
On Minimizing Average End-to-End Delay in
P2P Live Streaming Systems

Fei Huang1, Maleq Khan2, and Binoy Ravindran1

1 Dept. of Electrical & Computer Engineering
2 Network Dynamics and Simulation Science Laboratory

Virginia Tech, Blacksburg, VA 24061, USA
huangf@vt.edu,maleq@vbi.vt.edu,binoy@vt.edu

Abstract. In this paper, we devise a streaming scheme which optimizes
the bandwidth allocation to achieve the minimum average end-to-end
P2P streaming delay. We first develop a generic analytical framework
to model the minimum average delay P2P streaming problem, called
the MADPS problem. We then present iStream to solve the MADPS
problem. The core part of iStream is a fast approximation algorithm,
called iStream-APX, based on primal-dual schema. We prove that the
performance of iStream-APX is bounded by a ratio of 1+ω, where ω is an
adjustable input parameter. Furthermore, we show that the flexibility of
ω provides a trade-off between the approximation factor and the running
time of iStream.

1 Introduction

In the recent decade, P2P live media streaming applications have exhibited grow-
ing popularity, such as IPTV, VOIP, and video conferencing. By enabling effi-
cient cooperation among end-users, P2P live streaming can distribute thousands
of channels to millions of viewers simultaneously [1]. In these classes of appli-
cations, the delivery of real-time video content imposes rigorous constraints on
the end-to-end delay. Obtaining assurances on meeting such delay constraints
for multiple channels is a challenging problem, especially in highly dynamic
and heterogeneous P2P network environments. The long playback latency has
negatively affected the extensive commercial deployment of P2P systems. For
example, IPTV deployment from commercial service providers is far below the
industry expectation [2]. Motivated by these, in this paper, we focus on mini-
mizing average end-to-end streaming delay in P2P networks.

Recently, layered coding has emerged as a viable solution for delivering real-
time streaming content [3]. This technique not only provides an adaptive sup-
port for different downloading capacities on peers, but also allows IPTV service
providers to deliver live content at diverse video definitions from the same cod-
ing process. For example, viewers may pay general fees for a standard service, or
extra fees for 1080HD video or even 3D video. Unlike traditional IPTV service
where viewers only download the multimedia content, under the P2P paradigm,
substantial bandwidth may exist in viewers who pays only for a standard service,
while HD viewers may instead suffer bad streaming service due to the bandwidth

2 Fei Huang, Maleq Khan, and Binoy Ravindran

deficit among them. To maximize the bandwidth utilization, we should enable
peer cooperation among viewers of different service qualities. Toward that, the
HD content can be forwarded through peers with standard service, but only the
HD viewers receive the authorization key for viewing HD content. This raises a
fundamental question: how to optimally distribute the video content and con-
duct sub-stream scheduling among peers with diverse service qualities, while
achieving the minimum average end-to-end P2P streaming (or MADPS) delay.
We call this problem, the MADPS problem.

Minimizing streaming delays for P2P live systems is not a trivial problem.
This is due to the heterogeneous bandwidth requirements and network dynam-
ics of P2P systems. Previous theoretical works on designing P2P live streaming
usually assume a homogeneous service quality [4, 5]. Thus, obtaining optimal
solutions to this problem for large-scale networks is expensive in terms of algo-
rithmic computational costs [6]. Approximate or heuristic solutions with scalable
costs are therefore highly desirable. In this paper, we focus on approximate algo-
rithms because we target time-critical P2P applications (e.g., video conferencing,
or cloud computing), for which assured bounds on end-to-end delays are more de-
sirable than heuristic (or empirically-established) gains in end-to-end delays. In
addition, the analytical foundation that is necessary for developing approximate
algorithms can contribute to a greater understanding of the problem and can
provide deeper insights on designing efficient algorithms, be they approximate or
heuristic. We take the first such steps toward this. The paper is theory-oriented.

