the kernel. The
description of the data format may come itself in any format.
Examples of formats emitted by popular compilers include
DWARF [20] or XML [14] – we are using the former.
In order to fully implement the contract abstraction [7],

in addition to the data format specification, a typed shared
memory allocator provides also topological information of
a specific area of memory. This includes consistency guar-
antees and the memory latencies in respect to a processor –
information that can be used for runtime optimizations.

A practical and safe implementation of typed shared mem-
ory requires compiler support. We propose that variables to
be used in typed shared memory areas should be marked by
the developer with the keyword __typed, so that the compiler
emits special code and generates type information. Note that
this is similar to the way thread local variables are declared in
C (__thread). For ease of use, automatic conversion routines
may be inserted by the compiler where the developer does
operate between two instances of the same object that are re-
spectively typed and not typed. For security, typed variables
may be checked on pointer access, to make sure the access
is within the same typed shared memory area, or another
one with appropriate permissions – but not outside.
Type-morphable Executable Code. With the introduc-
tion of typed shared memory, an address space presents
memory areas with runtime-defined data formats. Note that
memory areas with predefined data formats in physical ad-
dress space are very well known, for example peripheral
device’s memory; however, their data format is just fixed. To
support runtime-defined data formats, the executable code

Rethinking Communication in Multiple-kernel OSes PLOS ’19, October 27, 2019, Huntsville, ON, Canada

movq <val>,<base_rip+offset>(%rip)

x86-64, 64 bit accessor:
movl <val>,<base_rip+offset>(%rip)

x86-64, 32 bit accessor:

addi a4, <base_data_seg>(gp)
li a5, <val>
sw a5, <offset>(a4)

RISC-V-32, 32 bit accessor:

addi a4, <base_data_seg>(gp)
li a5, <val_lower_32_bits>
li a6, <val_upper_32_bits>
sw a5, <offset>(a4)
sw a6, <offset+4>(a4)

RISC-V-32, 64 bit accessor:

Figure 2. Accessor code examples for setting the value of a
struct member of different sizes in different ISAs.

must be changed/switched/adapted at runtime to adhere to
the published format of a specific typed shared memory area:
padding/alignment, data offset, data size, array’s memory
layout, etc. Therefore, we assume that two kernel instances
accessing the same typed shared memory, for example an
array of structs, have the same type definition for it, or one’s
definition is a subset of the other.We also assume that there is
no type mismatch or that type mismatches can be converted
without losing information. The typed shared memory sub-
system makes such checks while attaching a typed shared
memory area into a new kernel address space.
Figure 2 shows the generated code for a simple example:

setting the value of a struct member. We consider x86-64
and RISC-V 32 bits, and give accessor code examples for two
possible sizes for the member: 32 or 64 bits. The generated
code varies with the data format. First, according to the
member size, movq vs movl will be used for x86-64, or one vs
two phases stores for RISC-V. Second, the offset in bytes of
the member within the containing object (in bold in Figure 2)
will vary according to previous members sizes/alignment
constraints, and the alignment of the member. Finally, the
location of the data structure in the address space (in italic)
will be PC-relative for x86-64, base_rip, or relative to the
start of the data segment for RISC-V, base_data_seg.
To change, switch, or adapt the code at runtime (gener-

ically called morph) there are multiple options. The most
naive is to pre-compile the code that will access typed shared
memory in multiple formats and at runtime choose which
version to use. As the number of existing popular ISA/ABI
is not enormous, this appears feasible, but it may not scale
to complex data types that could require hundreds of acces-
sor code versions. Another option is to hot-patch [51, 62]
the code or rewrite it at runtime. Further options include
compiling the accessor code in an intermediate language
and JIT compile it to adhere to the advertised format – there
is no need to have a fully fledged JIT compiler for this, but
just one supporting a limited number of instructions. Finally,
code can adapt to data structures by simply using offsets
and (built-in) data conversion routines. The type-morphing
method is an implementation detail (see Section 6).
Inter-kernel Data Sharing. The long-term goal of the pro-
posed design is to share as many data structures as possible
between the multiple kernel instances of the OS. In fact, for
data structures that can be accessed from each compute unit,
this allows to save memory and also provides transparent

