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Abstract. Remus was the first system which implemented whole virtual ma-
chine replication to achieve high availability (HA). Recently a fast, lightweight
migration mechanism (LLM) was proposed to reduce the long network delay in
Remus. However, all these virtualized systems have the long downtime problem,
which becomes a bottleneck to achieve HA. Based on LLM, in this paper we
describe a fine-grained block identification (or FGBI) mechanism to reduce the
downtime in virtualized systems so as to achieve HA, with support for a block
sharing mechanism and hybrid compression method. We implement the FGBI
mechanism and evaluate it against LLM and Remus, using several benchmarks
such as Apache, SPECweb, NPB and SPECsys. Our experimental results reveal
that FGBI reduces the type I downtime over LLM and Remus by as much as 77%
and 45% respectively, and reduces the type II downtime by more than 90% and
more than 70%, compared with LLM and Remus respectively. Moreover, in all
cases, the performance overhead of FGBI is less than 13%.

1 Introduction

High availability (HA) refers to a system and associated service implementation that is
continuously operational for a long period of time. With respect to the clients, an ideal
system never stops working, which also means the system will always respond to the
clients’ requests. Trying to achieve high availability is therefore one of the key con-
cerns in modern cluster computing and failover systems. Whole-system replication is a
conventional way to increase the system availability — once the primary machine fails,
the running applications will be taken over by its replicas (backup machines). However,
there are several limitations that make this method unattractive for deployment: it needs
specialized hardware and software, which are usually expensive. The final system also
requires complex customized configurations, which makes it hard to manage efficiently.

As virtualization becomes more and more prevalent, we can overcome these limita-
tions by introducing the virtual machine (VM). In the virtual world, all the applications
are running in the VM, so now it’s possible to implement the whole-system replication
in an easy and efficient way — by saving the copy of the whole VM running on the
system. As VMs are totally hardware-independent, the cost is much lower compared to
the the hardware expenses in traditional HA solutions. Besides, virtualization technol-
ogy can facilitate the management of multiple VMs on a single physical machine. With
virtual machine monitors (VMM), the service applications are separated from physical
machines, thus provides increased flexibility and improved performance.



Remus [5], built on top of the well-known Xen hypervisor [3], provides transparent,
comprehensive high availability by using a checkpointing method under the Primary-
Backup model (Figure 1). It checkpoints the running VM on the primary host, and
transfers the latest checkpoint to the backup host as whole-system migration. Once
the primary host fails, the backup host will take over the service based on the latest
checkpoint. Remus proves that it is possible to create a general, fully transparent, high-
availability solution entirely in software. However, checkpointing at high frequency
will introduce significant overhead, since significant CPU and memory resources are
consumed by the migration. Therefore, clients endure a long network delay.

Jiang et. al. [10] proposed an integrated live migration mechanism, called LLM,
which integrates both whole-system checkpointing and input replay to reduce the net-
work delay in Remus. The basic idea is that the primary host migrates the guest VM
image (including CPU/memory status updates and new writes to the file system) to the
backup host at low frequency. In the meanwhile, the service requests from network
clients are migrated at high frequency. As its results show, LLM significantly outper-
forms Remus in terms of network delay by more than 90%.
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Fig. 1: Primary-Backup model and the downtime problem (T1: primary host crashes; T2: client
host observes the primary host crashes; T3: VM resumes on backup host; D1 (T3 - T1): type I
downtime; D2: type II downtime).

Downtime is the key factor for estimating the high availability of a system, since
any long downtime experience for clients may result in loss of client loyalty and thus
revenue loss. Under the Primary-Backup model, there are two types of downtime: I) the
time from when the primary host crashes until the VM resumes from the last check-
pointed state on the backup host and starts to handle client requests (shown as D1 in
Figure 1); II) the time from when the VM pauses on the primary (to save for the check-
point) until it resumes (shown as D2 in Figure 1). From Jiang’s paper we observe that
for memory-intensive workloads running on guest VMs (such as the HighSys work-
load [10]), LLM endures much longer type I downtime than Remus. This is because,
these workloads update the guest memory at high frequency. On the other side, LLM
migrates the guest VM image update (mostly from memory) at low frequency but uses
input replay as an auxiliary. In this case, when failure happens, a significant number of
memory updates are needed in order to ensure synchronization between the primary and



backup hosts. Therefore, it needs significantly more time for the input replay process in
order to resume the VM on the backup host and begin handling client requests.

