
Formally Verified Lifting of
C-Compiled x86-64 Binaries

Freek Verbeek
freek@vt.edu

Virginia Tech & Open University
USA & The Netherlands

Joshua Bockenek
jabocken@vt.edu

Virginia Tech
USA

Zhoulai Fu
zhoulai.fu@sunykorea.ac.kr

State University of New York
Korea

Binoy Ravindran
binoy@vt.edu

Virginia Tech
USA

Abstract

Lifting binaries to a higher-level representation is an es-
sential step for decompilation, binary verification, patching
and security analysis. In this paper, we present the first ap-
proach to provably overapproximative x86-64 binary lifting.
A stripped binary is verified for certain sanity properties
such as return address integrity and calling convention ad-
herence. Establishing these properties allows the binary to
be lifted to a representation that contains an overapproxima-
tion of all possible execution paths of the binary. The lifted
representation contains disassembled instructions, recon-
structed control flow, invariants and proof obligations that
are sufficient to prove the sanity properties as well as cor-
rectness of the lifted representation. We apply this approach
to Linux Foundation and Intel’s Xen Hypervisor covering
about 400K instructions. This demonstrates our approach is
the first approach to provably overapproximative binary lift-
ing scalable to commercial off-the-shelf systems. The lifted
representation is exportable to the Isabelle/HOL theorem
prover, allowing formal verification of its correctness. If our
technique succeeds and the proofs obligations are proven
true, then ś under the generated assumptions ś the lifted
representation is correct.

CCS Concepts: • Software and its engineering → For-

mal software verification; Semantics; • Security and pri-

vacy→ Logic and verification.

Keywords: Binary Analysis, Formal Verification, Disassem-
bly

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9265-5/22/06.

https://doi.org/10.1145/3519939.3523702

ACM Reference Format:

Freek Verbeek, Joshua Bockenek, Zhoulai Fu, and Binoy Ravindran.

2022. Formally Verified Lifting of C-Compiled x86-64 Binaries. In

Proceedings of the 43rd ACM SIGPLAN International Conference on

Programming Language Design and Implementation (PLDI ’22), June

13ś17, 2022, San Diego, CA, USA.ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3519939.3523702

1 Introduction

Every technique applicable to binaries, whether it be de-
compilation [8, 16], binary verification [7, 20, 53], binary
patching [27, 59] or security analysis [13, 33, 52, 57], needs
to start with some form of binary lifting. Raw unstructured
data needs to be lifted to a form where one can reason over
behavior and semantics. Typically, binary lifting requires
an answer to at least the following base questions: 1.) what
instructions are executed by the binary (disassembly), and
2.) in what order can these instructions be executed (control
flow recovery)?

These base questions are intertwined: neither of them can
be answered in isolation. Disassembly requires knowledge
of which instruction addresses are reachable from the en-
try point. Such reachability analysis requires knowledge on
control flow, e.g., how jump targets are computed, to what
address a ret statement returns or what the bounds on in-
dices are when a jump table is read. Simply knowing what
influence a ret statement has on the control flow already re-
quires establishing that the return address is not overwritten.
Any tool that performs such analysis, however, requires at
least knowing what instructions are executed. This produces
the chicken-and-egg problem of disassembly [49]. Something
as ostensibly simple as disassembly requires, at a minimum,
establishing absence of stack overflows (for returns), deter-
mining upper bounds on array indices (for resolving jump
table accesses), dealing with pointer aliasing and adhering
to calling conventions.
There is no existing tool that takes as input a binary and

answers these two base questions. Both questions are in-
deed undecidable [25, 46]. The bulk of existing methods
are either known to be unsound (e.g., misidentify code as

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

934

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-6625-1123
https://orcid.org/0000-0002-1055-8003
https://orcid.org/0000-0003-2073-0564
https://orcid.org/0000-0002-8663-739X
https://doi.org/10.1145/3519939.3523702
https://doi.org/10.1145/3519939.3523702

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Freek Verbeek, Joshua Bockenek, Zhoulai Fu, and Binoy Ravindran

data or are underapproximative) [49] or are speculative or
learning-based [6, 61]. The strength of those tools is their
universality: they typically provide output for any binary,
even in cases where guesses and non-validated assumptions
have to be made. Their weakness is that their outputs are
untrustworthy; thus, any analyses built on top of them are
untrustworthy as well.

This paper proposes an approach to trustworthy binary lift-
ing that simultaneously performs 1.) disassembly, 2.) control-
flow recovery and 3.) generation of formal proofs that pro-
vide assurance of the output. Due to the undecidability of the
problem, our approach is not universal: it may fail on certain
binaries or annotate certain instructions with unsoundness
warnings. However, our approach provides theoretical guar-
antee that if unannotated output is produced, that output is
a sound overapproximative representation of the binary. To
the best of our knowledge, no existing work can provide scal-

able, formally overapproximative assurance between a binary

and its lifted representation.

Our approach verifies the following properties over func-
tions in the binary, each of which is necessary for proving
that the generated disassembly and control-flow are sound:

Return Address Integrity Functions do not overwrite their
own return address.
Bounded Control Flow All indirect (i.e., dynamically com-
puted) jumps transfer control flow to fixed, statically known,
bounded sets of addresses.
Calling Convention Adherence All functions are proven
to properly restore the set of registers indicated by the calling
convention as non-volatile.

This paper presents a two-step approach to formally veri-
fied binary lifting: step 1 lifts a binary while verifying the
above properties with algorithms proven correct with pencil-
and-paper proofs, whereas step 2 validates that each and any
inference made during step 1 can be proven formally correct
in Isabelle/HOL [14, 42].

Step 1 consists of an algorithm for extracting aHoare graph
(HG) from an x86-64 binary. The vertices of an HG consist of
1.) predicates containing information on registers, memory lo-
cations and flags and 2.)memory models that provide pointer
aliasing information. Edges are labeled with disassembled
instructions. A key aspect is that the edges are one-step-

inductive: each edge forms a Hoare triple [24]. Each vertex,
i.e., each predicate & memory model, is sufficiently strong to
prove that its outgoing edges are overapproximative, even in
the case of non-trivial control flow such as indirect branches,
jump tables and function calls/returns. In other words, each
vertex provides an invariant that is sufficiently strong to
prove what instructions are executed next.
An overapproximative relation requires that ś besides

all łnormalž behavior ś any łweirdž behavior [18, 51] is
represented as well. Normal behavior consists of, among
other things, the intended control flow. łWeirdž behavior is a

term of art indicating control-flow transfers not intended by
the program designers. Section 2 shows an example where
instructions are overlapping, which is typically found in
obfuscated code. This example exhibits a Return-Oriented-
Programming (ROP) gadget that depends on whether two
pointers alias or not. The overapproximative HG indeed
contains an edge where the ROP gadget unexpectedly hijacks
the control flow.

Step 2 exports the HG to the Isabelle/HOL theorem prover.
Each edge individually forms a Hoare triple, and thus the
formal verification effort consist of proofs of thousands of
mutually independent theorems (generally, one per disassem-
bled instruction). Each theorem pertains one Hoare triple,
and each theorem can be verified automatically with tai-
lored proof scripts. These proof scripts symbolically execute
the formal semantics of the given instruction on the given
precondition, and subsequently formally prove the postcon-
dition. The mutual independence of all the theorems allows
exploitation of the parallel proof techniques provided by the
Isabelle/HOL theorem prover environment.

With regards to Step 1, the Xen hypervisor is used as case
study. We lift 45 binaries and 2115 library functions, total-
ing 399 771 assembly instructions. Both Steps 1 and 2 are
applied to some CoreUtils binaries (e.g., gzip, tar, hexdump).
Applying Isabelle/HOL to the entire Xen case study requires
formal semantics for a larger class of instructions than cur-
rently available. All source code, examples and case studies
are available as open source.
Limitations, assumptions and scope. The complex na-

ture of binary code necessitates making assumptions. We
discuss two main assumptions here. Our approach nonde-
terministically tries out different memory relations (aliasing,
separation, enclosed within, or encloses) when the relation
between two pointers is unknown. Enumerating all cases
where two pointers point to regions that are partially over-

lapping is infeasible, as this would quickly lead to a state
space explosion. For example, two 8 byte regions can par-
tially overlap in 14 ways, with the first byte of one region
equal to any other byte of the other region, and the con-
verse (the two other cases are covered by the aliasing case).
In such cases, we do not generate a new memory model,
but instead simply destroy all regions in memory that may
partially overlap, meaning that reading from them always
overapproximatively produces a symbolic expression repre-
senting any value. Note that in compiler generated code, this
will typically only happen on the heap [2, 3]. The local stack
frame is typically structured into regions that are accessed
based on the above four relations. As soon as a memory write
occurs to the local stack frame, and the relation between the
write-destination and the region where the return address is
stored is unknown, return address integrity cannot be proven
and the function is rejected due to a verification error.
Second, binary analysis inherently suffers from dealing

with external functions. Providing accurate models of the

935

Formally Verified Lifting of C-Compiled x86-64 Binaries PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

behavior of all external functions called by a binary is gen-
erally infeasible, and thus our approach must be able to deal
with unknown external functions. Theoretically, an overap-
proximative model should simply destroy the entire state
after an unknown external function call. Such rigor would
prevent any code to be lifted. We therefore make the assump-
tion that external functions adhere to the 64-bit System V
calling convention: the local stack frame is kept intact, as
well as certain caller-saved registers. The heap and the global
space, however, are destroyed. We generate proof obligations
that state that these functions are assumed not to touch the
local stack frame of the caller, and under these proof obliga-
tions the lifted representation can be shown to be a sound
overapproximation of the binary.
In terms of scope, we 1.) target stripped commercial off-

the-shelf (COTS) x86-64 binaries in the ELF format compiled
with various levels of optimization, 2.) do not deal with multi-
threaded code, 3.) do not deal with destructors executed after
an exit, and 4.) limit the approach to binaries compiled fromC
code (specifically, throw-catch behavior and object initializa-
tionmethods are unsupported).We also assume the existence
of sound instruction semantics that express state changes per
instruction (e.g., semantics that have been machine-learned
from actual hardware [22, 47]). We assume the existence of
a fetch function that, given an address, soundly retrieves a
single instruction from the binary. Experimental results show
that the majority of unsoundness annotations concern func-
tion callbacks. In order to gain scalability, we treat function
calls as context free. That means that if a function pointer is
passed as a parameter, its concrete value is unknown.
To summarize, this work presents a formal methods ap-

proach to disassembly and control-flow reconstruction. This
provides assurance, where existing approaches are based on
heuristics, machine-learning, or are known to be unsound
(see Section 6). The key contributions of this paper are:

• Step 1: trustworthy binary lifting, providing an overap-
proximative relation between the binary and the output;
• Step 2: a method to formally verify output of Step 1;
• The demonstration that overapproximative binary lifting
can be used to find łweirdž edges in binaries;
• The application of binary lifting to all non-concurrent
x86-64 executables of the Xen hypervisor.

2 Example

Figure 1 shows an example of a binary and (part of) its ex-
tracted HG. For the sake of presentation, the example uses
32-bit instructions, and address a is the base address of some
jump table. First, the cmp and ja instructions compare the
current value of register eax to constant value 0xc3. If eax is
less or equal than 0xc3, the mov at address 0xb reads a jump
table with base address a and the value stored in register
eax as the index. The pointer read from the jump table (re-
ferred to as 𝑎jt) is stored in register eax. Subsequently, two

memory writes happen: pointer 𝑎jt is written to memory at
the address stored in register edi and the immediate value 1
is written to memory at the address stored in register esi.
Finally, pointer 𝑎jt is used for an indirect branch. Essentially,
this code reads an address from a jump table containing 0xc3
addresses and jumps to that address.