synchronization as opposed to the use of a complex distri-
bution/replication protocol. We describe a few examples of
those below. Each may apply to any of the classic OS designs,
including monolithic, microkernel, and exokernel.
Process Management.Multiple data-structures related to

process management can be shared. For example, the pro-
cess descriptors (in Linux the task_struct) are mostly
architecture-independent and should be shared. It would
ease maintaining the state of threads migrated, spawned, or
distributed among heterogeneous computing units.
Memory Management. Sharing some data structures re-

lated to memory management such as virtual memory area
descriptors would help the different kernel instances to main-
tain a consistent view of the PGAS virtual address space.
Statistics and Profiling. Sharing data structures related to

hardware performance counters would help heterogeneous
schedulers to make more sound decisions. For example, in
a work stealing scheduler one processing unit may want
to examine the performance of a thread on another unit to
decide if stealing should happen or not.

IO Subsystem. Finally, sharing data structures of I/O subsys-
tems would significantly help in efficiently offering an homo-
geneous view of I/O resources to programs. Tasks should see
a consistent view of the filesystem, which involves sharing
many control data structures of the virtual and actual filesys-
tems, as well as sharing caches such as the page/inode/dentry
cache for Linux. Sharing socket buffers also allows software
on different processing units to deal with incoming packets
independently of the device that produced them.

6 Implementation
We are working on a proof of concept based on the Popcorn
Linux [9, 11] kernel and compiler framework targeting a
heterogeneous platform with an x86-64 (AMD Epyc 7451)
and an ARM 64bit server (Cavium ThunderX). The servers
are interconnected via Dolphin PXH810 PCIe adapters [58]
providing sub-microsecond shared memory as well as DMA
transfers. This setup is at an early stage of development, and
aims to emulate emerging platforms with shared memory
across the peripheral bus.
Extended slab allocator. We modified the Linux’s slab al-
locator (slub) to accept on create the data format associated
with a memory area. Because Linux’s slab creation runtime
(kmem_cache_create()) already requests an identification
string, we used it to identify a typed shared memory (and
its format description). An array with fixed data format is
used to advertise typed shared memory objects on globally
accessible memory to other kernels. A kernel boot param-
eter provides the physical memory address of this array to
the typed shared memory slab allocator. Thus, only the first
kernel to boot creates such a table. When the slab’s create
function is called, the code checks in the table if an area of
memory with the same identifier has been already created
and if the data type format differs, it returns an error. Hence,

PLOS ’19, October 27, 2019, Huntsville, ON, Canada Antonio Barbalace, Pierre Olivier, and Binoy Ravindran

the code uses the new kmem_cache_query() to request the
data type format, "morphs" the data access code (see below),
and calls the slab’s create function again. Note that there
are parts of the kernel code that are not using the slab al-
locator, thus calling the page allocator directly or through
kmalloc(), for the sake of a prototype we converted a mini-
mum amount of kmalloc() in slab calls.
We are currently modifying OS’s initialization and tear-

down routines in order to avoid for attaché kernels reallo-
cation or earlier deallocation of data structures in a typed
shared memory. This includes also code in the early boot pro-
cess (Linux’s code in arch/*/boot/) that enable the sharing
of static memory (.bss and .data variables) (cf. Table 1).
Compiler support. For the time beingwe use pre-processed
sources in order to construct data structures descriptions
and compile them into the kernel image itself (similar to
asm-offsets.c). However, we are planning to automate the
generation of such information with compiler support.
We added the __typed compiler’s storage class keyword

in GCC, and modified the compiler to generate machine
code that supports runtime morphable data types. For each
__typed variable, the compiler allocates a global data struc-
ture, the type table, defining for each struct’s data field its
offset, size, and eventually a conversion function; for arrays,
each element displacement, helper code to support differ-
ent array’s memory layouts, etc. When a __typed variable
is accessed, the type table is used to generate the address
of its elements. Type tables are stored in memory and can
be accessed and changed by any kernel code. To protect
them from unintentional modifications they are in a specific
compilation section that is protected in writing. Currently,
only functions from the slab allocator are allowed to unpro-
tect, modify, and protect such areas. We plan to evaluate the
added overhead of using type tables, as well as automate the
process of declaring variables as __typed.