Regarding the type II downtime, there are several migration epochs between two
checkpoint, and the newly updated memory data is copied to the backup host at each
epoch. At the last epoch, the VM running on the primary host is suspended and the
remaining memory states are transferred to the backup host. Thus, the type II downtime
depends on the amount of memory that remains to be copied and transferred when
pausing the VM on the primary host. If we reduce the dirty data which need to be
transferred at the last epoch, then we can reduce the type II downtime. Moreover, if we
reduce the dirty data which needs to be transferred at each epoch, trying to synchronize
the memory state between primary and backup host all the time, then at the last epoch,
there won’t be too much new memory update that need to be transferred, so we can
reduce the type I downtime too.

Therefore, in order to achieve HA in these virtualized systems, especially to address
the downtime problem under memory-intensive workloads, we propose a memory syn-
chronization technique for tracking memory updates, called Fine-Grained Block Iden-
tification (or FGBI). Our main contributions includes: FGBI tracks and transfers the
memory updates efficiently, by reducing the total number of dirty bytes which need to
be transferred from primary to backup host. Besides, we integrate memory block shar-
ing support with FGBI to reduce the newly-introduced memory overheads. In addition,
we also support a hybrid compression mechanism among the memory dirty blocks to
further reduce the migration traffic in the transfer period. Our experimental results re-
veal that FGBI reduces the type I downtime over LLM and Remus by as much as 77%
and 45% respectively, and reduces the type II downtime by more than 90% and more
than 70%, compared with LLM and Remus respectively.

2 Related Work

Remus [5] is now part of the official Xen repository. It achieves HA by maintaining a
up-to-date copy of a running VM on the backup host, which automatically activates if
the primary host fails. Remus (and also LLM [10]) copies over dirty data after memory
update, and uses the memory page as the granularity for copying. However, the dirty
data tracking method is not efficient (we illustrate this inefficiency in Section 3.1). Thus,
our goal in this paper is to further reduce the size of the memory transferred from the
primary to the backup host, by introducing a fine-grained mechanism.

Lu et. al. [13] applied three memory state synchronization techniques to achieve
HA in systems such as Remus: dirty block tracking, speculative state transferring and
active backup. The first technology was similar with our proposed method, however, it
incurred additional memory associated overhead. For example, when running the Ex-
change workload in their evaluation, the memory overhead was more than 60%. Since
main memory is always a scarce resource, the high percentage overhead becomes a
problem. Different from these authors’ work, we reduce memory overhead incurred by
FGBI by integrating a new memory blocks sharing mechanism, and a hybrid compres-
sion method when transferring the memory update.



To solve the memory overhead problems under Xen-based systems, there are several
ways to harness memory redundancy in VMs, such as page sharing and patching. Past
efforts showed the memory sharing potential in virtualization-based systems. Working
set changes were examined in [4, 15], and their results showed that changes in memory
were crucial for the migration of VMs from host to host. For a guest VM with 512 MB
memory assigned, low loads changed roughly 20 MB, medium loads changed roughly
80 MB, and high loads changed roughly 200 MB. Thus, normal workloads are likely
to occur between these extremes. The evaluation in [4, 15] also revealed the amount of
memory changes (within minutes) in VMs running different light workloads. None of
them changed more than 4 MB of memory within two minutes. The Content-Based Page
Sharing (CBPS) method [16] also illustrated the sharing potential in memory. CBPS is
based on the compare-by-hash technique introduced in [8, 9]. As claimed, CBPS was
able to identify as much as 42.9% of all pages as sharable, and reclaimed 32.9% of
the pages from ten instances of Windows NT doing real-world workloads. Nine VMs
running Redhat Linux were able to find 29.2% of sharable pages and reclaimed 18.7%.
When reduced to five VMs, the numbers were 10.0% and 7.2%, respectively.

