
A Quorum-Based Replication Framework for Distributed Software
Transactional Memory

Bo Zhang
ECE Department, Virginia Tech

Blacksburg, VA 24061, USA
alexzbzb@vt.edu

Binoy Ravindran
ECE Department, Virginia Tech

Blacksburg, VA 24061, USA
binoy@vt.edu

Abstract

Distributed software transactional memory (D-STM) promises to alleviate difficulties with
lock-based (distributed) synchronization and object performance bottlenecks in distributed sys-
tems. Past single copy data-flow (SC) D-STM proposals keeps only one writable copy of each
object in the system and are not fault-tolerant in the presence of network node/link failures
in large-scale distributed systems. In this paper, we propose a quorum-based replication (QR)
D-STM model, which provides provable fault-tolerant property without incurring high communi-
cation overhead compared with SC model. QR model operates on an overlay tree constructed on
a metric-space failure-prone network where communication cost between nodes forms a metric.
QR model stores object replicas in a tree quorum system, where two quorums intersect if one
of them is a write quorum, and ensures the consistency among replicas at commit-time. The
communication cost of an operation in QR model is proportional to the communication cost
from the requesting node to its closest read or write quorum. In the presence of node failures,
QR model exhibits high availability and degrades gracefully when the number of failed nodes
increases, with reasonable higher communication cost.

1. Introduction
Lock-based synchronization is non-scalable, non-composable, and inherently error-prone. Transactional

memory (TM) is an alternative synchronization model for shared memory objects that promises to alleviate
these difficulties. In addition to a simple programming model, TM provides performance comparable to
highly concurrent fine-grained locking and is composable. TM for multiprocessors has been proposed in
hardware, called HTM, in software, called STM, and in hardware/software combination [1].

Similar to multiprocessor TM, distributed STM (or D-STM) is motivated by the difficulties of lock-based
distributed synchronization (e.g., distributed race conditions, composability). D-STM can be supported
in any of the classical distributed execution models, including a) dataflow [2], where transactions are
immobile, and objects are migrated to invoking transactions; b) control flow [3], where objects are
immobile and transactions invoke object operations through RPCs; and c) hybrid models (e.g., [4]),
where transactions or objects are migrated, based on access profiles, object size, or locality. The different
models have their concomitant tradeoffs.

D-STM can be classified based on the system architecture: cache-coherent D-STM (cc D-STM) [2],
where a number of nodes are interconnected using message-passing links, and a cluster model (cluster
D-STM), where a group of linked computers works closely together to form a single computer ([4], [5],
[6], [7]). The most important difference between the two is communication cost. cc D-STM assumes a



metric-space network, whereas cluster D-STM differentiates between local cluster memory and remote
memory at other clusters.

In this paper, we focus on cc D-STM. The data-flow cc D-STM model is proposed by Herlihy and
Sun [2]. In this model, only a single (writable) copy is kept in the system. Transactions run locally and
objects move in the network to meet transactions’ requests. When a node vA initiates a transaction A that
requests a read/write operation on object o, its TM proxy first checks whether o is in the local cache;
if not, the TM proxy invokes a cache-coherence (CC) protocol to locate o in the network by sending
a request CC.locate(o). Assume that o is in use by a transaction B initiated by node vB . When vB
receives the request CC.locate(o) from vA, its TM proxy checks whether o is in use by an active local
transaction; if so, the TM proxy invokes a contention manager to handle the conflict between A and B.
Based on the result of contention management, vB’s TM proxy decides whether to abort B immediately,
or postpone A’s request and let B proceed to commit. Eventually, CC moves o to vA.

In the aforementioned single copy data-flow model (or SC model), the main responsibility of CC
protocol is to locate and move objects in the network. A directory-based CC protocol is often adopted
such that the latest location of the object is saved in the distributed directory and the cost to locate and
move an object is bounded. Such CC protocols include Ballistic [2], Relay [8] and Combine [9].

Since SC model only keeps a single writable copy of each object, it is inherently vulnerable in the
presence of node and link failures. If a node failure occurs, the objects held by the failed node will be
simply lost and all following transactions requesting such objects would never commit. Hence, SC model
cannot afford any node failures. Ballistic and Relay also assumes a reliable and fifo logical link between
nodes, since they may not perform well when the message is reordered [10]. On the other hand, Combine
can tolerate partial link failures and support non-fifo message delivery, as long as a logical link exists
between any pair of nodes. However, similar to other directory-based CC protocols, Combine does not
permit network partitioning incurred by link failures, which may make some objects inaccessible from
outer transactions. In general, SC model is not suitable in a network environment with aforementioned
node/link failures.

To achieve high availability in the presence of network failures, keeping only one copy of each object
in the system is not sufficient. Inherited from database systems, replication is a promising approach to
build fault-tolerant D-STM systems, where each object has multiple (writable) copies. However, only a
few replicated D-STM solutions have been proposed for cluster-based D-STM ([4], [5], [6], [7]). These
solutions require some form of broadcasting to maintain consistency among replicas and assume a uniform
communication cost across all pairs of nodes. As the result, we cannot directly apply these solutions for
cc D-STM.