When invoking C’s sizeof() on __typed variables, it will
return the size value saved in the type table. Thus, making
sizeof() dynamic. Finally, we plan to force the compiler to
bound check memory accesses to the typed shared memory.
Inter-kernel communication. To simplify constructing
our prototype, only a subset of OS services are being con-
verted to use the proposed primitives.We use Popcorn Linux’s
provided ones for the rest – which is the reason we used Pop-
corn Linux instead of vanilla Linux. Therefore, not all slab
allocations are rewritten as typed shared memory, Finally, as
a design choice that fits with the PGAS programming model
the same typed shared memory is present at the same virtual
address in all kernel instances.
OS Subsystems. On the target hardware, we plan to share
data structures from the storage and network OS subsystems
– we will consider other subsystems in future work. Specifi-
cally, we aim to share filesystems control structures (below
VFS) within the storage subsystem, including the page cache

data and the page cache control structures. In the network
subsystem, we aim to shared the Linux’s socket buffers.

7 Related Work
Typed SharedMemory. Themost similar concept to typed
shared memory are data units [19]. Like typed shared mem-
ory, data units aim to replace message passing via a higher-
level shared memory abstraction. However, data units do not
preserve the shared memory programming model.

Debuggers, high-level languages, and language runtimes
(e.g., Java) implement a (runtime) type system. Assembly and
C languages, used to develop traditional OS kernels do not,
thus our proposal builds up on such previous works.
Morphable code andflexible address spaces. Morphable
code, or self-modifying code, not intended as a virus nor a
bug, has been introduced before for various applications [27,
34]. Moreover, LLVM [37] proposed continuous runtime op-
timization for performance. Additionally, hot and runtime
patching have been used for live fixing bugs [51, 62] and
performance improvements based on different hardware
(Linux’s alternatives). Differently, in this paper code modifi-
cations are introduced to adapt the data layout at runtime.
Operating Systems. We introduce a new design to build a
multiple-kernels OSwhere kernel instances access each other
internal data structures over shared memory – like a SMP
OS. MutekH [45] is the earliest work introducing “shared
everything” among OS kernel instances. However, it is based
on an exokernel and libOS – the exokernel, the lowest layer
of the software, does not exploit shared memory, while in our
proposal, the lowest level of the software use shared memory,
which is fairly more complicated and performant. K2 [39]
claims to adopt a similar concept of "shared-something" in
Linux. However, its implementation fully differs from ours,
does not introduce any new OS abstraction, and it doesn’t
apply to heterogeneous-ISA platforms.

8 Conclusion
Considering the trend through pervasive consistent shared
memory among eventually heterogeneous and OS-capable
processing units in emerging computing platforms, we ob-
served that existent multiple-kernel OSes do not exploit it. By
fully leveraging consistent shared memory multiple-kernel
OSes can boost their performance, while SMP OSes can be
extended to run on such hardware by leveraging ideas from
multiple-kernel OSes – with relatively low effort. We de-
scribed a newOS architecture including two central concepts
to leverage inter-kernel shared memory as well as hetero-
geneity, typed shared memory and type-morphable code, as
well as our initial implementation based on Popcorn Linux.

Acknowledgments
This work is supported in part by ONR under grants N00014-
16-1-2104, N00014-16-1-2711, and N00014-18-1-2022.

Rethinking Communication in Multiple-kernel OSes PLOS ’19, October 27, 2019, Huntsville, ON, Canada

References

[1] Shameem Akhter and Jason Roberts. 2006. Multi-core programming.
Vol. 33. Intel press Hillsboro.

[2] Johnathan Alsop, Matthew D Sinclair, and Sarita V Adve. 2018. Span-
dex: a flexible interface for efficient heterogeneous coherence. In Pro-
ceedings of the 45th Annual International Symposium on Computer
Architecture. IEEE Press, 261–274.