The example is constructed as an example of łweirdž con-
trol flow. Note the instructions do not contain a return state-
ment. However, under specific circumstances, namely if the
pointers in registers esi and edi alias, the data of the first
instruction (0xc3) is interpreted as an instruction. Since this
is a real concrete execution path, any overapproximative
lifted representation must model such behavior.

We explain several of the points made in the introduction
using this example. Also note that the notation at state 14 in-
dicates that reading 4 bytes from address edi produces value
𝑎jt. Respectively, ≡ and ⊲⊳ denote aliasing and separation.

0x0: 3dc3000000 cmp eax,c3

0x5: 0f8718000000 ja 1c

0xb: 8b0485__a___ mov eax,DWORD PTR [eax*4+a]

0x12: 8907 mov DWORD PTR [edi],eax

0x14: c70601000000 mov DWORD PTR [esi],1

0x1a: ff27 jmp DWORD PTR [edi]

0 5

1c

b

12

14

1a

𝑎jt

1a

1𝑎r

𝑃0 = ∗[rsp, 4] == 𝑎r

𝑀0 = ∅
eax ≥ 0xc3

eax < 0xc3

eax == 𝑎jt

∗[edi, 4] == 𝑎jt

[edi, 4] ⊲⊳ [esi, 4]

∗[edi, 4] == 𝑎jt

[edi, 4] ≡ [esi, 4]

∗[edi, 4] == 1

up to 0xc3

edges: one
per read
value

cmp
ja

ja

mov

mov

jmp

mov mov

jmp

ret

Figure 1.Hoare Graph Example. The bold arrows are łweirdž
edges leading to unexpected control flow.

The HG is provably overapproximative. Consider the set of
outgoing edges at vertex b. The predicate associatedwith that
vertex contains the information that register eax is bounded.
It thus contains sufficient information to prove that reading
the jump table provides at most 0xc3 possible values for 𝑎jt.
The bound can be proven only if the predicate associated
with vertex 5 contains information on the flags read by the

936

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Freek Verbeek, Joshua Bockenek, Zhoulai Fu, and Binoy Ravindran

ja instruction. That information is set by cmp. In other words,
edges 0 → 5 → b each form a Hoare triple.
Disassembly requires pointer analysis. At state 14, it is

unknown whether the pointers in registers edi and esi alias
or not. We must overapproximate by having one outgoing
edge for each case. In the aliasing (≡) case, the mov at Line 14
overwrites the previous mov. The jump goes to address 1,
instead of the intended jump to pointer 𝑎jt.
Disassembly requires bounds analysis. Address 𝑎r is the

address initially stored at the top of the stack frame. The HG
contains an edge to a final state where the instruction pointer
is set to that address. To obtain this result, each vertex on
the path from state 0 to that final state must contain enough
information to show that the return address has not been
modified and that frame and stack pointers are managed
properly throughout function execution.

Weird edges are found. A jump to address 1 jumps into the
middle of an instruction. Since byte c3 corresponds to the
ret instruction, this is actually ROP gadget. An unexpected
łweirdž edge [18, 51] has been found.

The Hoare Graph allows formal verification. The Hoare
Graph is generated by the algorithms presented in Sections 3
and 4. Even though these algorithms are proven sound with
pencil-and-paper proofs (see Theorem 4.7), one may still
want to perform formal verification. The HG can be exported
to Isabelle/HOL where each vertex becomes its own theorem.
For example, vertex 14 is translated to a Hoare triple that
states that the invariant associated to instruction address
14 ensures as postcondition the disjunction of the invari-
ants associated to address 1a. Essentially, this step removes
the need for trusting the implementation of the algorithm
presented in this paper.
At first glance, it may seem that a small piece of code

leads to an exorbitant number of states and edges. However,
typically the state space is close to the number of instruction
addresses (see Section 5), as we apply joining of states to
reduce the state space whenever possible.

3 Technical Formulation

We use I, P, M and W𝑛 , respectively, to denote the types
for instructions, symbolic predicates, memory models and
words of bit length 𝑛. Predicates and memory models will
be defined and explained in the next section. A vertex of
an HG is represented by a symbolic state, which is a tuple
of type P × M We use 𝜎 (𝑠) to denote symbolic (concrete)
states. Notation 𝑠 ⊢ 𝑋 denotes that 𝑋 holds in concrete state
𝑠 , where 𝑋 can be either a predicate or a memory model.

Definition 3.1. A binary is defined by a tuple of the form
⟨𝑎𝑒 , fetch, 𝑆,→𝐵⟩, where 𝑎𝑒 of type W64 is the entry point
of the binary and fetch of type W64 ↦→ I returns, given
an address, one instruction. The behavior of the binary is
modeled by some set of concrete states 𝑆 and some black-box
deterministic transition relation→𝐵 over concrete states.

Definition 3.2. A Hoare Graph is defined as a tuple

⟨Σ, 𝜎𝐼 ,→Σ⟩

where symbolic states in Σ = P ×M consist of predicates
and memory models, 𝜎𝐼 ∈ Σ is an initial symbolic state and
→Σ of type Σ × I × Σ ↦→ B is a non-deterministic transition
relation labeled with instructions.

The algorithm requires the definition of a join operation
over symbolic states that soundly merges the information
stored in two symbolic states. This is because the algorithm
explores the state space by recursively adding new states
and edges on the fly. Joining serves 1.) to prevent state space
explosion and 2.) to ensure termination. If an instruction
address is visited more than once, the supremum (result of
joining) of all symbolic states associated with that address is
computed until a least fixed point is reached.

We therefore define an algebraic join-semilattice over sym-
bolic states. That is, we define our join operation such that
it establishes a partial order over the symbolic states, allow-
ing us to calculate a least upper bound state over any two
symbolic states. This join-semilattice is depicted as the tuple
⟨Σ,⊔⟩, where Σ is the type of symbolic states and ⊔ denotes
the join operation. The desired partial ordering over Σ, ⊑, is
then derived by defining 𝜎0 ⊑ 𝜎1 as 𝜎1 = 𝜎0 ⊔ 𝜎1. Intuitively,
𝜎0 ⊑ 𝜎1 denotes that 𝜎0 is łless abstractž then 𝜎1. The join
must then satisfy the following soundness criterion for any
concrete state 𝑠 : (𝑠 ⊢ 𝑃 ∨𝑄) =⇒ (𝑠 ⊢ 𝑃 ⊔𝑄). The join must
be sufficiently coarse to ensure that there exists no infinitely
descending chain of symbolic states 𝜎0 ⊑ 𝜎1 ⊑ · · · . Since a
symbolic state consists of a predicate and a memory model,
we define a join for both.

3.1 Predicates

Predicates are assertions on state. A predicate consists of a
set of clauses. A clause consists of two symbolic expressions
and their relation. A predicate 𝑃 holds in state 𝑠 if and only if
all clauses hold. An expression of type E consists of registers
(R), flags (F), words, variables (V), memory regions (mod-
eled by an expression for the address and a natural number
for the size) and the application of an operator to a list of
expressions.

E ≔ R | F | W | V | E × N | Op × [E]

We identify a subset of these expressions called constant

expressions (C). These expressions cannot contain registers,
flags, or memory regions. They represent constants or com-
putations constructed using initial values. For example, rdi0
is a variable denoting the initial value of register rdi.

Clauses are terms of the form E□C, where□ is an element
of the following set of relations: {=,≠, <, <𝑠 , ≥, ≥𝑠 }. The □𝑠

relations treat their operands as signed, while their non-
subscripted versions treat their operands as unsigned. There
are two special predicates,⊤ and⊥, that respectively indicate

937

Formally Verified Lifting of C-Compiled x86-64 Binaries PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

being always true and always false. ⊥ is also used to indicate
an unknown C.

Definition 3.3. The join of two predicates 𝑃 and𝑄 , notation
𝑃 ⊔𝑄 , is provided by doing range abstraction for symbolic
bit-vector values [48].

Example 3.4. Let 𝑃 = {𝑎 = 3, 𝑎 < rdi0} and 𝑄 = {𝑎 =

4, 𝑎 < rsi0}. As both predicates have equality clauses for 𝑎,
those clauses are merged to produce a pair of clauses de-
noting that the value of 𝑎 lies in the range [3, 4]. Since no
maximum can be established between rdi0 and rsi0, these
clauses are dropped. Thus, 𝑃 ⊔𝑄 = {𝑎 ≥ 3, 𝑎 ≤ 4}.

As required for a lattice, the join is associative, commuta-
tive and idempotent. Associativity is derived from the fact
that set union and minimum/maximum are associative oper-
ations. The join is commutative and idempotent due to the
commutativity and idempotency of the merge function. Fi-
nally, it satisfies that for any state 𝑠 : 𝑠 ⊢ 𝑃 ∨𝑄 =⇒ 𝑠 ⊢ 𝑃 ⊔𝑄 .

3.2 Memory Models

Program analysis in programs with pointers requires effi-
cient alias identification and classification. Alias information
directs assignments to memory. We thus keep track of the
read and written memory regions in a structured memory
model. These memory models store aliasing, separation and
enclosure relations for memory regions. A memory model is
defined by the following data structure:

MemTree ≔ {C × N} ×Mem Mem ≔ {MemTree}

That is, a memory model consists of a possibly empty forest

of memory trees. Each memory tree has as a top-level node,
a set of memory regions and a possibly empty sub-forest that
holds its children. Two regions in the same node are aliasing.
Children are enclosed in their parents. Siblings are separate.

Example 3.5. Consider the two memory models presented
in Figure 2. These memory models involve three regions:
[rdi0, 8], [rsi0, 8] and [rsi0 + 4, 4]. The memory models
depict the case where rdi0 and rsi0 alias and not alias.

Definition 3.6. Let 𝑠 be a concrete state and let 𝑟0 = ⟨𝑒0, 𝑛0⟩

and 𝑟1 = ⟨𝑒1, 𝑛1⟩ be two regions in memory. Respectively,
aliasing, separation and enclosure, notations (≡, ⊲⊳, ⪯), are
defined as:

𝑟0 ≡ 𝑟1
def
= 𝑠 ⊢ 𝑒0 = 𝑒1 ∧ 𝑛0 = 𝑛1

𝑟0 ⊲⊳ 𝑟1
def
= 𝑠 ⊢ (𝑒0 + 𝑛0 ≤ 𝑒1) ∨ (𝑒1 + 𝑛1 ≤ 𝑒0)

𝑟0 ⪯ 𝑟1
def
= 𝑠 ⊢ 𝑒0 ≥ 𝑒1 ∧ 𝑒0 + 𝑛0 ≤ 𝑒1 + 𝑛1

A relation holds necessarily if and only if it holds in all
concrete states 𝑠 . For example, [rsi0, 4] ⊲⊳ [rsi0 + 4, 4] de-
notes that the two regions are necessarily separate. The SMT
solver/theorem prover Z3 [15] is used to establish whether
these łnecessarilyž-relations hold for symbolic addresses

{[rdi0, 8], [rsi0, 8]}

[rsi0 + 4, 4]

⪯

(a) Aliasing

[rdi0, 8] [rsi0, 8]

[rsi0 + 4, 4]

⊲⊳

⪯

(b) No aliasing

Figure 2. Memory model examples. Siblings on the same
level are separate, children are enclosed within their parents.
Regions within the same node are aliasing. The one on the
left shows a situation with two top-level regions aliasing and
the child region they share. The one on the right shows a
situation where the two top-level regions do not alias, and
thus only one of those regions contains an enclosed child.

given the current state predicate. This is done via expres-
sion translation directly to Z3’s bit-vector representations,
meaning no information is lost in the conversion and when
querying the constructed logical formulas.
We further extend the above notation to memory trees,

e.g., 𝑡0 ⊲⊳ 𝑡1 denotes that all regions in 𝑡0 are necessarily
separate from all regions in 𝑡1. Notation 𝑡0 ≡ 𝑡1 (𝑡0 ⪯ 𝑡1)
denotes that some region in the top node of 𝑡0 and some
region in the top node of 𝑡1 necessarily alias (enclosure).
Construction of a memory model is performed using the

recursive ins function shown below. It takes as input a mem-
ory tree 𝑡 and the current memory model 𝑀 . The current
predicate 𝑃 is also supplied to assist in the region relation-
ship analysis but is elided from the below presentation as
it is a read-only value that is passed along through the
function call chain. For output, function ins produces, non-
deterministically, a set of new memory models based on all
possible pointer relationships for the newly-inserted region.
If no necessarily-relation can be established between 𝑡 and
any tree in𝑀 , then all trees possibly overlapping with 𝑡 are
destroyed (see Section 1). If a necessarily-relation can be
established between tree 𝑡 and some tree already in𝑀 , then
only the relevant memory models need to be produced.