To share memory pages efficiently, recently, the Copy-on-Write (CoW) sharing
mechanism was widely exploited in the Xen VMM [14]. Unlike the sharing of pages
within an OS that uses CoW in a traditional way, in virtualization pages are shared be-
tween multiple VMs. Instead of using CoW to share pages in memory, we use the same
idea in a more fine-grained manner, i.e., by sharing among smaller blocks. The Differ-
ence Engine project demonstrates the potential memory savings available from lever-
aging a combination of page sharing, patching, and in-core memory compression [7]. It
shows the huge potential of harnessing memory redundancy in VMs. However, Dif-
ference Engine also suffers from complexity problems when applying the patching
method. It needs additional modifications to Xen. We will present our corresponding
mechanism and advantage over Difference Engine in Section 3.2.

3 Design and Implementation

3.1 FGBI

Remus and LLM track memory updates by keeping evidence of the dirty pages at each
migration epoch. Remus uses the same page size as Xen (for x86, this is 4KB), which
is also the granularity for detecting memory changes. However, this mechanism is not
efficient. For instance, no matter what changes an application makes to a memory page,
even just modify a boolean variable, the whole page will still be marked dirty. Thus,
instead of one byte, the whole page needs to be transferred at the end of each epoch.
Therefore, it is logical to consider tracking the memory update at a finer granularity,
like dividing the memory into smaller blocks.

We propose the FGBI mechanism which uses memory blocks (smaller than page
sizes) as the granularity for detecting memory changes. FBGI calculates the hash value
for each memory block at the beginning of each migration epoch. Then it uses the same
mechanism as Remus to detect dirty pages. However, at the end of each epoch, instead
of transferring the whole dirty page, FGBI computes new hash values for each block and
compares them with the corresponding old values. Blocks were only modified if their



corresponding hash values don’t match. Therefore, FGBI marks such blocks as dirty
and replaces the old hash values with the new ones. Afterwards, FGBI only transfers
dirty blocks to the backup host.

However, because of using block granularity, FGBI introduces new overhead. If we
want to accurately approximate the true dirty region, we need to set the block size as
small as possible. For example, to obtain the highest accuracy, the best block size is
one bit. That is impractical because it requires storing an additional bit for each bit in
memory, which means that we need to double the main memory. Thus, a smaller block
size leads to a greater number of blocks and also requires more memory for storing
the hash values. Based on these past efforts illustrating the memory saving potential
(section 2), we present two support techniques: block sharing and hybrid compression.
These are discussed in the subsections that follow.

3.2 Block Sharing and Hybrid Compression Support

From the memory saving discussion in related work 2, we observe that while running
normal workloads on a guest VM, a large percentage of memory is usually not up-
dated. For this static memory, there is a high probability that pages can be shared and
compressed to reduce memory usage.

Block Sharing. Note that these past efforts [4, 8, 9, 15, 16] use the memory page
as the sharing granularity. Thus, they still suffer from the “one byte differ, both pages
can’t be shared” problem. Therefore, we consider using a smaller block in FGBI as the
sharing granularity to reduce memory overhead.

The Difference Engine project [7] also illustrates the potential savings due to sub-
page sharing, both within and across virtual machines, and can achieve savings of up to
77%. In order to share memory at the sub-page level, the authors construct patches to
represent a page as the difference relative to a reference page. However, this patching
method requires selected pages to be accessed infrequently, otherwise the overhead
of compression/decompression outweighs the benefits. Their experimental evaluations
reveal that patching incurs additional complexity and overhead when running memory-
intensive workloads on guest VMs (from results for “Random Pages” workload in [7]).

Unlike Difference Engine, we apply a straightforward sharing technique to reduce
the complexity. The goal of our sharing mechanism is to eliminate redundant copies of
identical blocks. We share blocks and compare hash values in memory at runtime, by
using a hash function to index the contents of every block. If the hash value of a block
is found more than once in a epoch, then there is a good probability that the current
block is identical to the block that gave the same hash value. To ensure these blocks
are identical, they are compared bit by bit. If the blocks are identical, they are reduced
to one block. If, later on, the shared block is modified, we need to decide which of the
original constituent blocks has been updated and needs to be transferred.