This paper presents QR model, a quorum-based replication cc D-STM model which provides provable
fault-tolerance property in a failure-prone metric-space network, where communication cost between nodes
forms a metric. To the best of our knowledge, this is the first replication cc D-STM proposal which
provides provable fault-tolerant properties. In distributed systems, a quorum is a set of nodes such that
the intersection of any two quorums is non-empty if one of them is a write quorum. By storing replicated
copies of each object in an overlay tree quorum system motivated by the one in [11], QR model supports
concurrent reads of transactions, and ensures the consistency among replicated copies at commit-time.
Meanwhile, QR model exhibits a bounded communication cost of its operations, which is proportional to
the communication cost from v to its closest read/write quorum, for any operation starting from node v.
Compared with directory-based CC protocols, the communication cost of operations in QR model does
not rely on the stretch of the underlying overlay tree (i.e., the worst-case ratio between the cost of direct
communication between two nodes v and w and the cost of communication along the shortest tree path
between v and w). Therefore QR model provides a more promising solution to support D-STM in the



presence of network failures with communication cost comparable with SC model.
The rest of the paper is organized as follows. We introduce the system model and identify the limitations

of SC model in Section 2. We present QR model and analyze its properties in Section 3. The paper
concludes in Section 4.

2. Preliminaries
2.1. System Model

We consider a distributed system which consists of a set of distinct nodes that communicate with each
other by message-passing links over a communication network. Similar to [2], we assume that the network
contains n physical nodes scattered in a metric space of diameter D. The metric d(u, v) is the distance
between nodes u and v, which determines the communication cost of sending a message from u to v.
Scale the metric so that 1 is the smallest distance between any two nodes.

We assume that nodes are fail-stop [12] and communication links may also fail to deliver messages.
Further, node and link failures may occur concurrently and lead to network partitioning failures, where
nodes in a partition may communicate with each other, but no communication can occur between nodes
in different partitions. A node may become inaccessible due to node or partitioning failures.

We consider a set of distributed transactions T := {T1, T2, . . .} sharing a set of objects O :=
{o1, o2, . . .} distributed on the network. A transaction contains a sequence of requests, each of which
is a read or write operation request to an individual object.

An execution of a transaction is a sequence of timed operations. An execution ends by either a commit
(success) or an abort (failure). A transaction’s status is one of the following three: live, aborted, or
committed. A transaction is live after its first operation, and completes either by a commit or an abort
operation. When a transaction aborts, it is restarted from its beginning immediately and may access a
different set of shared objects. Two transactions are concurrent if they are both live at the same time.
Suppose there are two live transactions Tj and Tk which request to access oi and at least one of the
access is a write. Then Tj and Tk are said to conflict at oi, i.e., two live transactions conflict if they both
access the same object and at least one of the accesses is a write. There are three types of conflicts: (1)
Read-After-Write (W → R); (2) Write-After-Read (R → W ); and (3) Write-After-Write (W → W ). A
contention manager is responsible for resolving the conflict, and does so by aborting or delaying (i.e.,
postponing) one of the conflicting transactions. Most contention managers do not allow two transactions
to proceed (i.e., make progress) simultaneously. In other words, two operations from different transactions
over the same object cannot be overlapped if one of them is a write. In this paper, we assume an underlying
contention manager which has consistent policies to assign priorities to transactions. For example, the
Greedy contention manager [13] always assigns higher priority to the transaction earlier timestamp.

Each node has a TM proxy that provides interfaces to the TM application and to proxies of other
nodes. A transaction performs a read/write operation by first sending a read/write access request to its
TM proxy. The TM proxy invokes a CC protocol to acquire a valid object copy in the network. For a
read operation, the protocol returns a read-only copy of the object. For a write operation, the CC protocol
returns a writable copy of the object. When there are multiple copies (or replicas) of an object existing
in the network, the CC protocol is responsible to ensure the consistency over replicas such that multiple
copies of an object must appear as a single logical object to the transactions, which is termed as one-copy
equivalence [14].

2.2. Motivation: limitations of SC D-STM model
As mentioned in Section 1, SC model lacks the fault-tolerant property in the presence of network

failures. SC model also suffers from some other limitations.



Limited support of concurrent reads. Although directory-based CC protocols for SC model allows
multiple read-only copies of an object existing in the system, these protocols lacks the explanation
on how they maintain the consistency over read-only and writable copies of objects. Consider two
transactions A and B, where A contains operations {read(o1), write(o2)} and B contains operations
{read(o2), write(o1)}. In SC model, the operations of A and B could be interleaved, e.g., transaction A
reads o1 before B writes to o1, and transaction B reads o2 before A writes to o2. Obviously, transactions
A and B conflict on both objects. In order to detect the conflict, each object needs to keep a record
for any of its readers. When transaction A (or B) detects a conflict on object o2 (or o1), it does
not know: i) the type of the conflicting transaction (read-only or read/write); and ii) the status of the
conflicting transaction (live/aborted/committed). It is not possible for a contention manager to make
distributed agreement without these knowledge (e.g., it is not necessary to resolve the conflict between a
live transaction and an aborted/committed transaction). To keep each object updated with the knowledge
of its readers, a transaction has to send messages to all objects in its readset once after its termination
(commit or abort). Unfortunately, in SC model such mechanism incurs high communication and message
overhead, and it is still possible that a contention manager may make a wrong decision if it detects a
conflict between the time the conflicting transaction terminated and the time the conflicting object receives
the updated information, due to the relatively high communication latency.