Definition 3.7. Let 𝑡0 = ⟨𝑅0, 𝑀0⟩ and 𝑡1 = ⟨𝑅1, 𝑀1⟩ be
two trees. Function ins of type MemTree ×Mem × Pred →

{Mem} is defined as follows:

ins(𝑡0,∅)
def
= {𝑡0}

ins(𝑡0, 𝑡1 :𝑀)
def
=





insAL (𝑡0, 𝑡1, 𝑀) if 𝑡0 ≡ 𝑡1

insSEP (𝑡0, 𝑡1, 𝑀) if 𝑡0 ⊲⊳ 𝑡1

insENC (𝑡0, 𝑡1, 𝑀) if 𝑡0 ⪯ 𝑡1

insCON (𝑡0, 𝑡1, 𝑀) if 𝑡1 ⪯ 𝑡0

destroy(𝑡0, 𝑀) otherwise

938

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Freek Verbeek, Joshua Bockenek, Zhoulai Fu, and Binoy Ravindran

insAL (𝑡0, 𝑡1, 𝑀)
def
=

{(𝑅0 ∪ 𝑅1, 𝑀
′) :𝑀 | 𝑀 ′ ∈ fold(ins, 𝑀0 ∪𝑀1)}

insSEP (𝑡0, 𝑡1, 𝑀)
def
= {𝑡1 :𝑀

′ | 𝑀 ′ ∈ ins(𝑡0, 𝑀)}

insENC (𝑡0, 𝑡1, 𝑀)
def
= {⟨𝑅1, 𝑀

′⟩ :𝑀 | 𝑀 ′ ∈ ins(𝑡0, 𝑀1)}

insCON (𝑡0, 𝑡1, 𝑀)
def
=

{ins(𝑡 ′, 𝑀) | 𝑡 ′ ∈ {⟨𝑅0, 𝑀
′⟩ | 𝑀 ′ ∈ ins(𝑡1, 𝑀0)}}

Notation 𝑎 : 𝑋 denotes {𝑎} ∪ 𝑋 . Let 𝑡0 = ⟨𝑅0, 𝑀0⟩ be the
tree to be inserted and let 𝑡1 = ⟨𝑅1, 𝑀1⟩ be a tree already in
the memory model. If 𝑡0 and 𝑡1 alias, then they are combined
by taking the union of their nodes. All subtrees are then
reinserted using a fold. If trees 𝑡0 and 𝑡1 are separate, then tree
𝑡0 is recursively inserted into the remainder of the memory
model and 𝑡1 is added without modification. If 𝑡0 is enclosed
in 𝑡1, it is recursively inserted into the sub-forest of 𝑡1. For
each memory model𝑀 ′ thus obtained, a memory model is
produced with a tree ⟨𝑅1, 𝑀

′⟩. The remainder of memory
model 𝑀 is unmodified. Finally, if 𝑡1 is enclosed in 𝑡0, then
𝑡1 is recursively inserted into the sub-forest of 𝑡0. For each
memory model𝑀 ′ thus obtained, a tree 𝑡 ′ is produced that
consists of ⟨𝑅0, 𝑀

′⟩. That tree is then recursively inserted in
memory model𝑀 .

Example 3.8. Consider the three-instruction assembly snip-
pet below. This snippet first stores the value 1000 in the eight-
byte memory region pointed to by rdi, then stores the value
1001 in the four-byte region pointed to by rsi+4. Finally,
it stores the value 1002 in the eight-byte region pointed to
be rsi. If the current state allows aliasing and separation
between [rdi, 8] and [rsi, 8], then these three instructions
will result in the two memory models in Figure 2. Note that
region [rsi + 4, 4] is necessarily enclosed in region [rsi,8].

mov qword ptr [rdi], 1000

mov dword ptr [rsi+4], 1001

mov qword ptr [rsi], 1002

Amemory model𝑀 holds in concrete state 𝑠 if all siblings are
separate and all trees hold. A tree holds if its node contains
aliasing regions and all trees in its sub-forest are enclosed.

Definition 3.9. A memory model𝑀 holds in state 𝑠 , nota-
tion 𝑠 ⊢ 𝑀 , if and only if:

(∀𝑡0, 𝑡1 ∈ 𝑀 · 𝑡0 ≠ 𝑡1 =⇒ 𝑠 ⊢ 𝑡0 ⊲⊳ 𝑡1) ∧ (∀𝑡 ∈ 𝑀 · 𝑠 ⊢ 𝑡)

A memory tree 𝑡 = ⟨𝑅,𝑀⟩ holds in state 𝑠 , notation 𝑠 ⊢ 𝑡 , if
and only if:

(∀𝑟0, 𝑟1 ∈ 𝑅 · 𝑠 ⊢ 𝑟0 ≡ 𝑟1) ∧ (∀𝑡 ′ ∈ 𝑀 · 𝑠 ⊢ 𝑡 ′ ⊑ 𝑡) ∧ (𝑠 ⊢ 𝑀)

Example 3.10. Consider again the memory models in Fig-
ure 2 for the assembly snippet in Example 3.8. The aliasing
memory model in Figure 2a is only consistent in states where
rdi0 = rsi0. Meanwhile, the non-aliasing memory model in
Figure 2b is only consistent in states where rdi0 + 8 ≤ rsi0
or rsi0 + 8 ≤ rdi0.

The insertion function must be complete: the produced
memory models should cover any possible relation between
inserted region 𝑟 and any region 𝑟 ′ already present in the
memory model. To formulate completeness, we use 𝑅(𝑀) to
denote the set of regions in memory model𝑀 and R(𝑀) to
denote the set of relations. For example, we have ([rdi0, 8] ≡
[rsi0, 8]) ∈ R(𝑀) for the memory model in Figure 2a.

Lemma 3.11. Let 𝑟0 and𝑀 resp. be a region and a memory

model. Let 𝑓 of type C ×N ↦→ {≡, ⊲⊳, ⊑, , ⊒} be some mapping

that provides for any region 𝑟 ′ currently in memory model𝑀

a relation between 𝑟0 and 𝑟
′. Assume that 𝑓 is possibly true:

∃𝑠 · 𝑠 ⊢ 𝑀 ∧ (∀𝑟 ′ ∈ 𝑅(𝑀) · 𝑠 |= 𝑟0 𝑓 (𝑟
′) 𝑟 ′)

Then, insertion of region 𝑟0 into 𝑀 will produce at least a

corresponding memory model:

∃𝑀 ′ ∈ ins(⟨𝑟0,∅⟩, 𝑀) · {(𝑟0 𝑓 (𝑟
′) 𝑟 ′) | 𝑟 ′ ∈ 𝑅(𝑀)} ⊆ R(𝑀 ′)

In words, there exists some memory model that contains all

relations of mapping 𝑓 .

Proof. The proof is by induction. The base case is trivial. For
the inductive case, we insert region 𝑟 into {𝑡1} ∪ 𝑀 . Four
cases are possible:

1. Region 𝑟0 necessarily aliases with 𝑡1. In this case, since
mapping 𝑓 is possibly true, it must assign ≡ to all top-level
regions of 𝑡1, ⪰ to all other regions in 𝑡1 and ⊲⊳ to all regions
in𝑀 . The created memory model contains these relations.
2. Region 𝑟0 is necessarily separate from 𝑡1. In this case,

since mapping 𝑓 is possibly true, it must assign ⊲⊳ to any
region in 𝑡1. Thus, tree 𝑡1 is not modified and region 𝑟0 is
recursively inserted into𝑀 . The induction hypothesis (IH)
then finishes the proof.
3. Region 𝑟0 is necessarily enclosed by a top-level region

of 𝑡1. Since mapping 𝑓 is possibly true, it must assign ⊲⊳ to
all regions of𝑀 . Therefore, the insertion function does not
modify𝑀 . Since 𝑟0 and 𝑟1 do not alias, the top-level regions
𝑅1 of tree 𝑡1 can remain unmodified as well. Region 𝑟0 is
recursively inserted into a child of 𝑡1, proof follows form IH.

4. Tree 𝑟1 is necessarily enclosed into region 𝑟0. In this
case, since mapping 𝑓 is possibly true, it must assign ⪰ to
all regions of 𝑡1. Therefore, tree 𝑡1 is recursively inserted as
subtree of 𝑟0, producing a set of trees. For the remaining
regions not in 𝑡1, 𝑓 can hold arbitrary relations. Therefore
any 𝑡 ′ in the produced set is recursively inserted into 𝑀 .
Again, the IH then finishes the proof.

□

Definition 3.12. The join of two memory models 𝑀0 and
𝑀1, notation𝑀0 ⊔𝑀1, is recursively defined as:

𝑀0 ⊔𝑀1
def
=

{
joint (𝑇)

��� 𝑇 ∈ 𝑀0 ∪𝑀1⧸
C
+

}

⟨𝑅0, .⟩ C ⟨𝑅1, .⟩
def
= 𝑅0 ∩ 𝑅1 ≠ ∅

joint (𝑇)
def
=

〈⋂
{𝑅 | ⟨𝑅, .⟩ ∈ 𝑇 },

⊔
{𝑀 | ⟨., 𝑀⟩ ∈ 𝑇 }

〉

939

Formally Verified Lifting of C-Compiled x86-64 Binaries PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

This operation partitions the memory trees in𝑀0 and𝑀1

based on equivalence relation C
+. This equivalence relation

is the transitive closure of relation C, which determines if
its two memory trees have any top-level regions in common.
In other words, all memory trees that have one or more top-
level regions in common are put in an equivalence class and
are thus joinable. The function joint then performs the join
operation for each equivalence class of memory trees, taking
the intersection of all their region sets and the supremum of
their child memory models.

Example 3.13. Consider two memory models 𝑀0 and 𝑀1

both with as top node [rdi0, 8], where𝑀0 has an enclosed
child [rdi0, 4] and 𝑀1 has an enclosed child [rdi0 + 4, 4].
The join of 𝑀0 and 𝑀1 is one memory model with as top
node [rdi0, 8] and the two subsregions as separate sibling-
children.

We prove that the join over memory models is sound.

Lemma 3.14. Let 𝑠 be a state and 𝑀0 and 𝑀1 be memory

models. Then:

(𝑠 |= 𝑀0 ∨𝑀1) =⇒ (𝑠 |= 𝑀0 ⊔𝑀1)

Proof. Let 𝑟0 □ 𝑟1 be a relation in R(𝑀0 ⊔ 𝑀1). If □ is ≡,
then both regions 𝑟0 and 𝑟1 must have been present in all
trees in the corresponding equivalence class. The relation
thus held in either𝑀0 or𝑀1. If □ is ⊲⊳, then the two regions
are from trees generated from different equivalence classes.
Since they are from trees that do not share a top-level region,
the original trees in either 𝑀0 or 𝑀1 are separate as well.
Similar reasoning applies for the other cases. □

Definition 3.15. The join of some two symbolic states 𝜎0 =
⟨𝑃0, 𝑀0⟩ and 𝜎1 = ⟨𝑃1, 𝑀1⟩, notation 𝜎0 ⊔ 𝜎1, is:

𝜎0 ⊔ 𝜎1
def
= ⟨𝑃0 ⊔ 𝑃1, 𝑀0 ⊔𝑀1⟩

Wewould like to remark that this join loses information. It
can thus only be applied in a sound fashion for postcondition
weakening [24]. In other words, dropping clauses and per-
forming state cleanup serve only to reduce state constraints;
they never add additional ones. In practice, this loss of in-
formation means that we may produce a state that would
not actually be encountered during program execution, or
we may be unable to resolve some indirections/prove some
return addresses (which would result in annotations/tool
failure). Even in such cases, given successful completion and
no annotations produced, we will always produce all states
that would be encountered during concrete execution.