Hybrid Compression. Compression techniques can be used to significantly improve
the performance of live migration [11]. Compressed dirty data takes shorter time to be
transferred through the network. In addition, network traffic due to migration is sig-
nificantly reduced when much less data is transferred between primary and backup
hosts. Therefore, for dirty blocks in memory, we consider compressing them to reduce



the amount of transferred data. To a great extent, the performance of compression al-
gorithms depends on data being compressed. They must exploit data representation
characteristics to achieve any compression. Wilson et. al. [6] deems that memory data
representations have certain strong regularities, although diverse applications might be
loaded into the memory. As it claims, there are a great number of zero bytes in the
memory pages (so as in smaller blocks).

Therefore, we can classify the memory blocks into the following kinds: 1) blocks
composed of a great many of zero bytes and sporadic nonzero bytes; 2) blocks with high
similarity; and 3) blocks with low similarity. We apply a hybrid compression method for
these three kinds of memory blocks. For the first kind, we can scan the whole block and
just record the information about the offset and value of nonzero bytes. For the second
kind, we use algorithms that embody strong similarities, such as WKdm [17], which
is a unique combination of dictionary and statistical techniques specifically designed
to quickly and efficiently compress memory data. The last kind of blocks has weak
regularities, and therefore, a universal algorithm with high compression ratio is appro-
priate. Here we apply a general-purpose and very fast compression technique, gzip [1],
to achieve a higher degree of compression.

3.3 Architecture

We implemented the FGBI mechanism integrated with sharing and compression sup-
port, as shown in Figure 2. In addition to LLM, which is labeled “LLM Migration
Manager” in the figure, we add a new component, shown as “FGBI”, and deploy it at
both Domain 0 and guest VM.

 

Fig. 2: The FGBI architecture with sharing and compression support.

For easiness in presentation, we divide FGBI into three main components:
1) Dirty Identification: It uses the hash function to compute the hash value for each

block, and identify the new update through the hash comparison at the end of migration
epoch. It has three subcomponents:



Block Hashing: It creates a hash value for each memory block;
Hash Indexing: It maintains a hash table based on the hash values generated by the
Block Hashing component. The entry in the content index is the hash value that reflects
the content of a given block;
Block Comparison: It compares two blocks to check if they are bitwise identical.

2) Block Sharing Support: It handles sharing of bitwise identical blocks.
3) Block Compression: It compresses all the dirty blocks on the primary side, be-

fore transferring them to the backup host. On the backup side, after receiving the com-
pressed blocks, it decompresses them first before using them to resume the VM.

In this architecture, the components are divided between the privileged VM Domain
0 and the guest VMs. The VMs contain the Block Sharing Support components. We
house the Sharing Support component in the guest VMs to avoid the overhead of using
shadow page tables (SPTs). Each VM also contains a Block Hashing component, which
means that it has the responsibility of hashing its address space. The Dirty Identification
component is placed in the trusted and privileged Domain 0. It receives hash values of
the hashed blocks generated by the Block Hashing component in the different VMs.

3.4 FGBI Execution Flow
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Fig. 3: Execution flow of FGBI mechanism.

Figure 3 describes the execution flow of the FGBI mechanism. The numbers on the
arrows in the figure correspond to numbers in the enumerated list below.

1) Hashing: At the beginning of each epoch, the Block Hashing components at the
different guest VMs compute the hash value for each block.

2) Storing: FGBI stores and delivers the hash key of the hashed block to the Hash
Indexing component.

3) Index Lookup: It checks the content index for identical keys, to determine whether
the block has been seen before. The lookup can have two different outcomes:
Key not seen before: Add it to the index and proceed to step 6.



Key seen before: Possibly an opportunity to share, so request block comparison.
4) Block Comparison: Two blocks are shared if they are bitwise identical. Mean-

while, it notifies the Block Sharing Support Components on corresponding VMs that
they have a block to be shared. If not, then there is a hash collision, the blocks aren’t
shared, and proceed to step 6.