[3] ARM. 2019. ARM Website - CoreLink Cache Co-
herent Interconnect Family. https://developer.
arm.com/ip-products/system-ip/corelink-interconnect/
corelink-cache-coherent-interconnect-family.

[4] Giuseppe Attardi, A Baldi, U Boni, F Carignani, G Cozzi, A Pelligrini,
E Durocher, I Filotti, Wang Qing, M Hunter, et al. 1988. Techniques for
dynamic software migration. In Proceedings of the 5th Annual ESPRIT
Conference (ESPRIT’88), Vol. 1.

[5] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi
Zhou, Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne,
Xiaohua Liang, et al. 2016. Openpiton: An open source manycore
research framework. In ACM SIGARCH Computer Architecture News,
Vol. 44. ACM, 217–232.

[6] Amnon Barak and Oren La’adan. 1998. The MOSIX multicomputer
operating system for high performance cluster computing. Future
Generation Comp. Syst. 13, 4-5 (1998), 361–372.

[7] Antonio Barbalace and Anthony Iliopoulos. 2017. Address Space
and Executable Formats, Such Old Topics!. In Proceedings of the 7th
Workshop on Multicore and Rack-Scale Systems (MaRS’s 17).

[8] Antonio Barbalace, Anthony Iliopoulos, Holm Rauchfuss, and Goetz
Brasche. 2017. It’s Time to Think About an Operating System for Near
Data Processing Architectures. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems. ACM, 56–61.

[9] Antonio Barbalace, Rob Lyerly, Christopher Jelesnianski, Anthony
Carno, Ho-ren Chuang, and Binoy Ravindran. 2017. Breaking the
Boundaries in Heterogeneous-ISA Datacenters. In Proceedings of the
22th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’17).

[10] Antonio Barbalace, Alastair Murray, Rob Lyerly, and Binoy Ravindran.
2014. Towards operating system support for heterogeneous-isa plat-
forms. In In Proceedings of The 4th Workshop on Systems for Future
Multicore Architectures (SFMA).

[11] Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher Jeles-
nianski, Akshay Ravichandran, Cagil Kendir, Alastair Murray, and
Binoy Ravindran. 2015. Popcorn: Bridging the Programmability Gap
in heterogeneous-ISA Platforms. In Proceedings of the Tenth European
Conference on Computer Systems (EuroSys ’15). 29:1–29:16.

[12] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. 2009. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles (SOSP ’09). 29–44.

[13] Noah Beck, Sean White, Milam Paraschou, and Samuel Naffziger. 2018.
‘Zeppelin’: An SoC for multichip architectures. In 2018 IEEE Interna-
tional Solid-State Circuits Conference-(ISSCC). IEEE, 40–42.

[14] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and
François Yergeau. 1997. Extensible markup language (XML). World
Wide Web Journal 2, 4 (1997), 27–66.

[15] Broadcom. 2019. Stingray SmartNIC Adapters and IC. https://www.
broadcom.com/products/ethernet-connectivity/smartnic.

[16] CCIX Consortium. 2017. Cache Coherent Interconnect for Accelerators
(CCIX). http://www.ccixconsortium.com/.

[17] Bradford L Chamberlain, David Callahan, and Hans P Zima. 2007.
Parallel programmability and the chapel language. The International
Journal of High Performance Computing Applications 21, 3 (2007), 291–
312.

[18] Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole,
Jeff Kuehn, Chuck Koelbel, and Lauren Smith. 2010. Introducing
OpenSHMEM: SHMEM for the PGAS community. In Proceedings of the
Fourth Conference on Partitioned Global Address Space Programming
Model. ACM, 2.

[19] D. L. Cohn, A. Banerji, P. M. Greenwalt, M. R. Casey, and D. C. Kulka-
rni. 1992. Workstation cooperation through a typed distributed shared
memory abstraction. In [1992] Proceedings Third Workshop on Worksta-
tion Operating Systems. 70–74. https://doi.org/10.1109/WWOS.1992.
275686

[20] DWARF Debugging Information Format Committee et al. 2010.
DWARF debugging information format, version 4. Free Standards
Group (2010).