4 Algorithm

Algorithm 1 provides the base functionality of Hoare Graph
extraction. This base functionality is extended in two ways:
1.) a context-free approach to function calls (see Section 4.2)
and 2.) preventing states from being joined when they are
incompatible (see below).

The algorithm maintains two objects. First, a bag of sym-
bolic states that is to be explored. Function explore is re-
peatedly called until the bag is empty. Second, the current
Hoare Graph HG.

The algorithm requires a function 𝜏 modeling instruction
semantics. Our implementation supports a wide range of x86-
64 instructions, including (conditional) moves and jumps as
well as arithmetic, logical and bit-vector operations (suffi-
cient to deal with all Xen binaries). Given a supported instruc-
tion and a suitable memory model, function 𝜏 transforms its
supplied predicate into a set of predicates by symbolically
executing the single instruction. The memory model allows 𝜏
to take into account information on pointer relations when
performing symbolic execution using destination operands
that reference memory locations.

The algorithm requires an expression evaluation function
eval : E × P ↦→ C, which maps an expression (over regis-
ters, flags, and dereferenced memory regions) to a constant-
expression. To this end, it uses the predicate of the current
symbolic state. No memory model information is required
for this evaluation; that information is only required when
writing to a location in memory.

Definition 4.1. Given predicate 𝑃 , the evaluation of an ex-
pression 𝑒 is defined as follows:

eval(𝑒, 𝑃) =

{
𝑣 if 𝑒 = 𝑣 is a clause in 𝑃

⊥ otherwise

The algorithm then executes steps according to the fol-
lowing step function:

Definition 4.2. The symbolic state step function for sym-
bolic state 𝜎 = ⟨𝑃,𝑀⟩, notation step

Σ
(𝜎), is defined as:

step
Σ
(𝜎)

def
= {⟨𝑃 ′, 𝑀 ′⟩ | 𝑃 ′ ∈ 𝜏 (𝑃,𝑀 ′) ∧𝑀 ′ ∈ ins(𝑅,𝑀)}

where

𝑅
def
= {[eval(𝑎, 𝑃), 𝑠] | [𝑎, 𝑠] used by instruction 𝑖} − {⊥}

𝑖
def
= fetch(eval(rip, 𝑃))

Given the current symbolic state 𝜎 , the set of next sym-
bolic states is obtained by applying predicate transformation
to the current predicate and by inserting regions into the
current memory model. The set of regions is obtained by con-
sidering the operands of the current instruction. For example,
the instruction mov qword ptr [rax + 4*rdi], rax results
in one region [rax + 4 ∗ rdi, 8]. That region is ś given the
current predicate ś evaluated to a constant. For example, if
the current predicate contains rax = 0𝑥100 and rdi = rsi0,
then evaluation produces the constant 0𝑥100 + 4 ∗ rsi0. The
evaluated region is inserted. If the current predicate does
not contain sufficient information to evaluate the region,
evaluation produces⊥ and the region is not inserted. The lat-
ter overapproximates any relation (e.g., aliasing, separation)
the new region may have with the current memory model.
Finally, if no bounded set of next states can be determined

940

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Freek Verbeek, Joshua Bockenek, Zhoulai Fu, and Binoy Ravindran

(such as for unresolved indirect jumps or calls), we produce
an annotation and stop further exploration from that state.

Definition 4.3. Two symbolic states 𝜎 and 𝜎 ′ are compati-

ble, notation 𝜎0 � 𝜎1, if and only if their instruction pointers
(rip) are equal.

States will only be joined when they are compatible. A sec-
ond extension to the base algorithm modifies this definition
so that states are not considered compatible when registers
contain different immediate values that directly influence
control flow (e.g., when the immediates are loaded from a
jump table). In general, it is impossible to know whether a
stored value will influence future control flow. However, it
suffices to detect situations in which values will likely influ-
ence future control flow. If a value was erroneously deemed
to influence future control flow, then we have unnecessarily
explored paths that could have been joined earlier, but this
only affects run-times and not soundness. If we join states
that contain immediate values that turn out to be necessary
to assess future control flow, this will lead to unresolved
indirections or a verification error, but does not affect sound-
ness. Concretely, if two states assign a certain state part with
immediate pointers to instructions (i.e., pointers that fall in
the range of text sections in the binary), then we do not join
them to an abstract value but instead, continue exploration
from both states. This is because these immediate values
will highly likely influence future control flow. This causes
less abstraction, and more preciseness in some very specific
cases, but does allow us to resolve more indirections.

4.1 Base Algorithm

Algorithm 1 Base of Hoare Graph Extraction

1: function explore

2: pop 𝜎 from bag

3: if ∃𝜎𝑐 ∈ HG · 𝜎𝑐 � 𝜎 then

4: if 𝜎 ⊑ 𝜎𝑐 then return

5: 𝜎 𝑗 ≔ 𝜎 ⊔ 𝜎𝑐
6: HG [𝜎𝑐 ≔ 𝜎 𝑗]

7: else

8: 𝜎 𝑗 ≔ 𝜎

9: end if

10: for all 𝜎 ′ ∈ step
Σ
(𝜎 𝑗) do

11: HG += (𝜎 𝑗 , 𝜎
′)

12: if eval(rip, pred(𝜎 ′)) is not immediate then
13: annotate, stop further exploration

14: else

15: bag += 𝜎 ′

16: end if

17: end for

18: end function

Let 𝜎 be some symbolic state from the bag (Line 2). Func-
tion explore first searches for a current symbolic state 𝜎𝑐

already in the current HG that is compatible (Line 3). If such
a state exists and it is more abstract (based on ordering ⊑)
than state 𝜎 , no further exploration is necessary (Line 4).
Otherwise, 𝜎 and 𝜎𝑐 are joined (Line 5). The HG is modi-
fied by replacing the current state with the joined one. This
replacement maintains all current edges: only the state is
modified. Symbolic state 𝜎 𝑗 is the state to be explored further.
If no compatible state exists in the current HG, then 𝜎 is the
state to be explored further (Line 8). Exploration occurs at
Lines 10 to 17. For every successor 𝜎 ′ (possibly none), an
edge is added to the HG. If, for some successor evaluation of
the instruction pointer, rip does not produce an immediate
concrete value, then this is due to either 1.) a return state-
ment (after which rip is set to the symbol pushed to the top
of the stack in the initial state), or 2.) the current symbolic
state does not provide sufficient information to resolve the
computation of rip (because of an indirect branch, for ex-
ample). In the second case, the state is annotated with an
unsoundness warning (Line 13) and the algorithm terminates
early. Otherwise, the successor is added to the bag.
Soundness. To formulate soundness and present a proof,

we first define a relation R between the concrete transition
system and the Hoare Graph. We then prove Lemma 4.5,
which shows that this relation is a simulation. As a direct
result of this lemma, any concrete path can be simulated by
a path consisting of symbolic steps produced by function
step

Σ
.

Definition 4.4. A concrete state 𝑠 is related to symbolic
state 𝜎 = ⟨𝑃,𝑀⟩, notation 𝑠 R 𝜎 , if and only if:

𝑠 R 𝜎
def
= (𝑠 ⊢ 𝑃) ∧ (𝑠 ⊢ 𝑀)

Lemma 4.5. Assume that predicate transformation 𝜏 is cor-

rect:

∀𝑠 𝑠 ′ · 𝑠 →𝐵 𝑠 ′ ∧ (𝑠 ⊢ 𝑃) =⇒ ∃𝑄 ∈ 𝜏 (𝑃,𝑀) · 𝑠 ′ ⊢ 𝑄

Then relation R is a simulation between the concrete transition

system and the transition system obtained by abstract step

function step
Σ
:

∀𝑠 𝑠 ′ · 𝑠 →𝐵 𝑠 ′ ∧ 𝑠 R 𝜎 =⇒ ∃𝜎 ′ ∈ step
Σ
(𝜎) · 𝑠 ′ R 𝜎 ′

Proof. Let 𝑠 and 𝜎 be two related states. Hence (𝑠 ⊢ 𝑃) ∧ (𝑠 ⊢

𝑀). By correctness of 𝜏 , we obtain a predicate 𝑄 ∈ 𝜏 (𝑃,𝑀)

such that 𝑠 ′ ⊢ 𝑄 . By Lemma 3.11 (completeness of the inser-
tion function), the memory model that holds in state 𝑠 ′ is
generated. Since the step function overapproximates by tak-
ing any combination of predicates in 𝜏 (𝑃,𝑀) and generated
memory models, there exists at least one symbolic state that
is related to 𝑠 ′. □

Definition 4.6. Hoare Graph𝐻 = ⟨Σ, 𝜎𝐼 ,→Σ⟩ is sound with
respect to binary𝐵 = ⟨𝑎𝑒 , fetch, 𝑆,→𝐵⟩, notation sound(𝐻, 𝐵),
if and only if:

sound(𝐻, 𝐵) ≡ ∀𝑠0 →
∗
𝐵 𝑠 →𝐵 𝑠 ′ · ∃𝜎 →Σ 𝜎 ′ · 𝑠 R 𝜎 ∧ 𝑠 ′ R 𝜎 ′

941

Formally Verified Lifting of C-Compiled x86-64 Binaries PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

In words, for every reachable transition from 𝑠 to 𝑠 ′ in
the binary, there must exist a related transition in the Hoare
Graph.

Theorem 4.7. Algorithm 1 constructs a sound Hoare Graph.

Proof. The structure of the algorithm is close to a depth-
first search (DFS). For that reason, the white-path lemma is
used to prove soundness [10]. For a normal DFS, the white-
path lemma states that the DFS will eventually explore some
state 𝑠 ′ if and only if there exists some state 𝑠 currently in
the bag and there exists a łwhitež path from 𝑠 to 𝑠 ′. A key
difference between Algorithm 1 and a normal DFS is that
states are joined. For the sake of this proof, a state is therefore
considered łwhitež if the current HG contains no compatible
state that is equal or more abstract (under ⊑). We reformulate
the white-path lemma as follows:

sup(𝜎 ′) is explored ⇐⇒

∃𝜎 ∈ bag · ∃𝜋 = [𝜎, . . . , 𝜎 ′] · white(𝜋)

where

sup(𝜎 ′) ≡
⊔
{𝜎 ′′ | 𝜎 ′′

� 𝜎 ′ ∧ ∃𝜋 = [𝜎, . . . , 𝜎 ′′] · white(𝜋)}

In words, sup(𝜎 ′), the supremum of all compatible states
that are currently reachable through white paths, is explored
by the algorithm if and only if there exists a white path from
some 𝜎 currently in the bag to 𝜎 ′. Given this version of the
white-path lemma, it directly follows that if the bag initially
contains the initial state only:

sup(𝜎 ′) is explored ⇐⇒ 𝜎 ′ is reachable from 𝜎0

Now let 𝑠 be a reachable concrete state and 𝑠 ′ be a successor.
Lemma 4.5 shows that the path from 𝑠0 to 𝑠 can be simulated
by a path of related symbolic states. Let 𝜎 be the symbolic
state related to concrete state 𝑠 , i.e., 𝑠 R 𝜎 . Since𝜎 is reachable,
sup(𝜎) is explored. We thus have 𝑠 R 𝜎 =⇒ 𝑠 R sup(𝜎).
This is a direct implication of Lemma 3.14: since joining
makes the states more abstract, it makes the set of related
concrete states larger. Line 10 will then explore some state
𝜎 ′ ∈ step

Σ
(𝜎 𝑗). By Lemma 4.5, we have 𝑠 ′ R 𝜎 ′. □

4.2 Extension: Function Calls

The base algorithm as presented in Algorithm 1 does not
treat function calls as special instructions. This is unsatis-
factory for two reasons: first, for external function calls, a
function 𝜏 that transforms the predicate may not be available.
External function calls are dynamically linked and thus the
assembly instructions are not available during static analy-
sis. Second, even though internal function calls theoretically
pose no problem, simply unfolding every function call pre-
vents scalability. We present an extension to the algorithm
that treats internal function calls compositionally. That is, it
ensures that each function is explored only once.