5) Shared Block Update: If two blocks are bitwise identical, then store the same
hash value for both blocks. Unless there is a write update to this shared block, it doesn’t
need to be compared at the end of the epoch.

6) Block Compression: Before transferring, compress all the dirty blocks.
7) Transferring: At the end of epoch, there are three different transfer outcomes:

Block is not shared: FGBI computes the hash value again and compares with the cor-
responding old value. If they don’t match, mark this block as dirty, compress and send
it to the backup host. Repeat step 1 (which means begin the next migration epoch).
Block is shared but no write update: It means either block was modified during this
epoch. Thus, there is no need to compute hash values again for this shared block, and
therefore, no need to make comparison, compression, or transfer either. Repeat step 1.
Block is shared and write update occurs: This means that one or both blocks have been
modified during this epoch. Thus, FGBI needs to check which one was modified, and
then compress and send the dirty one or both to the backup host. Repeat step 1.

4 Experimental Evaluation

4.1 Experimental Environment

Our experimental platform included two identical hosts (one as primary and the other as
backup), each with an IA32 architecture processor (Intel Core 2 Duo Processor E6320,
1.86 GHz), and 3 GB RAM. We set up a 1 Gbps network connection between the two
hosts, which is specifically used for migration. In addition, we used a separate machine
as a network client to transmit service requests and examine the results based on the
responses. We built Xen 3.4 from source [18], and let all the protected VMs run guests
OS (Linux 2.6.18 kernel). The file system of which is an image file of 3 GB shared by
two machines using NFS. Our experiments used the following VM workloads under
Primary-Backup model:

Static web application: Apache 2.0.63 [12]. Both hosts are configured with 100 si-
multaneous connections, and repetitively downloaded a 256KB file from the web server.
Thus, the network load will be high, but the system updates are not so significant.

Dynamic web application: SPECweb2005 benchmark comprises of a web server
serving a complex page request (e.g., CGI scripts), among other features. Both hosts
generate a load of 100 simultaneous connections to the web server [2].

Memory-intensive application: Since the FGBI is proposed to solve the long down-
time problem under LLM system, especially when running heavy computational work-
loads on guest VM, we continued our evaluation by comparing FGBI with LLM/Remus
under a set of industry-standard workloads, specifically SPECsys [2] and NPB [14].

To ensure that our experiments are statistically significant, each data point is aver-
aged from twenty sample values. The standard deviation computed from the samples is
less than 7.6% of the mean value.



4.2 Downtime Evaluations
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Fig. 4: Type I Downtime comparison under different benchmarks.

Type I Downtime. Figures 4a, 4b, 4c, and 4d show the type I downtime comparison
among FGBI, LLM, and Remus mechanisms under Apache, NPB-EP, SPECweb, and
SPECsys applications, respectively. The block size used in all experiments is 64 bytes.
For Remus and FGBI, the checkpointing period is the time interval of system update mi-
gration, whereas for LLM, the checkpointing period represents the interval of network
buffer migration. By configuring the same value for the checkpointing frequency of
Remus/FGBI and the network buffer frequency of LLM, we ensure the fairness of the
comparison. We observe that Figures 4a and 4b show a reverse relationship between
FGBI and LLM. Under Apache (Figure 4a), the network load is high but system up-
dates are rare. Therefore, LLM performs better than FGBI, since it uses a much higher
frequency to migrate the network service requests. On the other hand, when running
memory-intensive applications (Figure 4b and 4d), which involve high computational
loads, LLM endures a much longer downtime than FGBI (even worse than Remus).

Although SPECweb is a web workload, it still has a high page modification rate,
which is approximately 12,000 pages/second [4]. In our experiment, the 1 Gbps migra-
tion link is capable of transferring approximately 25,000 pages/second. Thus, SPECweb
is not a lightweight computational workload for these migration mechanisms. As a re-



sult, the relationship between FGBI and LLM in Figure 4c is more similar to that in
Figure 4b (and also Figure 4d), rather than like Figure 4a. In conclusion, compared
with LLM, FGBI reduces the downtime by as much as 77%. Moreover, compared with
Remus, FGBI yields a shorter downtime, by as much as 31% under Apache, 45% under
NPB-EP, 39% under SPECweb, and 35% under SPECsys.