[21] HyperTransport Consortium. 2004. HyperTransport I/O Technology
Overview.

[22] CXL Members. 2019. Computer Express Link Specifications. https:
//www.computeexpresslink.org.

[23] Davidlohr Bueso, Scott Norton. 2014. An Overview of Kernel Lock
Improvements. http://events17.linuxfoundation.org/sites/events/files/
slides/linuxcon-2014-locking-final.pdf.

[24] Eideticom. 2017. Eideticom NoLoad FPGA Accelerator. https://www.
eideticom.com/uploads/images/NoLoad_Product_Spec.pdf. Online,
accessed 01/05/2019.

[25] Tarek El-Ghazawi and Lauren Smith. 2006. UPC: unified parallel C. In
Proceedings of the 2006 ACM/IEEE conference on Supercomputing. ACM,
27.

[26] Gen-Z Consortium. 2017. Gen-Z – A New Approach to Data Access.
http://genzconsortium.org/.

[27] Jonathon T. Giffin, Mihai Christodorescu, and Louis Kruger. 2005.
Strengthening Software Self-Checksumming via Self-Modifying Code.
In Proceedings of the 21st Annual Computer Security Applications Con-
ference (ACSAC ’05). IEEE Computer Society, Washington, DC, USA,
23–32. https://doi.org/10.1109/CSAC.2005.53

[28] Boncheol Gu, Andre S Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee,
Jonghyun Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon,
Sangyeun Cho, et al. 2016. Biscuit: A framework for near-data process-
ing of big data workloads. In ACM SIGARCH Computer Architecture
News, Vol. 44. IEEE Press, 153–165.

[29] John Hubbard and Jerome Glisse. 2017. GPUs: HMM: Heterogeneous
Memory Management. Red Hat Summit. https://www.redhat.com/
files/summit/session-assets/2017/S104078-hubbard.pdf, Online, ac-
cessed 01/05/2019.

[30] Intel. 2009. An Introduction to the Intel QuickPath Interconnect.
[31] Intel. 2018. Intel Xeon Processor Scalable Family. https:

//www.intel.com/content/dam/www/public/us/en/documents/
datasheets/xeon-scalable-datasheet-vol-1.pdf, Online, accessed
01/10/2019.

[32] Gabriele Jost, Hao-Qiang Jin, Dieter anMey, and Ferhat F Hatay. 2003.
Comparing the OpenMP, MPI, and hybrid programming paradigm on
an SMP cluster. (2003).

[33] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. 1988.
Fine-grained Mobility in the Emerald System. ACM Trans. Comput.
Syst. 6, 1 (Feb. 1988), 109–133. https://doi.org/10.1145/35037.42182

[34] Y. Kanzaki, A. Monden, M. Nakamura, and K. Matsumoto. 2003. Ex-
ploiting self-modification mechanism for program protection. In Pro-
ceedings 27th Annual International Computer Software and Applications
Conference. COMPAC 2003. 170–179. https://doi.org/10.1109/CMPSAC.
2003.1245338

[35] D. Katz, A. Barbalace, S. Ansary, A. Ravichandran, and B. Ravindran.
2015. Thread Migration in a Replicated-Kernel OS. In 2015 IEEE 35th
International Conference on Distributed Computing Systems. 278–287.

[36] Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Emmett Witchel,
AmirWated, andMark Silberstein. 2014. GPUnet: Networking Abstrac-
tions for GPU Programs. In Proceedings of the 11th USENIX Conference