4.2.1 External Functions. The function name is matched
against a list of hard-coded function names that are known
to be terminating, such as exit and stack_chk_fail. In

case of a terminating function, function step
Σ
will produce

the empty set, stopping further exploration from the current
state. Otherwise, the function is some unknown external
function. We make the assumption that this unknown func-
tion adheres to the 64-bit System V calling convention. Func-
tion step

Σ
therefore modifies the current state by assigning

⊥ to all registers, flags and heap regions currently in the state
that may not be assumed to be preserved by a function call.
In other words, only the clauses concerning the stack frame
and callee-saved non-volatile registers are kept. Similarly,
all relations in the memory model concerning the heap are
removed. We call this cleaning the current symbolic state. As
with the join operation, this usage is sound as the end result
is always a weakening of the postcondition.

4.2.2 Internal Functions. If the operand of a call can
be resolved to an address inside the executable range of
the binary, it is recognized as an internal call. Consider the
following assembly code:

Function Call Return Exit

100: call 400

105: ...

400: ...

450: ret

400: ...

450: call exit

Intuitively, exploration from address 0x100 can proceed both
at addresses 0x400 (entering the function) and at 0x105 (af-
ter the function). The latter, however, may not safely be
assumed, as it is not known whether the called function re-
turns normally. A function may always exit, in which case
address 0x105 is never visited. Other issues, such as buffer
overflows, can prevent a normal return as well.
We therefore introduce the notion of reachability. Each

symbolic state has a Boolean field that is set to true only if
the state is known to be reachable. States in the bag whose
reachability field is false are not selected. Line 3 of the algo-
rithm becomes:

3: if ∃𝜎𝑐 ∈ HG · 𝜎𝑐 � 𝜎 ∧ reachable(𝜎𝑐) then

Moreover, after Line 15, any symbolic state with the same
rip as the newly explored 𝜎 ′ is marked as reachable:

14: mark all𝜎 ∈ bagwith rip(𝜎) = rip(𝜎 ′) as reachable

Secondly, we treat internal function calls as context free. In
the example above, exploration of address 0x400 is done in
a fresh empty symbolic state. In that state, instead of push-
ing the concrete return address 0x105, a symbol S0x400 is
pushed. As a result, wherever the internal function is called,
it will always start in the exact same state and therefore
exploration happens only once.

A global mapping is maintained that remembers that sym-
bol S0x400 is linked to return address 0x105. It may be the
case that the internal function is called from different call
sites, in which case the mapping is updated accordingly: one
symbol may be mapped to multiple return addresses. As

942

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Freek Verbeek, Joshua Bockenek, Zhoulai Fu, and Binoy Ravindran

soon as the instruction pointer is set to symbol S0x400 (e.g.,
by a ret instruction), all mapped return addresses are set to
reachable.

5 Experimental Results

5.1 Hoare Graph Extraction

We have applied HG extraction to: 1.) several stripped bina-
ries of CoreUtils as found in a standard Ubuntu distribution;
2.) a binary with a manually induced buffer overflow, con-
firming that no HG is extracted; and 3.) all 63 x86-64 binaries
and all 2151 functions from the 25 shared objects we identi-
fied in the Xen Hypervisor.

All results are publicly available; we report here on the Xen
case study. The Xen Project is a mature, industrial-strength
hypervisor used in many production systems such as Ama-
zon’s cloud platforms [9]. Hypervisors provide a method
for managing multiple virtual instances of operating sys-
tems (guests) on a physical host. Xen is a suitable case study
because of its complexity and wide range of programs and
shared libraries produced by its build process.

The analysis was performed on a machine running Linux
Mint 20.1 Cinnamon with a 6-core, 2.9 GHz Intel Core i9-
8950HK CPU. The machine had 31 GiB of RAM and 32 GiB
of swap space on a KXG50PNV1T02 NVMe SSD. The version
of Xen used was 4.12.
Table 1 shows an overview. The upper part of the table

shows binaries. Lifting one binary means starting the extrac-
tion algorithm at the entry point and exploring all reach-
able assembly instructions in the binary, including internal
function calls. The lower part shows library functions in
a shared object. For every .so file, all externally exposed
functions as reported by the nm utility are considered. Lifting
one such function means starting the extraction algorithm at
the function’s address and exploring all reachable assembly
instructions from that point, including calls to other internal
functions.

Three issues may prevent lifting a binary to an HG, shown
in the second column of Table 1.
Unprovable Return Addresses: as explained in Section 2,
when a ret instruction is encountered, the current precon-
dition must be sufficiently strong to prove that the return
address at the top of the stack frame has not been modified.
Moreover, the current precondition must show that the value
of the stack pointer has been properly restored to its initial
value. If the current precondition is not strong enough, the
algorithm does not produce an HG since it cannot prove
where control flow will lead to.
Concurrency: binaries that contain function calls to multi-
threading functions (such as pthread_*) are declared out of
scope. We include them in Table 1 so that we account for all
x86-64 Xen binaries.
Timeout: the timeout was set to 4 hours per binary/func-
tion.

In total, for 45 out of 63 binaries and 2115 out of 2151 li-
brary functions, the basic sanity properties (return address
integrity, bounded control flow and calling convention ad-
herence) could be proven and an HG could be generated.

The third and fourth columns of Table 1 show the number
of instructions lifted out of the binary and the number of
states of the HG. Taking both the binaries and shared objects
into account, 399 771 instructions were lifted. Since states be-
longing to the same address are joined whenever compatible,
the number of states is close to the number of instructions.

Column A shows the number of resolved indirections, i.e.,
the indirections where the effect of the instruction on the in-
struction pointer could be overapproximatively established.
Columns B and C show the annotations, i.e., the numbers of
unresolved indirect jumps and calls, respectively. Unresolved
indirect calls are often caused by function callbacks: a func-
tion pointer is passed as a parameter (or through a global
variable) from function to function. Programmer-supplied
function arrays are another source of non-resolution. Since
function calls are handled without context, the function
pointer is unknown at the time it is actually called.
Figure 3 relates the sizes of functions (in numbers of in-

structions) to the verification time. The largest function suc-
cessfully verifiedwas libxl_domain_suspend from libxen-

light.so.4.12.0, with 3925 instructions and 4207 symbolic
states. The analysis took 49 minutes and 10 seconds to com-
plete. The second-largest function verified, libxl_domain_
suspend_only, had 3713 instructions with 4100 symbolic
states and took 16 minutes 34 seconds to complete. The
longest verification time was around 2 hours for function
libxl_domain_build_info_gen_json with 1584 instruc-
tions. For the 1907 functions, we had 4 timeouts (not included
in the 15:28 hrs of verification time). These functions gen-
erally had a large number of states that could not be joined
(causing explosion in the number of states to be explored).
Figure 3 shows that there is very little correlation between
verification times and instruction count.

In total, we lifted an HG for 2115 out 2151 functions (98%).
We can account for why this number is relatively high:
• For many functions, any pair of pointers to the local stack
frame abided by any of the four relations for which we ac-
curately model memory relations (aliasing, separations, en-
closed within, encloses). As a result, even if the heap and
the global memory space were grossly overapproximated,
the local stack frame was modelled accurately and return
address integrity could be proven.
• In case of an unresolved function call, we treated the func-
tion overapproximatively as an unknown external function.
Typical reasons for unresolved indirections include callbacks:
a function pointer is set by some function 𝑓 and is retrieved
and called back in function 𝑔. A context-sensitive approach
would be able to increase the number of supported indirect
calls, but this would need to be done sufficiently scalable.

943

Formally Verified Lifting of C-Compiled x86-64 Binaries PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

Table 1. Xen Case Study Statistics Summary

Directory Instrs.
Symbolic

States
A B C

Time

(h:m:s)

Binaries

. . . /bin 15 = 12 + 2 + 1 +0 6751 6829 21 19 0 0:15:54

. . . /xen/bin 17 = 7 + 1 + 8 +1 2433 2468 8 3 3 0:01:17

. . . /libexec 1 = 1 + 0 + 0 +0 82 87 1 0 0 0:00:10

. . . /sbin 30 = 25 + 1 + 4 +0 8858 9178 26 4 8 0:18:39

Total 63 = 45 + 3 +13+1 18 124 18 562 56 26 11 0:35:59

Library functions

. . . /lib 1907=1874+29+ 0 +4 353 433 362 635 1 244 600 15:28:17

. . . /xenfsimage 109 = 106 + 3 + 0 +0 17 184 17 683 0 0 27 1:58:36

. . . /dist-packages 16 = 16 + 0 + 0 +0 379 407 0 0 3 0:00:06

. . . /lowlevel 119 = 119 + 0 + 0 +0 10 651 10 799 0 0 90 0:08:43

Total 2151=2115+32+ 0 +4 381 647 391 524 1 244 720 17:35:42

𝑤 + 𝑥 + 𝑦 + 𝑧:𝑤 lifted, 𝑥 unprovable return address, 𝑦 concurrency, 𝑧 timeout
A = Resolved indirection B = Unresolved jump(s) C = Unresolved call(s)

• Some of the rejections constitute functions that do not
adhere to the calling convention. Manual analysis of these
cases shows that these are all compiler-generated functions
that are not required to follow a calling conventions.
• Other rejections were caused by a precondition insufficient
to derive an overapproximative bounded set of concrete val-
ues for the next instruction pointer. This may occur when an
array or struct is stored on the stack and accessed via vari-
able offset. Such constructs may lead to complicated pointer
arithmetic within the stack frame. The result is that the al-
gorithm cannot prove that a memory region was separate
from the top of the stack frame, storing the return address.
• Even though not all instructions of the x86 ISA are sup-
ported, all instructions occurring in the case study are, so
this is not a reason why functions were rejected.

5.2 Formal Proofs in Isabelle/HOL

For several CoreUtils binaries, we extracted an HG and ex-
ported it to the Isabelle/HOL theorem prover. The binaries
are closed-source, taken from a standard MacOS 11.5.2 dis-
tribution. Table 2 provides an overview of the binaries, the
number of instructions and Hoare triples, and the number
of resolved indirections (there are no unresolved indirec-
tions). Without exception, all Hoare triples could be proven
automatically.
We have developed a formal model of the semantics of

roughly 120 different x86-64 assembly instructions. These
instructions include various moves, arithmetic/logical op-
erations, jumps, and call/return. Floating-point operations
are mapped to uninterpreted functions. The model provides
semantics for register aliasing and a byte-level little-endian

0 1,000 2,000 3,000
00:00

00:29

00:58

01:26

01:55

Instruction Count

Figure 3. Verification times vs. instruction counts, sorted by
instruction count.

memory model. Moreover, we have developped a symbolic
execution engine that applies the formal semantics of an
instruction to a symbolic state, and matches that to a given
postcondition. This engine is based on a library of formally
proven correct simplification theorems, as well as theorems
that prove separation properties over differentmemorywrites.
Finally, we support automatic generation of implicit assump-
tions necessary for formal proofs. The informal algorithm
can implicitly make assumptions that, e.g., regions in the
global memory space are not overlapping with regions from
the stack frame. A formal proof must explicitly assume that.