Application Remus downtime LLM downtime FGBI downtime
idle 64 ms 69 ms 66 ms

Apache 1032 ms 687 ms 533 ms
NPB-EP 1254 ms 16683 ms 314 ms

Table 1: Type II Downtime comparison.

Type II Downtime. Table 1 shows the type II downtime comparison among Remus,
LLM, and FGBI mechanisms under different applications. We have three main observa-
tions: (1) Their downtime results are very similar for “idle” run. This is because Remus
is a fast checkpointing mechanism and both LLM and FGBI are based on it. There is
rare memory update for “idle” run, so the type II downtime in all three mechanism is
short. (2) When running NPB-EP application, the guest VM memory is updated at high
frequency. When saved for the checkpoint, LLM need to take much more time to save
huge “dirty” data caused by its low memory transfer frequency. Therefore in this case
FGBI achieves a much lower downtime than Remus (reduce more than 70%) and LLM
(more than 90%). (3) When running Apache application, the memory update isn’t so
much as that when running NPB, but the memory update is definitely more than “idle”
run. The downtime results shows FGBI still outperforms both Remus and LLM.

4.3 Overhead Evaluations
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Figure 5a shows the overhead during VM migration. The figure compares the ap-
plications’ runtime with and without migration, under Apache, SPECweb, NPB-EP,
and SPECsys, when the size of the fine-grained blocks is varied from 64 bytes to 128
bytes and 256 bytes. We observe that in all cases the overhead is low, no more than
13% (Apache with 64 bytes block). As we discuss in Section 3, the smaller the block
size that FGBI chooses, the greater is the memory overhead that it introduces. In our
experiments, the smaller block size that we chose is 64 bytes, so this is the worst case
overhead compared with the other block sizes. Even in this “worst” case, under all these
benchmarks, the overhead is less than 8.21%, on average.

In order to understand the respective contributions of the three proposed techniques
(i.e., FGBI, sharing, and compression), Figure 5b shows the breakdown if the perfor-
mance improvement among them under the NPB-EP benchmark. It compares the down-
time between integrated FGBI (which we use for evaluation in this Section), FGBI with
sharing but no compression support, FGBI with compression but no sharing support,
and FGBI without sharing nor compression support, under the NPB-EP benchmark.
As previously discussed, since NPB-EP is a memory-intensive workload, it should
present a clear difference among the three techniques, all of which focus on reducing
the memory-related overhead. We don’t include the downtime of LLM here, since for
this compute-intensive benchmark, LLM incurs a very long downtime, which is more
than 10 times the downtime that FGBI incurs.

We observe from Figure 5b that if we just apply the FGBI mechanism without inte-
grating sharing or compression support, the downtime is reduced, compared with that of
Remus in Figure 4b, but it is not significant (reduction is no more than twenty percent).
However, compared with FGBI with no support, after integrating hybrid compression,
FGBI further reduces the downtime, by as much as 22%. We also obtain a similar ben-
efit after adding in the sharing support (downtime reduction is a further 26%). If we
integrate both sharing and compression support, the downtime is reduced by as much
as 33%, compared to FGBI without sharing or compression support.

5 Conclusions

One of the primary bottlenecks on achieving high availability in virtualized systems is
downtime. We presented a novel fine-grained block identification mechanism, called
FGBI, that reduces the downtime in lightweight migration systems. In addition, we
developed a memory block sharing mechanism to reduce the memory and computa-
tional overheads due to FGBI. We also developed a dirty block compression support
mechanism to reduce the network traffic at each migration epoch. We implemented
FGBI with the sharing and compression mechanisms and integrated them with the
LLM lightweight migration system. Our experimental evaluations reveal that FGBI
overcomes the downtime disadvantage of LLM by more than 90%, and of Xen/Remus
by more than 70%. In all cases, the performance overhead of FGBI is less than 13%.

Several directions for future work exist. It is possible to reduce the implementation
complexity in the FGBI design. For instance, we can deploy some subcomponents such
as Block Comparison in the VMM directly, and design a transparent solution by using
the shadow page table mechanism.
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