Due to the inherent difficulties in supporting concurrent read operations, practical implementations of
directory-based CC protocols often do not differentiate between a read and write operation of a read/write
transaction (i.e., if a transaction contains both read and write operations, all its operations are treated as
write operations and all its requested objects have to be moved). Such over-generalization obviously
limits the possible concurrency of transactions. For example, in the scenario where the workload is
composed of late-write transactions [10], a directory-based CC protocol cannot perform better than a
simple serialization schedule, while the optimal schedule maybe much shorter when concurrent reads are
supported for read/write operations.
Limited locality. One major concern of directory-based CC protocols is to exploit locality in large-scale
distributed systems, where remote access is often several orders of magnitude slower than local ones.
Reducing communication cost and remote accesses is the key to achieving good performance for D-
STM implementations. Existing CC protocols claim that the locality is preserved by their location-aware
property: the cost to locate and move the objects between two nodes u and v is often proportional to
the shortest path between u and v in the directory. In such a way directory-based CC protocols route
transactions’ requests efficiently: if two transactions requests an object at the same time, the transaction
“closer” to the object in the directory will get the object first. The object will be first sent to the closer
transaction, then to the further transaction.

Nevertheless, it is unrealistic to assume that all transactions start at the same time. Even if two
transactions start at the same time, since a non-clairvoyant transaction may access a sequence of objects, it
is possible that a closer transaction may request to access an object much later than a further transaction. In
such cases, transactions’ requests may not be routed efficiently by directory-based CC protocols. Consider
two transactions A and B, where A is {⟨some work⟩, write(o)} and B is {write(o), ⟨some work⟩}.
Object o is located at node v. Let d(v, vA) = 1 and d(v, vB) = d(vA, vB) = D, it is possible that o
first receives B’s request of o. Assume that o is sent to B from v, then the directory of o points to vB .
Transaction A’s request of o is forwarded to vB and a conflict may occur at vB . If B is aborted, the
object o is moved to vA from vB . In this scenario, object o has to travel at least 3D distance to let two
transactions A commit. On the other hand, when object o receives B’s request at v, if we let o waits for
time to to let A’s request reach v, then o could be first moved to vA and then to vB . In this case, object
o travels to +D+1 distance to let two transactions commit. Obviously the second schedule may exploit



more locality: as long as to is less than 2D− 1 (which is a quite loose bound), the object is moved more
quickly.

In practice, it is often impractical to predict to. As the result, directory-based CC protocols often
overlook possible locality by simply keeping track of the single writable copy of each object. Such
locality can be more exploited to reduce communication cost and improve performance.

3. Quorum-Based Replication Data-Flow D-STM Model
3.1. Overview

We present QR model, a quorum-based replication data-flow D-STM model, where multiple (writable)
copies of each object are distributed at several nodes in the network. To perform a read or write operation,
a transaction reads an object by reading object copies from a read quorum, and writes an object by writing
copies to a write quorum. A quorum is assigned with the following restriction:

Definition 1 (Quorum Intersection Property): A quorum is a collection of nodes. For any two quorums
q1 and q2, where at least one of them is a write quorum, the two quorums must have a non-empty
intersection: q1 ∩ q2 ̸= ∅.

Generally, by constructing a quorum system over the network, QR model is able to keep multiple
copies of each object. QR model provides 5 operations for a transaction: read, write, request-commit,
commit and abort. Particularly, QR model provides a request-commit operation to validate the consistency
of its readset and writeset before it commits. A transaction may request to commit if it is not aborted
by other transactions before its last read/write operation. Concurrency control solely occurs during the
request-commit operation: if a conflict is detected, the transaction may get aborted or abort the conflicting
transaction. After collecting the response of the request-commit operation, a transaction may commit or
abort.

We first present read and write operations of QR model in Algorithm 1.
Algorithm 1: QR model: read and write

1 procedure READ (v, T, o)
2 Local Phase:
3 READQUORUM (v, req(T, read(o)));
4 wait until find(v) = true;
5 foreach returned value d from node vi do
6 if d.version > data(o).version then
7 data(o)← d;
8 add o to T.readset;

9 Remote Phase:
10 Upon receiving req(T, read(o)) from node v;
11 if data(o) exists then
12 add T to PR(o);
13 send rsp(T, o) to v;

14 procedure WRITE (v, T, o, value)
15 Local Phase:
16 READQUORUM (v, req(T,write(o)));
17 wait until find(v) = true;
18 foreach returned value d from node vi do
19 if d.version > data(o).version then
20 data(o)← d;
21 dataCopy(o)← data(o);
22 dataCopy(o).value← value;
23 dataCopy(o).version← data(o).version+ 1;
24 add o to T.writeset;

25 Remote Phase:
26 Upon receiving req(T,write(o)) from node v;
27 if data(o) exists then
28 add T to PW (o);
29 send rsp(T, o) to v;

Read. When transaction T at node v starts a read operation, it sends a request message req(T, read(o))
to a selected read quorum qr. The algorithm to find and select a read or write quorum will be elaborated
in the next section. Node v′, upon receiving req(T, read(o)), checks whether it has a copy of o. If not,
it sends a null response to v.