944

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Freek Verbeek, Joshua Bockenek, Zhoulai Fu, and Binoy Ravindran

Table 2. Overview of binaries exported to Isabelle/HOL.

Binary #Instructions #Indirections

hexdump 2515 11
od 3040 11
wc 445 0
tar 5730 5
du 883 3
gzip 3465 7

Total 16 078 37

Effectively, each and any implicit assumption made during
HG generation is formalized and exported to Isabelle/HOL.

5.3 Examples of Failures

StackOverflow.ROP emporium (https://ropemporium.com)
provides pedagogical examples that contain an exploitable
stack overflow. For the ret2win example, the exploit simply
amounts to ensuring that a call to memset writes 48 bytes to
its given pointer. For our tool, memset is an unknown exter-
nal function, and thus it is annotated with the assumptions
needed to ensure return address integrity. The annotation
states that:

@400701 : memset(RDI := RSP0 − 40) MUST PRESERVE

[RSP0 − 8 TO RSP0 + 8]

At address 0x400701, a call to memset occurs with as first pa-
rameter a pointer into the stack frame of the caller (RSP0 − 40).
The algorithm needed to assert that this call did not overwrite
the memory region [RSP0 − 8 TO RSP0 + 8], where, among
other things, the return address is stored. In other words, the
algorithm asserted and noted as proof obligation that the
write executed by memset did not exceed 32 bytes. In this
example, the algorithm did not produce a verification error,
but generated proof obligations that can be violated. Such a
violation constituted an exploit candidate.

Stack Probing. In the binary /usr/bin/zip ś as avail-
able in a standard MacOS distribution ś a certain function
executes the following function call:

100009fe6: mov eax, 0x1400

100009feb: call 0x10000a6a0

100009ff0: sub rsp, rax

Register rax gets the value 0x1400, then an internal function
is called, and then the number of bytes in rax is allocated
locally on the stack frame. The called function executes a
compiler-generated technique called stack probing. That func-
tion traverses the stack and reads-then-discards individual
bytes below the current stack pointer at intervals of 0x1000
bytes. The instruction at address 0x100009ff0 eventually
causes a verification error, since the tool cannot establish

whether register rax has been modified during that function
call.
Non-standard Stackpointer Restoration. Normally, a

function restores the stackpointer rsp to its initial value,
plus eight due to the pushing of the return address. That is,
after a ret statement the symbolic state is verified for:

RSP == RSP0 + 8

In the binary /usr/bin/ssh ś as available in a standard Ma-
cOS distribution ś a function returns with the stackpointer
rsp set to the following symbolic value:

RSP == ∗[

((RSP0 − (48 − (((−4) − R90) ∗ 8))) & (−400))

+ ((udiv64(R90, 4) ∗ 4) ∗ 8) + 8

] + 56

This complicated symbolic value shows that the stackpointer
is not normally restored, but instead read from a region in
memory whose address is based on the initial value of regis-
ter R9 (notation ∗[a] denotes reading from address a). This
function leads to a verication error, since as the stackpointer
cannot be proven to be normally restored, no accurate mem-
ory relations over the local stack frame can be formulated.

6 Related Work

We relate our work to existing approaches for disassembly,
binary decompilation, binary verification, and abstract in-
terpretation [11]. To the best of our knowledge, the only
existing work that has similar focus on disassembly based
on formal methods is Jakstab [28ś30], which we therefore
discuss in detail.
Jakstab. Jakstab performs binary analysis and control

flow reconstruction utilizing abstract interpretation. Jak-
stab’s main analysis was designed for binaries with poten-
tially handcrafted, obfuscated behavior (such as device dri-
vers and malware). The two main differences are:

(1) Jakstab often requires usage of manually-coded har-
nesses for binaries. A harness provides property specification
and additional intermediate operations not found in the ac-
tual binary, and possibly external call modeling. They may
additionally be used to provide pointer initialization for li-
brary/driver code. For COTS binaries, such as the binaries
of the Xen case study, that kind of harness is impossible to
create precisely. An imprecise harness leads either to false
positives requiring manual investigation, or to the necessity
of unsound heuristics (page 168 of [28]).

(2) Additionally, we argue that Jakstab is not overapproxi-
mative. The instructions and states that are reached by Jak-
stab are relative to the harness; that is, relative to some ini-
tialization and external information. Jakstab reaches, on av-
erage, 15% of the instructions that are present in a binary
(based on the results presented in Table 6.2 of [28]). This
percentage is computed exclusively over the case studies
where Jakstab reports a complete and successful result (no

945

https://ropemporium.com

Formally Verified Lifting of C-Compiled x86-64 Binaries PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

counterexamples found for the property being checked). As
Jakstab explores roughly 15% of the instructions in a binary
when their analysis is reported as successful, we argue that
it is not an overapproximative approach.
Disassembly. Disassemblers are tools that take a binary

and lift it to an assembly language. Traditionally, there are
two main methods of disassembly: linear sweep and recur-

sive traversal [49]. Modern disassemblers may combine the
two or use other techniques like probabilistic [36, 60, 61] or
conflict analyses [6]. Linear sweep algorithms are easy to
implement but well-known to be unsound [49]. Recursive
traversal algorithms are more complex than linear sweep.
They operate by starting from some initial instruction and
then trace the possible paths of execution, interpreting in-
structions as they proceed [34, 49]. Our work is an example
of a recursive traversal disassembler. This allows higher ac-
curacy than linear sweep. The major challenge of recursive
traversal is properly dealing with indirect calls and jumps.
A tool that primarily uses recursive traversal is IDA [23],
intended for interactive debugging and reverse engineer-
ing. Typically, existing approaches to recursive traversal use
heuristics or guesses to approximate indirect branches.
Probabilistic approaches to disassembly [6, 36] include

machine learning techniques, such as BYTEWEIGHT [4] or
the works of Wartell et al. [60, 61]. In general, these tech-
niques attempt to identify sequences of bytes as instructions
based on their context, using large amounts of training sets
as a guide. The main disadvantage of probabilistic/specu-
lative techniques is that they inherently cannot provably
overapproximate the behavior of the binary. Although they
typically have very few cases of underapproximation, such
cases are not impossible.
The key difference between our work and existing disas-

semblers is that: 1.) no existing disassembler aims at pro-
viding a guarantee that the lifted representation is a sound
overapproximation of the binary; and 2.) our approach goes
beyond disassembly, providing both control flow and invari-
ants that are sufficiently strong enough to prove control flow.
The cost of our approach is that it may fail, whereas other
approaches are able to guess or use heuristics to continue.
Binary Decompilation. A decompiler takes a binary as

input and lifts to a higher-level representation. Ghidra [43],
RetDec [1], Phoenix [8] and FoxDec [56] all aim at lifting a
binary to C code. SmartDec [19] lifts to C++ code, whereas
McSema [16] lifts to LLVM. Ramblr [58] lifts a binary to sym-

bolized assembly, where concrete addresses are replaced with
symbolic labels. CodeSurfer/x86 [2, 3] provides a graphical
interface for lifting binaries to an intermediate representa-
tion and interactively analyzing them. Decompilers are often
integrated into reverse engineering and program exploration
tools such as IDA Pro, Binary Ninja [62] and Ghidra.
A key factor in decompilation approaches, and also in

other approaches that aim at producing control flow graphs

or dataflow analyses, is that many of them assume that dis-
assembly has been done by an external tool that is assumed
to be sound. Our algorithm thus complements these works.

Decompilation-into-Logic (DiL) [38ś40], uses operational
semantics of machine code to lift binaries into a functional
representation in Higher Order Logic. It is a technique that
can be used in formal verification contexts. DiL, does not deal
with indirect branching and assumes that return addresses
are not overwritten. In their own words, their łheuristic is
easily confused by computed branchesž [37].

Binary Verification. Binary verification techniques aim
at proving properties on the machine code level [35]. Typi-
cally, binary verification aims at proving that the binary is
correct with respect to some higher-level artifact (source
code or a specification). Sewell et al. used a refinement-
based approach to verify the binary of the seL4 microker-
nel [31, 32, 50]. Kamkin et al. developed a methodology for
verifying that the machine code of RISC-V binaries satisfy
annotations in the binaries’ source code [26]. For a top-down
approach, proof-carrying code [41] integrates a proof into
the binary that is verified at runtime.

In contrast, our approach aims at a context where a higher-
level artifact such as source code or a specification is not
available. In such contexts, most approaches are interac-
tive [20, 21, 54]. Verbeek et al. provided a binary verification
methodology tailored to memory preservation properties,
with a łmanual effort vs. instruction count ratiož of roughly 1
to 11 [55]. Tan et al. provide a fully automated method, AUS-
PICE, that takes about 6 hours for a 533-instruction string
search algorithm [53]. Our approach complements formal
verification that generate invariants for proving functional
correctness. Our approach aims at removing the lifting pro-
cess from the trusted code base.
Abstract Interpretation. The general problem of lifting

binary code from a string of 0s and 1s to a higher-level form is
known to be undecidable. Approximate solutions have been
extensively studied, especially in the framework of abstract
interpretation, which gives mathematical foundations to rea-
son about approximations and their computations. Bardin
et al. provide Binsec that uses, among others, abstract in-
terpretation for information flow analysis in cryptographic
implementations [5, 12]. Zhang et al. provide a path sampling
algorithm and use abstract interpretation to prune infeasible
paths. Reinbacher et al. use abstract interpretation in simi-
lar fashion for binary-level test case generation [45]. These
works aim at orthogonal usages of abstract interpretation
with respect to this paper, and assume availability of a tool
that provides overapproximative control flow. Our approach
is thus highly complementary to all these works.

BinTrimmer, developed by Redini et al., use abstract inter-
pretation to refine CFGs from binaries for debloating [44].
They deal with indirect branches in an overapproximative
fashion. A key difference is that BinTrimmer ś in contrast
to our work ś is solely focused on indirections, i.e., is not

946

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Freek Verbeek, Joshua Bockenek, Zhoulai Fu, and Binoy Ravindran

concerned with proving that a return address is not overwrit-
ten, with stack overflows, jump-in-the-middle behavior, or
providing invariants sufficiently strong to serve as evidence
for overapproximation. Moreover, BinTrimmers’ case studies
are six hand-picked binaries containing up to 555 LoC, in
contrast to our Xen Hypervisor case study.

7 Discussion

The approach taken in this paper necessarily makes assump-
tions (see Section 1). We provide here a high-level discussion
on how the assumptions affect the usability of overapproxi-
mative binary lifting in various application domains.
Security Analysis The central claim in this paper is that if
all assumptions and proof obligations are met, then the lifted
representation is a sound overapproximation of the binary.
Section 5.3 shows an example where an assumption can be
violated: memset may not preserve the indicated region. The
negation of assumptions required for łnormalž behavior may
lead to łweirdž behavior. In other words, the negation of the
generated assumptions may be useful in the generation of
exploits. A key challenge here is to filter out the relevant
(exploitable) assumptions from the irrelevant ones.
Binary Verification We argue that the majority of existing
work on binary verification assumes the existence of a trust-
worthy disassembler. This work exposes and makes explicit
assumptions that otherwise may remain implicit. We argue
that basing a verification effort on an a verified HG instead
of on the output of any of-the-shelf disassembler reduces the
trusted code base of the verification effort.
Decompilation Similarly, we argue that the majority of ex-
isting decompilation tools assume the existence of a reliable
disassembler. A verified HG is a reliable base for decom-
pilation. For example, the provably correct assembly and
control flow inferred by our approach could be the input to
McSema [16], in order to produce provably correct LLVM
code. The assumptions then may be translated to higher-
level assert-statements: the decompiled code is correct as
long as no assert is triggered.
Patching Binary patching typically either involves some
stages of decompilation, or replacing snippets of assembly
instructions with different ones [17]. We argue that lifting
both an original binary and its patched version to HGs would
increase the trustworthiness of the patch effort. Both the HGs
ś but also the assumptions required for lifting the binaries ś
could be mutually compared, and this comparison may ex-
pose unexpected effects of the patch.