https://developer.arm.com/ip-products/system-ip/corelink-interconnect/corelink-cache-coherent-interconnect-family
https://developer.arm.com/ip-products/system-ip/corelink-interconnect/corelink-cache-coherent-interconnect-family
https://developer.arm.com/ip-products/system-ip/corelink-interconnect/corelink-cache-coherent-interconnect-family
https://www.broadcom.com/products/ethernet-connectivity/smartnic
https://www.broadcom.com/products/ethernet-connectivity/smartnic
http://www.ccixconsortium.com/
https://doi.org/10.1109/WWOS.1992.275686
https://doi.org/10.1109/WWOS.1992.275686
https://www.computeexpresslink.org
https://www.computeexpresslink.org
http://events17.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
https://www.eideticom.com/uploads/images/NoLoad_Product_Spec.pdf
https://www.eideticom.com/uploads/images/NoLoad_Product_Spec.pdf
http://genzconsortium.org/
https://doi.org/10.1109/CSAC.2005.53
https://www.redhat.com/files/summit/session-assets/2017/S104078-hubbard.pdf
https://www.redhat.com/files/summit/session-assets/2017/S104078-hubbard.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-scalable-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-scalable-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-scalable-datasheet-vol-1.pdf
https://doi.org/10.1145/35037.42182
https://doi.org/10.1109/CMPSAC.2003.1245338
https://doi.org/10.1109/CMPSAC.2003.1245338

PLOS ’19, October 27, 2019, Huntsville, ON, Canada Antonio Barbalace, Pierre Olivier, and Binoy Ravindran

on Operating Systems Design and Implementation (OSDI’14). 201–216.
[37] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-

work for lifelong program analysis & transformation. In Proceedings
of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization. IEEE Computer Society,
75.

[38] Katie Lim, Jonathan Balkind, and David Wentzlaff. 2018. Juxtapiton:
Enabling heterogeneous-isa research with RISC-V and SPARC FPGA
soft-cores. arXiv preprint arXiv:1811.08091 (2018).

[39] Felix Xiaozhu Lin, Zhen Wang, and Lin Zhong. 2014. K2: A Mobile Op-
erating System for Heterogeneous Coherence Domains. In Proceedings
of the 19th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’14). 285–300.

[40] Mellanox Technologies. 2017. BlueField Multicore System on Chip.
http://www.mellanox.com/related-docs/npu-multicore-processors/
PB_Bluefield_SoC.pdf. Online, accessed 01/05/2019.

[41] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and Haibo Chen.
2019. SkyBridge: Fast and Secure Inter-Process Communication for
Microkernels. In Proceedings of the Fourteenth EuroSys Conference
2019 (EuroSys ’19). ACM, New York, NY, USA, Article 9, 15 pages.
https://doi.org/10.1145/3302424.3303946

[42] Timothy P. Morgan. 2013. Tilera Rescues CPU Cycles with Network
Coprocessors. https://bit.ly/2DfM53R, Online, accessed 01/05/2019.

[43] Christine Morin, Renaud Lottiaux, Geoffroy Vallée, Pascal Gallard,
DavidMargery, J-Y Berthou, and Isaac D Scherson. 2004. Kerrighed and
data parallelism: Cluster computing on single system image operating
systems. In Cluster Computing, 2004 IEEE International Conference on.
IEEE, 277–286.

[44] David Mulnix. 2017. Intel Xeon Processor Scalable Family Tech-
nical Overview. https://software.intel.com/en-us/articles/
intel-xeon-processor-scalable-family-technical-overview.

[45] MutekH Authors. 2016. MutekH reference manual. https://www.
mutekh.org/doc/index.html.

[46] Myron Slota. 2018. OpenCAPI Technology. https:
//openpowerfoundation.org/wp-content/uploads/2018/04/
Myron-Slota.pdf.

[47] Netronome. 2019. About Agilio SmartNICs. https://www.netronome.
com/products/smartnic/overview/, Online, accessed 01/05/2019.

[48] Edmund B Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel,
and Galen Hunt. 2009. Helios: heterogeneous multiprocessing with
satellite kernels. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles. ACM, 221–234.

[49] OpenCAPI Consortium. 2017. Welcom to OpenCAPI Consortium.
http://opencapi.org/.

[50] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug Woos, Arvind
Krishnamurthy, ThomasAnderson, and Timothy Roscoe. 2016. Arrakis:
The operating system is the control plane. ACM Transactions on
Computer Systems (TOCS) 33, 4 (2016), 11.

[51] Josh Poimboeuf. 2014. kpatch: dynamic kernel patching. LinuxWeekly
News. https://lwn.net/Articles/597123/, Online, accessed 01/10/2019.