For a feasible solution, we start with the assumption of a static network—
i.e., no churn. In this way, we can devise a framework which is analytically
achievable. The method will be most suitable for the scenario where a service
provider deploys a set-top box at viewers’ homes. In that case, even when a viewer
turns off the TV, the set-top box can still contribute its bandwidth to other
viewers. For this scenario, we first develop an analytical model that formulates
the MADPS problem as an optimization problem. Then we propose an algorithm
called iStream to solve MADPS problem. Inspired by the primal-dual schema, we
develop an approximation algorithm as the core of iStream, called iStream-APX
for optimally utilizing the bandwidth among peers subscribing to different video
qualities, while achieving the minimum average streaming delay. We show that
iStream-APX’s performance in terms of delay is bounded by a factor of 1 + ω,
where ω is an input parameter. iStream’s running time is also bounded. We show
that there exists a trade-off between iStream-APX’s approximation factor ω and
its running time. The approximation factor is adjustable in the range of (1, n],
where n is the number of peers in the network. This trade-off allows users to
flexibly tune the performance bound according to running time requirements.

Thus, the paper’s contribution is an approximation algorithm for the MADPS
problem with bounded performance and running time (which can be traded-off,
one for gains in the other), and its adaptive distributed version to operate in
high-churn networks. iStream is the first approximation-based solution for the
MADPS problem, and we are not aware of any other past efforts on approxi-
mating the MADPS problem.

On Minimizing Average End-to-End Delay in P2P Live Streaming Systems 3

The rest of the paper is organized as follows. Section 2 overviews past and
related works. In Section 3, we describe our network model and formulate the
MADPS problem. Section 4 presents our proposed approximation algorithm and
derives its performance. Section 5 concludes the paper.

2 Related Work

Theoretical works on the minimum delay P2P streaming problem are limited,
though recently a growing number of studies have focused on P2P live stream-
ing [4–9]. Due to the lack of formal theoretical bounds, intuitions and heuristics
have driven the design of P2P schemes so far [4, 7]. For example, Ren et al. [4]
propose a heuristic to reduce the delay on mesh topology, where peers select
their parents based on the metric of link capacity divided by communication
delay. In this algorithm, peers located at the edge of mesh may only download
the data without uploading, which may lead to low bandwidth utilization in P2P
networks. Thus, when the total uploading capacity is close to the downloading
capacity in the P2P community, some peers may not be able to receive a live
streaming.

In our previous work [5], we developed an approximation algorithm to mini-
mize the maximum P2P streaming delay by clustering and filtering methods with
an approximation bound of O(

√
log n). The minimum delay P2P streaming prob-

lem (or MDPS) presented in [5] focuses on minimizing the maximum end-to-end
streaming delay. The MDPS problem is significantly different from the problem
of minimizing the average end-to-end delay problem which we focus here. For
example, the simulation results in [5] show that minimizing the maximum delay
does not necessarily minimize the average end-to-end delay. Furthermore, the
work in [5] assumes a network model with a symmetric graph and satisfying the
triangle inequality. In contrast, in this paper, we remove those assumptions in
modeling the minimum average delay P2P streaming problem.

The MADPS problem that we focus has some similarity with the minimum-
cost multi-commodity flow problem (or MCMF) [10, 11]. iStream is inspired
by the primal-dual schema from Garg and Konemann [10]. However, previous
approximation solutions to the MCMF problem generally assume flow conserva-
tion on nodes—i.e., incoming commodities and outgoing commodities are exactly
equal in amount. This is not true in P2P streaming, where peers can reproduce
whatever commodities they receive—i.e., flow conservation does not hold. In
addition, the MCMF problem considers only the capacities on edges, whereas
in P2P streaming, the capacities actually exist on nodes instead of edges. This
distinction (for the MADPS problem) further requires optimal flow schedul-
ing among edges departing from the same node. All these differences make the
MADPS problem more complex than the MCMF problem. Our work tackles
these complexities and achieves a solution with near-optimal performance bound.

4 Fei Huang, Maleq Khan, and Binoy Ravindran

3 Problem Formulation

In this section, we formally state the minimum average end-to-end delay P2P
streaming (MADPS) problem and present the problem in linear programming
(LP) framework.

3.1 Preliminaries and Modeling

We model an overlay network as a directed graph G = (V,E), where V is the set
of vertices representing peer nodes, and E is the set of overlay edges representing
directed overlay links. Let n represent the number of peers in the network, i.e.
n = |V |. Each overlay link (i, j) ∈ E is associated with a communication delay
lij . In the rest of this paper, we define the length of edge (i, j) as lij , ∀(i, j) ∈ E.
For every peer i ∈ V , we define an upload capacity of Ci units/second and a
download capacity of Ii units/second. For ease of presentation, we define unit
as the minimum flow size in P2P streaming, which may vary in different appli-
cations [12,13].