8 Conclusions

This paper presents the first provably overapproximative lift-
ing mechanism for x86-64 binaries. Any overapproximative
representation of a binary must include both all its łnormalž
as well as all its łweirdž behaviors. A method is proposed

that takes a stripped binary as input (no debugging infor-
mation or address labeling is required). It produces a Hoare
Graph as output that contains: 1.) the assembly instructions
found in the binary; 2.) the control flow; and 3.) evidence, in
the form of inductive invariants that are sufficiently strong
to prove soundness. Our approach can deal with overlap-
ping instructions and aims at providing overapproximative
bounds to indirect branches (e.g., when a jmp is based on a
computation instead of on a constant). In some cases, un-
soundness annotations are used to indicate possible issues.
Also, assumptions are enumerated explicitly in the form of
proof obligations asserting requirements over external func-
tions. If our technique succeeds and the proof obligations
are proven true, then under these assumptions, the lifted rep-
resentation is a provable overapproximation of the binary.
We have applied our approach to binaries and shared objects
of the Xen Hypervisor, covering 399 771 instructions in total.
This case study shows that our methodology is scalable and
applicable to commercial off-the-shelf software written with-
out verification in mind. The Hoare Graph can be exported
to the Isabelle/HOL theorem prover, where it can be formally
verified. This second step essentially validates any inference
made by the algorithms during Step 1.
In future work, we aim to provide support for concur-

rency. Moreover, we find that the context-free nature of our
approach limits the number of function callbacks that are
properly dealt with. We will study passing around statefull
information between functions to find a midpoint between
scalability and better support for function callbacks.
Finally, we aim to combine the lifted Hoare Graphs with

existing approaches to binary analysis. Provably sound bi-
nary lifting can be the base for any trustworthy binary-level
technique, including decompilation, binary verification and
binary patching.

Availability

We provide the complete source code of our implementation
and the case study results at:

https://doi.org/10.5281/zenodo.6330573

Acknowledgments

We would like to thank the anonymous reviewers and our
shepherd Laure Gonnord for their insightful comments and
suggestions, which helped to greatly improve the paper.
Zhoulai Fu’s work on this paper was partly done while he
was at the IT University of Copenhagen, Denmark. This work
is supported by the Defense Advanced Research Projects
Agency (DARPA) under contract N6600121C4028 and Agree-
ment No. HR.00112090028, the US Office of Naval Research
(ONR) under grant N00014-17-1-2297, NAVSEA/NEEC un-
der grant N00174-16-C-0018, and US Naval Surface Warfare
Center Dahlgren Division under grant N00174-20-1-0009.

947

https://doi.org/10.5281/zenodo.6330573

Formally Verified Lifting of C-Compiled x86-64 Binaries PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

References
[1] Avast Software. [n.d.]. RetDec :: Home. https://retdec.com/ Accessed

2020-07-31.

[2] Gogul Balakrishnan, Radu Gruian, Thomas Reps, and Tim Teitelbaum.

2005. CodeSurfer/x86ÐA Platform for Analyzing x86 Executables. In

Compiler Construction, Rastislav Bodik (Ed.). Springer Berlin Heidel-

berg, Berlin, Heidelberg, 250ś254. https://doi.org/10.1007/978-3-540-

31985-6_19

[3] Gogul Balakrishnan and Thomas Reps. 2004. Analyzing Memory

Accesses in x86 Executables. In Compiler Construction, Evelyn Duester-

wald (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 5ś23. https:

//doi.org/10.1007/978-3-540-24723-4_2

[4] Tiffany Bao, Jonathan Burket, MaverickWoo, Rafael Turner, and David

Brumley. 2014. BYTEWEIGHT: Learning to Recognize Functions in

Binary Code. In 23rd USENIX Security Symposium (USENIX Security

14). 845ś860.

[5] Sébastien Bardin, Philippe Herrmann, Jérôme Leroux, Olivier Ly, Re-

naud Tabary, and Aymeric Vincent. 2011. The BINCOA framework for

binary code analysis. In International Conference on Computer Aided

Verification. Springer, 165ś170. https://doi.org/10.1007/978-3-642-

22110-1_13

[6] Mohamed Ammar Ben Khadra, Dominik Stoffel, and Wolfgang Kunz.

2016. Speculative Disassembly of Binary Code. In Proceedings of the

2016 International Conference on Compliers, Architectures, and Sythesis

of Embedded Systems (CASES). 1ś10. https://doi.org/10.1145/2968455.

2968505

[7] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J.

Schwartz. 2011. BAP: A Binary Analysis Platform. In International

Conference on Computer Aided Verification, Ganesh Gopalakrishnan

and Shaz Qadeer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

463ś469. https://doi.org/10.1007/978-3-642-22110-1_37

[8] David Brumley, JongHyup Lee, Edward J Schwartz, and Maverick Woo.

2013. Native x86 decompilation using semantics-preserving structural

analysis and iterative control-flow structuring. In 22nd USENIX Security

Symposium (USENIX Security 13). 353ś368.

[9] David Chisnall. 2008. The Definitive Guide to the Xen Hypervisor.

Pearson Education.

[10] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford

Stein. 2009. Introduction to algorithms. MIT press.

[11] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A

Unified Lattice Model for Static Analysis of Programs by Construction

or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-

SIGPLAN symposium on Principles of Programming Languages (POPL

77). ACM, 238ś252. https://doi.org/10.1145/234528.234740

[12] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2020. Binsec/rel:

Efficient relational symbolic execution for constant-time at binary-

level. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1021ś

1038. https://doi.org/10.1109/SP40000.2020.00074

[13] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2009. Dy-

namic Integrity Measurement and Attestation: Towards Defense

against Return-Oriented Programming Attacks. In Proceedings of the

2009 ACM Workshop on Scalable Trusted Computing (Chicago, Illinois,

USA) (STC ’09). Association for Computing Machinery, New York, NY,

USA, 49ś54. https://doi.org/10.1145/1655108.1655117

[14] Jeremy Dawson. 2009. Isabelle Theories for Machine Words. Electronic

Notes in Theoretical Computer Science 250, 1 (2009), 55ś70. https:

//doi.org/10.1016/j.entcs.2009.08.005

[15] Leonardo de Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient

SMT Solver. In International conference on Tools and Algorithms for

the Construction and Analysis of Systems. Springer-Verlag, 337ś340.

https://doi.org/10.1007/978-3-540-78800-3_24

[16] Artem Dinaburg and Andrew Ruef. 2014. McSema: Static translation of

x86 instructions to LLVM. In ReCon 2014 Conference, Montreal, Canada.

[17] Gregory J Duck, Xiang Gao, and Abhik Roychoudhury. 2020. Binary

rewriting without control flow recovery. In Proceedings of the 41st ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation. 151ś163. https://doi.org/10.1145/3385412.3385972

[18] Thomas F Dullien. 2017. Weird Machines, Exploitability, and Provable

Unexploitability. IEEE Transactions on Emerging Topics in Computing

(2017). https://doi.org/10.1109/TETC.2017.2785299

[19] Alexander Fokin, Egor Derevenetc, Alexander Chernov, and Katerina

Troshina. 2011. SmartDec: Approaching C++ Decompilation. In 2011

18th Working Conference on Reverse Engineering. 347ś356. https://doi.

org/10.1109/WCRE.2011.49

[20] Shilpi Goel. 2016. Formal Verification of Application and System Pro-

grams Based on a Validated x86 ISA Model. Ph.D. Dissertation. The

University of Texas at Austin. http://hdl.handle.net/2152/46437

[21] Shilpi Goel, Warren A. Hunt, Matt Kaufmann, and Soumava Ghosh.

2014. Simulation and Formal Verification of x86 Machine-Code

Programs that make System Calls. In Proceedings of the 2014 For-

mal Methods in Computer-Aided Design (FMCAD). 91ś98. https:

//doi.org/10.1109/FMCAD.2014.6987600

[22] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. 2016.

Stratified Synthesis: Automatically Learning the x86-64 Instruction Set.

In Proceedings of the 37th ACM SIGPLAN Conference on Programming

Language Design and Implementation (Santa Barbara, CA, USA) (PLDI

’16). ACM, New York, NY, USA, 237ś250. https://doi.org/10.1145/

2908080.2908121

[23] Hex-Rays SA. 2020. IDA Pro ś Hex Rays. https://www.hex-rays.com/

products/ida/ Accessed 2020-07-06.

[24] Charles Antony Richard Hoare. 1969. An Axiomatic Basis for Com-

puter Programming. Commun. ACM 12, 10 (Oct. 1969), 576ś580.

https://doi.org/10.1145/363235.363259

[25] R. Nigel Horspool and Nenad Marovac. 1980. An approach to the

problem of detranslation of computer programs. Comput. J. 23, 3

(1980), 223ś229. https://doi.org/10.1093/comjnl/23.3.223

[26] Alexander Kamkin, Alexey Khoroshilov, Artem Kotsynyak, and Pavel

Putro. 2020. Deductive Binary Code Verification Against Source-Code-

Level Specifications. In Tests and Proofs, Wolfgang Ahrendt and Heike

Wehrheim (Eds.). Springer International Publishing, Cham, 43ś58.

https://doi.org/10.1007/978-3-030-50995-8_3

[27] Taegyu Kim, Chung Hwan Kim, Hongjun Choi, Yonghwi Kwon, Bren-

dan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. 2017. RevARM:

A Platform-Agnostic ARM Binary Rewriter for Security Applications.

In Proceedings of the 33rd Annual Computer Security Applications Con-

ference. 412ś424. https://doi.org/10.1145/3134600.3134627

[28] Johannes Kinder. 2010. Static Analysis of x86 Executables. Ph.D. Dis-

sertation. Technische Universität, Darmstadt. http://tuprints.ulb.tu-

darmstadt.de/2338/

[29] Johannes Kinder. 2012. Towards Static Analysis of Virtualization-

Obfuscated Binaries. In 2012 19th Working Conference on Reverse Engi-

neering. 61ś70. https://doi.org/10.1109/WCRE.2012.16

[30] Johannes Kinder and Dmitry Kravchenko. 2012. Alternating Control

Flow Reconstruction. In Verification, Model Checking, and Abstract

Interpretation, Viktor Kuncak and Andrey Rybalchenko (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 267ś282. https://doi.org/10.