In QR model, each object copy contain three fields: the value field, which is the value of the object;
the version number field, starting from 0, and the protected field, a boolean value which records the
status of the copy. The protected field is maintained and updated by request-commit, commit and abort



operations. Each object copy o keeps a potential readers list PR(o), which records the identities of the
potential readers of o. Therefore, if v′ has a copy of o, it adds T to PR(o) and sends a response message
rsp(T, o) to v, which contains a copy of o.

Transaction T waits to collect responses until it receives all responses from a read quorum. Among all
copies it receives, it selects the copy with the highest version number as the valid copy of o. The read
operation finishes.
Write. The write operation is similar to the read operation. Transaction T sends a request message
req(T,write(o)) to a selected read quorum. Note that T does not need to send request to a write quorum
because in this step it only needs to collect the latest copy of o. If a remote node v′ has a copy of o, it
adds T to o’s potential writers list PW (o) and sends a response message to T with a copy of o.

Transaction T selects the copy with with the highest version number among the responses from a read
quorum. Then it creates a temporary local copy (dataCopy(o)) and updates it with the value it intends
to write, and increases its version number by 1 compared with the selected copy.
Remarks: The read and write operations of QR model are simple: a transaction just has to fetch all latest
copies of required objects and perform all computations locally. Unlike a directory-based CC protocol,
there is no need to construct and update a directory for each shared object. In QR model a transaction
can always query its “closest” read quorum to locate the latest copy of each object required. Therefore
the locality is preserved.

Algorithm 2: QR model: request-commit

1 procedure REQUEST-COMMIT (v, T )
2 Local Phase:
3 WRITEQUORUM (v, req cmt(T ));
4 AT (T )← ∅;
5 wait until find(v) = true;
6 if any rsp cmt(T, abort) message is received then
7 ABORT (v, T );
8 else
9 foreach rsp cmt(T, commit, CT (T )) message do

10 AT (T )← AT (T ) ∪ CT (T );
11 COMMIT (v, T );

12 Remote Phase:
13 Upon receiving req cmt(T ) from node v;
14 CT (T )← ∅;
15 abort(T )← false;
16 CONFLICT-DETECT (v, T );
17 if abort(T ) = false then
18 if CT (T ) = ∅ then
19 send rsp cmt(T, commit, CT (T )) to v;
20 else
21 CONTENTION-MANAGEMENT (T,CT (T ));
22 if CT (T ) ̸= ∅ then
23 send rsp cmt(T, commit, CT (T )) to v;
24 if abort(T ) = false then
25 foreach oT ∈ T.writeset for object o do
26 oT .protected← true;
27 remove T from PR(o) and PW (o) for any object o;

28 procedure CONFLICT-DETECT (v, T )
29 foreach oT ∈ T.readset ∪ T.writeset of object o do
30 if data(o).protected = true or
31 data(o).version > oT .version then
32 abort(T )← true;
33 send rsp cmt(T, abort) to v;
34 break;
35 if data(o).version = oT .version then
36 if data(o).value ̸= oT .value then
37 abort(T )← true;
38 send rsp cmt(T, abort) to v;
39 break;
40 else
41 add PW (o) to CT (T );
42 if oT ∈ T.writeset then
43 add PR(o) to CT (T );

44 procedure CONTENTION-MANAGEMENT (T,CT (T ))
45 foreach T ′ ∈ CT (T ) do
46 if T ′ ≺ T then
47 abort(T )← true;
48 send rsp cmt(T, abort) to v;
49 CT (T )← ∅;
50 break;

If a transaction is not aborted (by any other transaction) during all its read and operations, the transaction
can request to commit by requesting to propagate its changes to objects into the system. The concurrency
control mechanism is needed when any non-consistent status of an object is detected. The request-commit
operation is presented in Algorithm 2.



Request-Commit. When transaction T requests to commit, it sends a message req cmt(T ) (which
contains all information of its readset and writeset) to a write quorum qw. Note that it is required that for
each transaction T , and ∀qr, qw selected by T , qr ⊆ qw.

In the remote phase, when node v′ receives the message req cmt(T ), it immediately removes T from
its potential read and write lists of all objects and creates an empty conflicting transactions list CT (T )
which records the transactions conflicting with T . Node v′ determines the conflicting transactions of T
in the following manner:
1) if oT .protected = true, then T must be aborted since oT is waiting for a possible update;
2) if oT is a copy read or written by T of object o, and the local copy of o at v′ (data(o)) has the higher
version than oT , then T reads a stale version of o. In this case, T must be aborted.
3) if oT is a copy read by T of object o, and the local copy of o at v′ (data(o)) has the same version
with oT , then T conflicts with all transactions in PW (o) (potential writers of object copy data(o)).
4) if oT is a copy written by T of object o, and the local copy of o at v′ (data(o) has the same version with
oT , then T conflicts with all transactions in PW (o) ∪ PR(o) (potential readers and writers of data(o).

The contention manager at v′ compares priorities between T and its conflicting transactions. If ∀T ′ ∈
CT (T ), T ≺ T ′ (T has the higher priority than any of its conflicting transactions), T is allowed to
commit by v′. Node v′ sends a message rsp cmt(T, commit) with CT (T ) to v and sets the status of
data(o) as protected, for any o ∈ T.writeset. If ∃T ′ ∈ CT (T ) such that T ′ ≺ T , then T is aborted.
Node v′ sends a message rsp cmt(T, abort) to v and resets CT (T ).