[52] Phil Rogers. 2013. Heterogeneous system architecture overview. In
Hot Chips, Vol. 25.

[53] Timothy Roscoe. 2019. Building Enzian: a research computer. The
9th Workshop on Systems for Multi-core and Heterogeneous Archi-
tectures.

[54] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.
LegoOS: A Disseminated, Distributed {OS} for Hardware Resource
Disaggregation. In 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18). 69–87.

[55] Mark Silberstein. 2017. OmniX: an accelerator-centric OS for omni-
programmable systems. In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems. ACM, 69–75.

[56] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. 2013.
GPUfs: Integrating a File System with GPUs. In Proceedings of the

Eighteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’13). 485–498.

[57] Peter Smith and Norman C Hutchinson. 1998. Heterogeneous process
migration: The Tui system. Software: Practice and Experience 28, 6
(1998), 611–639.

[58] Dolphin Interconnect Solutions. 2015. PXH810 PCI Express Gen3 Host
Adapter. https://www.dolphinics.com/download/PX/OPEN_DOC/
PXH810_Product_Brief.pdf, Online, accessed 01/10/2019.

[59] Xiang Song, Haibo Chen, Rong Chen, Yuanxuan Wang, and Binyu
Zang. 2011. A Case for Scaling Applications to Many-core with OS
Clustering. In Proceedings of the Sixth Conference on Computer Systems
(EuroSys ’11). ACM, New York, NY, USA, 61–76. https://doi.org/10.
1145/1966445.1966452

[60] Ashish Venkat and Dean M. Tullsen. 2014. Harnessing ISA Diversity:
Design of a heterogeneous-ISA Chip Multiprocessor. In Proceeding of
the 41st Annual International Symposium on Computer Architecuture
(ISCA ’14). IEEE Press, Piscataway, NJ, USA, 121–132. http://dl.acm.
org/citation.cfm?id=2665671.2665692

[61] DavidWentzlaff and Anant Agarwal. 2009. Factored operating systems
(fos): the case for a scalable operating system for multicores. ACM
SIGOPS Operating Systems Review 43, 2 (2009), 76–85.

[62] Konrad R.Wilk and Ross Lagerwall. 2016. Patchingwith Xen LivePatch.
Xen Project Developpers Summit. Online, accessed 01/10/2019.

[63] Al Yanes. 2018. Doubling Bandwidth in Under Two Years: PCI Ex-
press® Base Specification Revision 5.0, Version 0.9 is Now Available
to Members. https://bit.ly/2ClJ9AT, Online, accessed 01/05/2019.

[64] Gerd Zellweger, Simon Gerber, Kornilios Kourtis, and Timothy Roscoe.
2014. Decoupling Cores, Kernels, and Operating Systems.. In OSDI,
Vol. 14. 17–31.

http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
https://doi.org/10.1145/3302424.3303946
https://bit.ly/2DfM53R
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://www.mutekh.org/doc/index.html
https://www.mutekh.org/doc/index.html
https://openpowerfoundation.org/wp-content/uploads/2018/04/Myron-Slota.pdf
https://openpowerfoundation.org/wp-content/uploads/2018/04/Myron-Slota.pdf
https://openpowerfoundation.org/wp-content/uploads/2018/04/Myron-Slota.pdf
https://www.netronome.com/products/smartnic/overview/
https://www.netronome.com/products/smartnic/overview/
http://opencapi.org/
https://lwn.net/Articles/597123/
https://www.dolphinics.com/download/PX/OPEN_DOC/PXH810_Product_Brief.pdf
https://www.dolphinics.com/download/PX/OPEN_DOC/PXH810_Product_Brief.pdf
https://doi.org/10.1145/1966445.1966452
https://doi.org/10.1145/1966445.1966452
http://dl.acm.org/citation.cfm?id=2665671.2665692
http://dl.acm.org/citation.cfm?id=2665671.2665692
https://bit.ly/2ClJ9AT

	Abstract
	1 Introduction
	2 Background
	3 Platform Model
	4 Design Principles
	5 Architecture
	6 Implementation
	7 Related Work
	8 Conclusion
	References