We consider a peer-to-peer streaming session to originate from a single source
node S to a set of receivers R, where V = {S}∪R. Peers may receive the stream-
ing data from the source node directly or indirectly from multiple P2P paths.
In practical applications, receivers may pay for services of different streaming
qualities, e.g., 720i/p and 1080i/p, which leads to different streaming rates cor-
respondingly. Suppose peer j selects a service that has a constant streaming rate
of dj units/second. We denote fij as the rate at which peer i streams to peer j.
If peer j receives the aggregated non-identical streams at dj units/second from
its parents, we call peer j as fully served [4]. Mathematically, the fully served
requirement of peer j can be expressed as

∑
i:i∈Lj

fij = dj , where Lj is the set
of parents of peer j. We assume that a fully served peer can smoothly play back
the streaming content at its original rate of dj units/second [4].

We call the stream from the source to one receiver j as the P2P unicast flow
to j. Each P2P unicast flow Uj may consist of streams from multiple P2P paths,
called fractional flows [6]. Each fractional flow p ∈ Uj has the arrival latency
l(p) from the source to receiver, i.e., end-to-end delay, where l(p) =

∑
(i,j)∈p lij .

We define the average end-to-end delay of the unicast flow Uj as the weighted
average of end-to-end latencies of all its fractional flows, where the weight is
the portion of fractional flow rate to the total streaming rate. Denote f(p) as
the streaming rate of fractional flow p. For viewer j, the weighted average of
end-to-end latencies can be expressed by

1

dj

∑
p∈Uj

l(p)f(p).

To stream multimedia content to multiple receivers, we can envision multiple
unicast flows from the source to receivers. Thus, the average end-to-end delay in
P2P streaming is defined as the weighted average latency of all fractional flows
to all receivers, which can be described by

On Minimizing Average End-to-End Delay in P2P Live Streaming Systems 5

1∑
j∈R dj

∑
p∈P

l(p)f(p), (1)

where P =
∪

j∈R Uj . Since the term
∑

j∈R dj has no effect on the optimal
solution, i.e., the solution that minimizes (1) also minimizes

∑
p∈P l(p)f(p), we

will focus on minimizing
∑

p∈P l(p)f(p). It is easy see that removal of the term∑
j∈R dj also preserves the approximation factor. For ease of presentation, we

simply refer to
∑

p∈P l(p)f(p) as the cumulative delay in the later sections.
To help understand the concept of average end-to-end delay, we use the

term: “envision” in the above paragraph. In reality, there exists only one stream
through each edge (i, j) instead of multiple fractional flows and peer j can re-
produce any part of the stream content it receives and send it to other peers.
Therefore, the actual data rate on an edge (i, j) is maxt∈R

∑
p∈P t

ij
f(p), where

P t
ij is the set of fractional flows through edge (i, j) to receiver t.
Next we provide a formal description of the problem.

3.2 MADPS Problem

Definition 1 Minimum Average End-to-End Delay P2P Streaming Prob-
lem (MADPS problem): Given the capacity and data rate constraints that are
mentioned in this section, the MADPS problem is to devise a streaming scheme
which minimizes the maximum average end-to-end streaming delay with all re-
ceivers fully served.

There is no known efficient algorithm with a practically-feasible running time
to solve this problem optimally. Therefore, we are motivated to develop a near-
optimal approximation algorithm with significantly smaller running time.

To ensure a solution exists to the MADPS problem, it is reasonable to assume
the total bandwidth resources in P2P networks is sufficient to support the full
services on all the viewers. Hence, we deduct the bandwidth requirement in
Corollary 1.

Corollary 1 If the instance of MADPS problem has a solution, then the sum
of the upload capacities, including source and receivers, must be no less than the
sum of fully served streaming rates at all receivers, i.e.,∑

i∈V

Ci ≥
∑
j∈R

dj . (2)

In addition, we presume that the download capacity Ii ≥ di,∀i ∈ V for a
smooth playback at the receiver.

4 Approximation Algorithm

In this section we devise an approximation algorithm to find the near-optimal
solution with provable bounds on the worst-case performance and running time.