In the local phase, transaction T collects responses from all nodes in the write quorum. If any
rsp cmt(T, abort) message is received, T is aborted. If not, T can proceed to the commit operation. In
this case, transaction T saves conflicting transactions from all responses into an aborted transactions list
AT (T ).

Algorithm 3: QR model: commit and abort

1 procedure COMMIT (v, T )
2 Local Phase:
3 foreach object o ∈ T.writeset do
4 data(o)← dataCopy(o);
5 foreach T ′ ∈ AT (T ) do
6 send req abt(T ′) message;
7 WRITEQUORUM (v, commit(T ));
8 wait until find(v) = true;

9 Remote Phase:
10 Upon receiving commit(T ):
11 foreach oT ∈ T.writeset for object o do
12 data(o)← oT ;
13 data(o).protected← false;
14 Upon receiving req abt(T ′):
15 ABORT (v′, T ′)

16 procedure ABORT (v, T )
17 Local Phase:
18 foreach object o ∈ T.writeset do
19 discard dataCopy(o);
20 WRITEQUORUM (v, abort(T ));
21 wait until find(v) = true;

22 Remote Phase:
23 Upon receiving abort(T ):
24 foreach oT ∈ T.writeset for object o do
25 data(o).protected← false;
26 remove T from PR(o) and PW (o) for any object o;

Remarks: For each transaction T , its concurrency control mechanism is carried by the request-commit
operation. Therefore, the request-commit operation must guarantee that all existing conflicts with T are
detected. Note that a remote node makes this decision based on its potential read and write lists. Therefore,
these lists must be efficiently updated: a terminated transaction must be removed from these lists to avoid
an unnecessary conflict detected. By letting qr ⊆ qw for all qr and qw selected by the same transaction
T , QR model guarantees that all T ’s records in potential read and write lists are removed during T ’s
request-commit operation.

On the other hand, if v′ allows T proceed to commit, then v′ needs to protect local object copies
written by T from other accesses until T ’s changes to these objects propagate to v′. These objects copies



become valid only after receiving T ’s commit or abort information. We describe T ’s commit and abort
operations in Algorithm 3.
Commit. When T commits, it sends a message commit(T ) to each node in the same write quorum
qw as the one selected by the request-commit operation. Meanwhile, it sends a request-abort message
req abt(T ′) for any T ′ ∈ AT (T ). In the remote phase, when a node v′ receives commit(T ), for any
o ∈ T.writeset, it updates data(o) with the new value and version number, and sets data(o).protected =
false. If a transaction T ′ receives req abt(T ′), it aborts immediately.
Abort. A transaction may abort in two cases: after the request-commit operation, or receives a request-
abort message. When T aborts, it rolls back all its operations of local objects. Meanwhile, it sends a
message abort(T ) to each node in the write quorum qw (which is the same as the write quorum selected
by the request-commit operation). Then transaction T restarts from the beginning. In the remote phase,
when a node v′ receives abort(T ), it removes T from any of its potential read and write list (if it has
not done so), and sets data(o).protected = false for any o ∈ T.writeset.

3.2. Quorum construction: FLOODING protocol
One crucial part of QR model is the construction of a quorum system over the network. We adopt

the hierarchical clustering structure similar to the one described in [2]. An overlay tree with depth L is
constructed. Initially, all physical nodes are leaves of the tree. Starting from the leaf nodes at level l = 0,
parent nodes at the immediate higher level l+1 is elected recursively so that their children are all nodes
at most at distance 2l from them.

Our quorum system is motivated by the classic tree quorum system [11]. On the overlay tree, a quorum
system is constructed by FLOODING protocol such that each constructed quorum is a valid tree quorum.

We present FLOODING protocol in Algorithm 4. For each node v, when the system starts, a basic
read quorum Qr(v) and a basic write quorum Qw(v) are constructed by BASICQUORUMS method.
The protocol tries to construct Qr(v) and Qw(v) by first putting root into these quorums and setting a
distance variable δ to d(v, root). Starting from level = L−1, the protocol recursively selects the majority
of descendants levelHead = closestMajority(v, parent, level) for each parent selected in the previous
level (level+1), so that the distance from v to closestMajority(v, parent, level) is the minimum over
all possible choices. Note that closestMajority(v, parent, level) only contains parent’s descendants at
level level. We define the distance from v to a quorum Q as: d(v,Q) := maxv′∈Q d(v, v′). The basic
write quorum Qw(v) is constructed by including all selected nodes.

At each level, after a set of nodes levelHead has been selected, the protocol checks the distance
from v to levelHead (d(v, levelHead)). If d(v, levelHead) < δ, then the protocol replaces Qr(v) with
levelHead and sets δ to d(v, levelHead). If d(v, levelHead) ≥ δ, the protocol continues to the next
level. At the end, Qr(v) contains a set of nodes from the same level, which is the levelHead closest
from v for all levels.

When node v requests to access a read quorum, the protocol invokes READQUORUM(v,msg) method.
Initially, node v sends msg to every node in Qr(v). If all nodes in Qr(v) are accessible from v, then
a live read quorum is found. If any node v′ in Qr(v) is down, then the protocol needs to probe v′’s
substituting nodes sub(v′) such that sub(v′) ∪Qr(v)\v′ still forms a read quorum.