1007/978-3-642-27940-9_18

[31] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,

David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal

Kolanski, Michael Norrish, et al. 2009. seL4: Formal Verification of

an OS Kernel. In Proceedings of the ACM SIGOPS 22nd Symposium on

Operating Systems Principles. ACM, 207ś220. https://doi.org/10.1145/

1629575.1629596

[32] Gerwin Klein, Thomas Sewell, and SimonWinwood. 2010. Refinement

in the Formal Verification of the seL4 Microkernel. In Design and

Verification of Microprocessor Systems for High-Assurance Applications,

David S. Hardin (Ed.). Springer Science+Business Media, LLC, Boston,

MA, 323ś339. https://doi.org/10.1007/978-1-4419-1539-9_11

948

https://retdec.com/
https://doi.org/10.1007/978-3-540-31985-6_19
https://doi.org/10.1007/978-3-540-31985-6_19
https://doi.org/10.1007/978-3-540-24723-4_2
https://doi.org/10.1007/978-3-540-24723-4_2
https://doi.org/10.1007/978-3-642-22110-1_13
https://doi.org/10.1007/978-3-642-22110-1_13
https://doi.org/10.1145/2968455.2968505
https://doi.org/10.1145/2968455.2968505
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1145/234528.234740
https://doi.org/10.1109/SP40000.2020.00074
https://doi.org/10.1145/1655108.1655117
https://doi.org/10.1016/j.entcs.2009.08.005
https://doi.org/10.1016/j.entcs.2009.08.005
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3385412.3385972
https://doi.org/10.1109/TETC.2017.2785299
https://doi.org/10.1109/WCRE.2011.49
https://doi.org/10.1109/WCRE.2011.49
http://hdl.handle.net/2152/46437
https://doi.org/10.1109/FMCAD.2014.6987600
https://doi.org/10.1109/FMCAD.2014.6987600
https://doi.org/10.1145/2908080.2908121
https://doi.org/10.1145/2908080.2908121
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
https://doi.org/10.1145/363235.363259
https://doi.org/10.1093/comjnl/23.3.223
https://doi.org/10.1007/978-3-030-50995-8_3
https://doi.org/10.1145/3134600.3134627
http://tuprints.ulb.tu-darmstadt.de/2338/
http://tuprints.ulb.tu-darmstadt.de/2338/
https://doi.org/10.1109/WCRE.2012.16
https://doi.org/10.1007/978-3-642-27940-9_18
https://doi.org/10.1007/978-3-642-27940-9_18
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/978-1-4419-1539-9_11

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Freek Verbeek, Joshua Bockenek, Zhoulai Fu, and Binoy Ravindran

[33] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson,

and Giovanni Vigna. 2005. Automating Mimicry Attacks Using Static

Binary Analysis. In USENIX Security Symposium, Vol. 14. 11ś11.

[34] Christopher Kruegel, William Robertson, Fredrik Valeur, and Giovanni

Vigna. 2004. Static Disassembly of Obfuscated Binaries. In USENIX

Security Symposium, Vol. 13. 18ś18.

[35] Ramana Kumar, Eric Mullen, Zachary Tatlock, and Magnus O. Myreen.

2018. Software Verification with ITPs Should Use Binary Code Ex-

traction to Reduce the TCB. In International Conference on Interactive

Theorem Proving. Springer, 362ś369. https://doi.org/10.1007/978-3-

319-94821-8_21

[36] Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu Zhang,

and Zhiqiang Lin. 2019. Probabilistic Disassembly. In 2019 IEEE/ACM

41st International Conference on Software Engineering (ICSE). IEEE,

1187ś1198. https://doi.org/10.1109/ICSE.2019.00121

[37] Magnus O Myreen, Michael JC Gordon, and Konrad Slind. 2008.

Machine-code verification for multiple architectures ś an application

of Decompilation into Logic. In 2008 Formal Methods in Computer-

Aided Design. IEEE, 1ś8. https://doi.org/10.1109/FMCAD.2008.ECP.24

[38] Magnus O. Myreen and Michael J. C. Gordon. 2007. Hoare Logic

for Realistically Modelled Machine Code. In Tools and Algorithms

for the Construction and Analysis of Systems, Orna Grumberg and

Michael Huth (Eds.). Springer-Verlag, Berlin, Heidelberg, 568ś582.

https://doi.org/10.1007/978-3-540-71209-1_44

[39] Magnus O. Myreen, Michael J. C. Gordon, and Konrad Slind. 2008.

Machine-Code Verification forMultiple Architectures - An Application

of Decompilation into Logic. In 2008 Formal Methods in Computer-

Aided Design (Portland, OR, USA). IEEE, 1ś8. https://doi.org/10.1109/

FMCAD.2008.ECP.24

[40] Magnus O. Myreen, Michael J. C. Gordon, and Konrad Slind. 2012.

Decompilation into Logic ś Improved. In 2012 Formal Methods in

Computer-Aided Design (FMCAD). IEEE, 78ś81.

[41] George C. Necula. 1997. Proof-Carrying Code. In Proceedings of the

24th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages. ACM, 106ś119. https://doi.org/10.1145/263699.263712

[42] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Is-

abelle/HOL: A Proof Assistant for Higher-Order Logic. Vol. 2283. Springer

Science & Business Media. https://doi.org/10.1007/3-540-45949-9

[43] NSA. 2019. Ghidra. https://ghidra-sre.org/ Accessed 2020-07-06.

[44] Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan Shoshitaishvili, Gio-

vanni Vigna, and Christopher Kruegel. 2019. BinTrimmer: Towards

static binary debloating through abstract interpretation. In Interna-

tional Conference on Detection of Intrusions and Malware, and Vulnera-

bility Assessment. Springer, 482ś501. https://doi.org/10.1007/978-3-

030-22038-9_23

[45] Thomas Reinbacher, Jörg Brauer, Martin Horauer, Andreas Steininger,

and Stefan Kowalewski. 2011. Test-case generation for embedded

binary code using abstract interpretation. In Sixth Doctoral Work-

shop on Mathematical and Engineering Methods in Computer Science

(MEMICS’10)śSelected Papers. Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik. https://doi.org/10.4230/OASIcs.MEMICS.2010.101

[46] Henry Gordon Rice. 1953. Classes of Recursively Enumerable Sets and

their Decision Problems. Trans. Amer. Math. Soc. 74, 2 (1953), 358ś366.

[47] Ian Roessle, Freek Verbeek, and Binoy Ravindran. 2019. Formally

Verified Big Step Semantics out of x86-64 Binaries. In Proceedings of

the 8th ACM SIGPLAN International Conference on Certified Programs

and Proofs (Cascais, Portugal) (CPP 2019). ACM, New York, NY, USA,

181ś195. https://doi.org/10.1145/3293880.3294102

[48] Radu Rugina and Martin Rinard. 2000. Symbolic bounds analysis of

pointers, array indices, and accessed memory regions. ACM Sigplan

Notices 35, 5 (2000), 182ś195. https://doi.org/10.1145/358438.349325

[49] Benjamin Schwarz, Saumya Debray, and Gregory Andrews. 2002. Dis-

assembly of Executable Code Revisited. In Proceedings of the Ninth

Working Conference on Reverse Engineering. 45ś54. https://doi.org/10.
1109/WCRE.2002.1173063

[50] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein.

2013. Translation Validation for a Verified OS Kernel. In Proceedings of

the 34th ACM SIGPLAN Conference on Programming Language Design

and Implementation (Seattle, Washington, USA) (PLDI ’13). ACM, New

York, NY, USA, 471ś482. https://doi.org/10.1145/2491956.2462183

[51] Rebecca Shapiro, Sergey Bratus, and Sean W Smith. 2013. łWeird

Machinesž in ELF: A Spotlight on the Underappreciated Metadata. In

7th USENIX Workshop on Offensive Technologies (WOOT 13).

[52] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan

Jager, Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin

Poosankam, and Prateek Saxena. 2008. BitBlaze: A New Approach to

Computer Security via Binary Analysis. In Proceedings of the 4th Inter-

national Conference on Information Systems Security. Keynote invited

paper. Hyderabad, India. https://doi.org/10.1007/978-3-540-89862-7_1

[53] Jiaqi Tan, Hui Jun Tay, Rajeev Gandhi, and Priya Narasimhan. 2015.

AUSPICE: Automatic Safety Property Verification for Unmodified Exe-

cutables. In VSSTE. Springer, 202ś222. https://doi.org/10.1007/978-3-

319-29613-5_12

[54] Freek Verbeek, Joshua Bockenek, Abhijith Bharadwaj, Binoy Ravin-

dran, and Ian Roessle. 2019. Establishing a refinement relation between

binaries and abstract code. In Proceedings of the 17th ACM-IEEE Inter-

national Conference on Formal Methods and Models for System Design.

1ś5. https://doi.org/10.1145/3359986.3361215

[55] Freek Verbeek, Joshua Bockenek, and Binoy Ravindran. 2020. Highly

Automated Formal Proofs over Memory Usage of Assembly Code. In

Proceedings of the 25th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS 2020). 98ś117.

https://doi.org/10.1007/978-3-030-45237-7_6

[56] Freek Verbeek, Pierre Olivier, and Binoy Ravindran. 2020. Sound C

Code Decompilation for a subset of x86-64 Binaries. In Proceedings of

the 18th International Conference on Software Engineering and Formal

Methods (Amsterdam, The Netherlands) (SEFM 2020). https://ssrg-

vt.github.io/FoxDec/

[57] Fish Wang and Yan Shoshitaishvili. 2017. Angr ś The Next Generation

of Binary Analysis. In 2017 IEEE Cybersecurity Development (SecDev).

IEEE, 8ś9. https://doi.org/10.1109/SecDev.2017.14

[58] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry,

John Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna.

2017. Ramblr: Making Reassembly Great Again. In Proceedings of the

24th Annual Symposium on Network and Distributed System Security

(NDSS’17). https://doi.org/10.14722/ndss.2017.23225

[59] Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and Zhiqiang

Lin. 2012. Binary Stirring: Self-Randomizing Instruction Addresses of

Legacy x86 Binary Code. In Proceedings of the 2012 ACM conference on

Computer and communications security. 157ś168. https://doi.org/10.

1145/2382196.2382216

[60] Richard Wartell, Yan Zhou, Kevin W. Hamlen, and Murat Kantarcioglu.

2014. Shingled Graph Disassembly: Finding the Undecideable Path.

In Pacific-Asia Conference on Knowledge Discovery and Data Mining.

Springer, 273ś285. https://doi.org/10.1007/978-3-319-06608-0_23

[61] Richard Wartell, Yan Zhou, Kevin W. Hamlen, Murat Kantarcioglu,

and Bhavani Thuraisingham. 2011. Differentiating Code from Data in

x86 Binaries. In Joint European Conference on Machine Learning and

Knowledge Discovery in Databases. Springer, 522ś536.

[62] Jordan Wiens. 2020. Binary Ninja. https://binary.ninja/2020/05/11/

decompiler-stable-release.html Accessed 2020-07-06.

949

https://doi.org/10.1007/978-3-319-94821-8_21
https://doi.org/10.1007/978-3-319-94821-8_21
https://doi.org/10.1109/ICSE.2019.00121
https://doi.org/10.1109/FMCAD.2008.ECP.24
https://doi.org/10.1007/978-3-540-71209-1_44
https://doi.org/10.1109/FMCAD.2008.ECP.24
https://doi.org/10.1109/FMCAD.2008.ECP.24
https://doi.org/10.1145/263699.263712
https://doi.org/10.1007/3-540-45949-9
https://ghidra-sre.org/
https://doi.org/10.1007/978-3-030-22038-9_23
https://doi.org/10.1007/978-3-030-22038-9_23
https://doi.org/10.4230/OASIcs.MEMICS.2010.101
https://doi.org/10.1145/3293880.3294102
https://doi.org/10.1145/358438.349325
https://doi.org/10.1109/WCRE.2002.1173063
https://doi.org/10.1109/WCRE.2002.1173063
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.1007/978-3-319-29613-5_12
https://doi.org/10.1007/978-3-319-29613-5_12
https://doi.org/10.1145/3359986.3361215
https://doi.org/10.1007/978-3-030-45237-7_6
https://ssrg-vt.github.io/FoxDec/
https://ssrg-vt.github.io/FoxDec/
https://doi.org/10.1109/SecDev.2017.14
https://doi.org/10.14722/ndss.2017.23225
https://doi.org/10.1145/2382196.2382216
https://doi.org/10.1145/2382196.2382216
https://doi.org/10.1007/978-3-319-06608-0_23
https://binary.ninja/2020/05/11/decompiler-stable-release.html
https://binary.ninja/2020/05/11/decompiler-stable-release.html

	Abstract
	1 Introduction
	2 Example
	3 Technical Formulation
	3.1 Predicates
	3.2 Memory Models

	4 Algorithm
	4.1 Base Algorithm
	4.2 Extension: Function Calls

	5 Experimental Results
	5.1 Hoare Graph Extraction
	5.2 Formal Proofs in Isabelle/HOL
	5.3 Examples of Failures

	6 Related Work
	7 Discussion
	8 Conclusions
	Acknowledgments
	References