6 Fei Huang, Maleq Khan, and Binoy Ravindran

4.1 Overview of Techniques

There are two fundamental techniques used in this work, including primal-dual
schema and binary search based on the result of primal-dual schema.

First, we describe primal-dual schema [10, 14]. Given a linear programming
problem, also referred to as a primal problem, we can convert it to a dual prob-
lem. Due to space limitation, we do not present the detailed mechanics of this
conversion here, which can be found at [14]. Primal and dual problems are in a
“mirror” relation. If one problem is a maximization problem, the other problem
is a minimization problem, and vise versa. Suppose we have a primal problem:
max cTx, and the corresponding dual problem:minbTy. According to the weak
duality theorem, if X and Y are feasible solutions for the primal and dual prob-
lems respectively, it follows that cTX ≤ bTY. Moreover, the primal and dual
problems share the same optimum, denoted by OPT. Given an approximation
factor ρ, ρ bounds OPT

cTx . Since any feasible solution to the dual also provides an
upper bound on OPT, the approximation factor can be established by comparing
the primal and dual solutions. In light of this, the primal-dual schema starts with
a feasible solution for dual problem and relax the conditions for primal problem.
Then, iStream iteratively improves the feasibility of primal conditions and the
optimality of the dual solution. iStream winds up with feasible solutions for both
primal and dual problems. So, the gap between them makes the approximation
factor.

In detail, iStream employs the primal-dual schema to solve the delay-bounded
maximum streaming rate problem (DBMSR problem) defined as follows.

Definition 2 Delay-bounded Maximum Streaming Rate problem (DBMSR
problem): Given a bound L on the average delay, i.e.,

∑
p∈P l(p)f(p) ≤ L, the

DBMSR problem is to devise a streaming scheme which maximizes λ, where∑
p∈P t f(p) ≥ λdt,∀t ∈ R.

In the next step, we can do a binary search on L to find the smallest λ that
satisfies λ ≥ 1. Towards that purpose, a reasonable initial value of L should be
set in the range of [

∑
j∈R dj ·minp∈P l(p),

∑
j∈R dj ·maxp∈P l(p)]. The result of

this procedure leads to a near-optimal solution for MADPS problem.

In the rest of this section, we formulate the DBMSR problem by primal-
dual schema. Then, we discuss the details of iStream and derive its performance
bound.

4.2 Formulation about Primal and Dual

We refer to DBMSR problem as the primal problem here, or simply called primal.
According to its definition, we formulate the primal as following.

Primal:

max λ (3)

On Minimizing Average End-to-End Delay in P2P Live Streaming Systems 7

subject to ∑
p∈P t

ij

f(p) ≤
∑
p∈P j

ij

f(p), ∀(i, j) ∈ E,∀t ∈ R (4)

∑
j:(i,j)∈E

∑
p∈P j

ij

f(p) ≤ Ci, ∀i ∈ V (5)

∑
p∈P t

f(p) ≥ λdt, ∀t ∈ R (6)

∑
p∈P

l(p)f(p) ≤ L, (7)

f(p) ≥ 0, λ ≥ 0. (8)

Equation (4) presents the fact that the amount of fractional flow through
edge (i, j) to any viewer will always be bounded by the total fractional flow sent
to node j, i.e.

∑
p∈P j

ij
f(p) = maxt∈R

∑
p∈P t

ij
f(p). Because we attempt to utilize

the bandwidth from peers scribing to the standard video quality, it is possible
to see the amount of fractional flow to j from all incoming edges of j exceeds
viewer j’s demand, i.e.,

∑
i:(i,j)∈E

∑
p∈P j

ij
f(p) ≥ dj . Equation (5) ensures no

conflicts in terms of the uploading capacities. In terms of the downloading ca-
pacities, which can be written as

∑
j:(j,i)∈E

∑
p∈P i

ji
f(p) ≤ Ii,∀i ∈ V , we assume

Ii ≥ maxj∈R dj , which is practical with the wide deployment of high-speed in-
ternet. Since the actual flow sent to or relayed by node i cannot be larger than
the maximum service demand, expressed by maxj∈R dj , it is reasonable to re-
move the constraints on the downloading capacities in the LP expression without
affecting the optimal solutions. Equation (6) means the objective of DBMSR
problem is to maximize the minimum demand on nodes. Equation (7) puts a
bound L on the cumulative delay. As stated in Section 4.1, we can conduct a
binary search on L until λ is very close to 1 to achieve a solution to the MADPS
problem.