The protocol first finds if there exists any v′’s ancestor available. If so, v′’s substituting node has been
found. If not, the protocol probes downwards from v′ to check if there exists v′ substituting nodes such
that a constructed read quorum is a subset of Qw(v) by calling DOWNPROBE method.

The protocol invokes WRITEQUORUM(v,msg) method when node v requests to access a write quorum.
Similar to READQUORUM(v,msg), node v first sends msg to every node in Qw(v). If any node v′ is down,
then the protocol first finds if there is a live ancestor of v′ (validAns(v)). Starting from validAns(v),
the protocol calls DOWNPROBE to probe downwards.



Algorithm 4: FLOODING protocol

1 procedure BASICQUORUMS (v, root)
2 δ ← d(v, root);
3 Qr(v)← {root};
4 Qw(v)← {root};
5 Qr(v).level← L;
6 currentHead← {root};
7 for level = L− 1, L− 2, . . . , 0 do
8 levelHead← ∅;
9 foreach parent ∈ currentHead do

10 new ← closestMajority(v, parent, level);
11 add new to Qw(v);
12 add new to levelHead;
13 if d(v, levelHead) < δ then
14 Qr(v)← levelHead;
15 Qr(v).level← level;
16 δ ← d(v, levelHead);
17 currentHead← levelHead;

18 procedure WRITEQUORUM (v,msg)
19 send msg to every node in Qw(v);
20 if v′ ∈ Qr(v) is down then
21 find(v)← false;
22 validAns(v)← null;
23 validLevel(v)← null;
24 for level = 1, . . . , L do
25 send msg to ancestor(v, level);
26 if ancestor(v, level) is up then
27 validAns(v)← ancestor(v, level);
28 validLevel(v)← level;
29 break;
30 if validAns(v) = null then
31 restart WRITEQUORUM (v,msg);
32 if validLevel(v) > Qr(v).level then
33 send msg to every node in Qr(v);
34 DOWNPROBE (validAns(v), validLevel(v), write);
35 if find(v) = false then
36 restart WRITEQUORUM (v,msg);

37 procedure READQUORUM (v,msg)
38 send msg to every node in Qr(v);
39 find(v)← false;
40 if v′ ∈ Qr(v) is down then
41 find(v)← false;
42 if v′ ̸= root then
43 for level = Qr(v).level + 1, . . . , L do
44 send msg to ancestor(v, level);
45 if ancestor(v, level) is up then
46 find(v)← true;
47 break;
48 if find(v) = false then
49 DOWNPROBE (v′, Qr(v).level, read);
50 if find(v) = false then
51 restart READQUORUM (v,msg);

52 procedure DOWNPROBE (v, validLevel, type)
53 curReadHead← v;
54 curWriteHead← v;
55 noWriteQuorum← false;
56 for level = validLevel − 1, . . . , 0 do
57 levelReadHead← ∅;
58 levelWriteHead← ∅;
59 foreach parent ∈ curReadHead do
60 send msg to every node in

descendants(parent, level) ∩Qw(v);
61 if w is down then
62 add w to levelReadHead;
63 if type = write then
64 foreach parent ∈ currentWriteHead do
65 if ∃newSet =

closestMajority(v, parent, level) then
66 send msg to every node in newSet;
67 add newSet to levelWriteHead;
68 else
69 noWriteQuorum← true;
70 break;
71 if noWriteQuorum = true then
72 break;
73 if levelReadHead = ∅ and type = read then
74 find(v)← true;
75 break;
76 else
77 curReadHead← levelReadHead;
78 curWriteHead← levelWriteHead;
79 if noWriteQuorum = false and type = write then
80 find(v)← true;

DOWNPROBE method works similarly as BASICQUORUMS by recursively probing an available closest
majority set of descendants for each parent selected in the previous level. By adopting DOWNPROBE

method, FLOODING protocol guarantees that READQUORUM and WRITEQUORUM can always probe an
available quorum if at least one live read (or write) quorum exists in the network.

3.3. Analysis
We first analyze the properties of the quorum system constructed by FLOODING, then we prove the

correctness and evaluate the performance of QR model.



Lemma 1: Any read quorum qr or write quorum qw constructed by FLOODING is a classis tree quorum
defined in [11].

Proof: From the description of FLOODING, we know that for a tree of height h+ 1,

qr = {root} ∨ {majority of read quorums for subtrees of height h},

qw = {root} ∪ {majority of write quorums for subtrees of height h}.

From Theorem 1 in [11], the lemma follows.
Then we immediately have the following lemma.
Lemma 2: For any two quorums q1 and q2 constructed by FLOODING, where at least one of them is

a write quorum, qr ∩ qw ̸= ∅.
Lemma 3: For any read quorum qr(v) and write quorum qw(v) constructed by FLOODING for node v,

qr(v) ⊆ qw(v).
Proof: The theorem follows from the description of FLOODING. If no node fails, the theorem holds

directly since Qr(v) ⊆ Qw(v).
If a node v′ ̸∈ Qr(v) fails, then qr(v) = Qr(v). If v′ ∈ Qw(v), FLOODING detects that v′ is not

accessible when it calls WRITEQUORUM method. If level(q) ≥ Qr(v).level, then FLOODING adds
Qr(v) to qw(v) and starts to probe v′’s substituting nodes; if level(v′) < Qr(v).level, then the level of
v′’s substituting node is at most Qr(v).level and then the protocol starts to probe downwards. In either
case, qr(v) ⊂ qw(v).

If a node v′ ∈ Qr(v) fails, then FLOODING detects that v′ is not accessible when it calls READQUORUM

or WRITEQUORUM method. Both methods starts to probe v′’s substituting nodes from v′. When probing
upwards, v′’s ancestors are visited. If a live ancestor(v′) is found, then both methods add ancestor(v′)
to the quorum. Then READQUORUM stops and WRITEQUORUM continues probing downwards from
ancestor(v′). The theorem follows.

With the help of Lemmas 2, we have the following theorem.
Theorem 4: QR model provides 1-copy equivalence for all objects.

Proof: We first prove that for any object o, if at time t, no transaction requesting o is propagating its
change to o (i.e., in the commit operation), then all transactions accessing o at t get the same copy of o.

Note that if any committed transaction writes to o before t, there exists a write quorum qw such that
{∀v ∈ qw} ∧ {∀v′ ̸∈ qw}, data(o, v).version > data(o, v′).version. If any transaction T accesses o at
time t, it collects a set of copies from a read quorum qr. From Lemma 2, ∃v ∈ {qw ∩ qr} such that
data(o, v) is collected by T . Note that read and write operations select the object copy with the highest
version number. Hence, for any transaction T , data(o, v) is selected as the latest copy.

We now prove that for any object o, if at time t: 1) a transaction T is propagating its change to o; and
2) another transaction T ′ accesses a read quorum qr before T ’s change propagates to qr, then T ′ will
never commit.

Note that in this case, T ′ reads a stale version oT ′ of o. When it requests to commit (if it is not aborted
before that), it sends the request to a write quorum qw. Then ∃v ∈ qw, such that: 1) T ’s change of o still
has not propagated to v and data(o, v).protected = true; or 2) T ’s change has been applied to data(o, v)
and data(o, v).version > oT .version. In either case, T is aborted by CONFLICT-DETECT method.

As the result, at any time, the system exhibits that only one copy exists for any object and transactions
observing an inconsistent state of object never commit. The theorem follows.

With the help of Lemma 3 and Theorem 4, we can prove that QR model provides one-copy serializ-
ability [14].

Theorem 5: QR model implements one-copy serializability.



QR model provides five operations and every operation incurs a remote communication cost. We now
analyze the communication cost of each operation.

Theorem 6: If a live read quorum qr(v) exists, the communication cost of a read or write operation
that starts at node v is O(k · d(v, qr(v))) for k ≥ 1, where k is the number of nodes failed in the system.
Specifically, if no node fails, the communication cost is O(d(v,Qr(v))).

Proof: For a read or write operation, the transaction calls READQUORUM method to collect the latest
value of the object from a read quorum. If no node fails, the communication cost is 2d(v,Qr(v)). If a node
v′ ∈ Qr(v) fails, the transaction needs to probe v′’s substituting nodes to construct a new read quorum.
The time for v to restart the probing is at most 2d(v,Qr(v)). Note that ∀qr(v), d(v,Qr(v)) ≤ d(v, qr(v)).

In the worst case, if k nodes fail and v detects only one failed node at each it accesses a read quorum,
at most k rounds of probing are needed for v to detect a live read quorum. On the other hand, v always
starts probing from the closest possible read quorum. Therefore for each round, the time for v to restart
the probing is at most 2d(v, qr(v)). The theorem follows.
Similar to Theorem 6, the communication cost of other three operation can be proved in the same way.

Theorem 7: If a live write quorum qr(v) exists, the communication cost of a request-commit, commit
or abort operation that starts at node v is O(k · d(v, qw(v))) for k ≥ 1, where k is the number of nodes
failed in the system. Specifically, if no node fails, the communication cost is O(v,Qw(v)).

Theorems 6 and 7 illustrate the advantage of exploiting locality for QR model. For read and write
operations starting from v, the communication cost is only related to the distance from v to its closest read
quorum. If no node fails, the communication cost is bounded by 2d(v,Qr(v)). Note that d(v,Qr(v)) ≤
d(v, root) from the construction of Qr(v). On the other hand, the communication cost of other three
operations is bounded by O(v,Qw(v)). Since each transaction involves at most two operations from
{request-commit, commit, abort}, when the number of read/write operations increases, the communication
cost of a transaction only increases proportional to d(v,Qr(v)). Compared with directory-based protocols,
the communication cost of a operation in QR model is not related to the stretch provided by the underlying
overlay tree.

When the number of failed nodes increases, the performance of each operation degrades linearly. In QR
model, it is crucial to analyze the availability of the constructed quorum system. From the construction
of the quorum system we know that if a live quorum exists, FLOODING protocol can always probe it.
Let p be the probability that node lives and Rh be the availability of a read quorum, i.e., at least one live
read quorum exists in a tree of height h. Then we have the following theorem.

Theorem 8: Assuming the degree of each node in the tree is at least 2d+ 1, the availability of a read
quorum is

Rh+1 ≥ p+(1−p) ·
[( 2d

d+ 1

)
(Rh)

d+1(1−Rh)
d+

(
2d

d+ 2

)
(Rh)

d+2(1−Rh)
d−1+ . . .+(Rh)

2d(1−Rh)
]

Proof: From [11], we have

Rh = Prob{Root is up}+ Prob{Root is down} × [Read Availability of Majority of Subtrees].

Note that in our overlay tree, if a node v at level h+ 1 is down, then one of its descendants at h is also
down for h ≥ 0, because they are mapped to the same physical node. The theorem follows.
Similarly, let Wh be the availability of a write quorum in a tree of height h, then

Theorem 9:

Wh+1 ≥ p ·
[( 2d

d+ 1

)
(Wh)

d+1(1−Wh)
d +

(
2d

d+ 2

)
(Wh)

d+2(1−Wh)
d−1 + . . .+ (Wh)

2d(1−Wh)
]



Initially, R0 and W0 is p (only the root exists). Theorems 8 and 9 provide the recurrence relations
of Rh and Wh, which can be used to calculate specific tree configurations. As the result, FLOODING

provides the availability similar to the classic tree quorum system in [11].

4. Conclusion
QR model requires that at least one read and one write quorums live in the system. If no live read

(or write) quorum exists, FLOODING protocol cannot proceed after READQUORUM (or WRITEQUORUM)
operation. In this case, a reconfiguration of the system is needed to rebuild a new overlay tree structure.
Each node then runs FLOODING protocol to find their new basic read and write quorums.

QR model exhibits graceful degradation in a failure-prone network. In a failure-free network, the
communication cost imposed by QR model is comparable with SC model. When failures occur, QR
model continues executing operations with high probability and reasonable higher communication cost.
Such property is especially desirable for large-scale distributed systems in the presence of failures.

References
[1] T. Harris, J. R. Larus, and R. Rajwar, Transactional Memory, Second Edition, Morgan and Claypool, 2010.

[2] Maurice Herlihy and Ye Sun, “Distributed transactional memory for metric-space networks,” Distributed
Computing, vol. 20, no. 3, pp. 195–208, 2007.

[3] Ken Arnold, Robert Scheifler, Jim Waldo, Bryan O’Sullivan, and Ann Wollrath, Jini Specification, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[4] Robert L. Bocchino, Vikram S. Adve, and Bradford L. Chamberlain, “Software transactional memory for large
scale clusters,” in PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice
of parallel programming, New York, NY, USA, 2008, pp. 247–258, ACM.

[5] Kaloian Manassiev, Madalin Mihailescu, and Cristiana Amza, “Exploiting distributed version concurrency in
a transactional memory cluster,” in PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, New York, NY, USA, 2006, pp. 198–208, ACM.

[6] Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Luján, Chris Kirkham, and Ian Watson, “Distm:
A software transactional memory framework for clusters,” in ICPP ’08: Proceedings of the 2008 37th
International Conference on Parallel Processing, Washington, DC, USA, 2008, pp. 51–58, IEEE Computer
Society.

[7] Maria Couceiro, Paolo Romano, Nuno Carvalho, and Luı́s Rodrigues, “D2stm: Dependable distributed software
transactional memory,” in Proceedings of the 2009 15th IEEE Pacific Rim International Symposium on
Dependable Computing, Washington, DC, USA, 2009, PRDC ’09, pp. 307–313, IEEE Computer Society.

[8] Bo Zhang and Binoy Ravindran, “Brief announcement: Relay: A cache-coherence protocol for distributed
transactional memory,” in OPODIS ’09: Proceedings of the 13th International Conference on Principles of
Distributed Systems, Berlin, Heidelberg, 2009, pp. 48–53, Springer-Verlag.

[9] Hagit Attiya, Vincent Gramoli, and Alessia Milani, “A provably starvation-free distributed directory protocol,”
in Proceedings of the 12th international conference on Stabilization, safety, and security of distributed systems,
Berlin, Heidelberg, 2010, SSS’10, pp. 405–419, Springer-Verlag.

[10] Hagit Attiya and Alessia Milani, “Transactional scheduling for read-dominated workloads,” in OPODIS ’09:
Proceedings of the 13th International Conference on Principles of Distributed Systems, Berlin, Heidelberg,
2009, pp. 3–17, Springer-Verlag.

[11] D. Agrawal and A. El Abbadi, “The tree quorum protocol: an efficient approach for managing replicated data,”
in Proceedings of the sixteenth international conference on Very large databases, San Francisco, CA, USA,
1990, pp. 243–254, Morgan Kaufmann Publishers Inc.

[12] Richard D. Schlichting and Fred B. Schneider, “Fail-stop processors: an approach to designing fault-tolerant
computing systems,” ACM Trans. Comput. Syst., vol. 1, pp. 222–238, August 1983.

[13] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon, “Toward a theory of transactional contention
managers,” in PODC ’05: Proceedings of the twenty-fourth annual ACM symposium on Principles of distributed
computing, New York, NY, USA, 2005, pp. 258–264, ACM.

[14] Philip A. Bernstein and Nathan Goodman, “Multiversion concurrency control - theory and algorithms,” ACM
Trans. Database Syst., vol. 8, pp. 465–483, December 1983.