Next, we convert the primal to its dual problem, or simply called dual.

Dual:

min
∑
i∈V

Ciwi + φL (9)

subject to∑
t

dtzt ≥ 1, ∀t ∈ R (10)∑
(i,j)∈p,i ̸=i′

stij + wi′ + φl(p) ≥ zt, (i′, t) ∈ p,∀t ∈ R,

∀p ∈ P t (11)

stij ≥ 0, wi ≥ 0, zt ≥ 0, φ ≥ 0, (12)

8 Fei Huang, Maleq Khan, and Binoy Ravindran

where i′ is the peer one hop away from the viewer t on routed path.
Generally, there is no direct physical meaning to the dual problem because

it comes from a mechanical conversion of the primal problem. To help the anal-
ysis on iStream, we hereby assign a logical explanation to the dual after in-
vestigating its formulation. We envision each edge (i, j) has multiple copies
(i, j)1, (i, j)2, · · · , (i, j)|R|, where any copy (i, j)t exclusively represents to the
usage of edge (i, j) for flows to viewer t. Each edge (i, j)t is associated with a
length metric stij , and each node i is associated with a length metric wi. Thus,
we view

∑
(i,j)∈p,i ̸=i′ s

t
ij +wi′ +φl(p) as the length function associated with flow

path p, where φ is the weight associated with the delay metric l(p). According
to Equation (11), zt can be comprehended as the shortest length to node t based
on the length function.

4.3 Approximation Algorithm

iStream-APX is the core part of iStream, which is built with approximation
algorithm. iStream-APX proceeds in phases. Each phase is completed by |R|
iterations with each iteration satisfy the demand of one viewer. Due to the
constraints from LP conditions, each iteration may be completed by multiple
steps. Inside each step, we route such amount of fractional flows that can ensure
the constraints are not violated. At the end of all phases, iStream-APX will re-
scale all the flows to ensure a feasible solution to the primal. We express the kth

step in the tth iteration of mth phase by (m, t, k). The initial status is marked
by (0, 0, 0), or simply (0).

We start the algorithm with the following initial settings on length metrics.

wi(0) = δ/Ci, ∀i ∈ V (13)

stij(0) = wi, ∀(i, j) ∈ E, ∀t ∈ R (14)

φ(0) = δ/L, (15)

where δ is an input parameter. The proper assignment of it will be discussed in
Section 4.4.

Throughout the execution of algorithm iStream-APX, it dynamically updates
the length metrics, which are used to built the flowing path. Let wi(m, t, k), stij(m, t, k), φ(m, t, k)
be the length metrics at the end of step (m, t, k). At step (m, t, k), iStream-APX
first computes the shortest path p∗ from S to viewer t in terms of the length
function

∑
(i,j)∈p,i ̸=i′ s

t
ij(m, t, k− 1)+wi′(m, t, k− 1)+φ(m, t, k− 1)l(p), where

(i′, t) ∈ p, p ∈ P t. Then, it finds the minimum capacity Cmin on nodes along
the shortest path, which can be expressed by Cmin = mini∈p∗{Ci}. Since the
previous steps may already route some flows to the viewer, let γt be the residual
amount of demands unsatisfied on node t, and x(p) = min{γt, Cmin}. Next, we
route x(p)/η amount of flow to t, where η = l(p)x(p)/L if l(p)x(p) > L; oth-
erwise, η = 1. So the length bound L and the capacities on the path are not
violated in each step. At the end of this step, we update the length metrics as
well as the residual demands according to Equations (16)-(19).

On Minimizing Average End-to-End Delay in P2P Live Streaming Systems 9

wi(m, t, k) = wi(m, t, k − 1) · [1 + ϵ · f(m, t, k)/Ci] ,

∀i ∈ p∗ \ {t} (16)

stij(m, t, k) = wi(m, t, k),∀i ∈ p∗ \ {t},∀(i, j) ∈ E, ∀t ∈ R (17)

φ(m, t, k) = φ(m, t, k − 1) ·
∏

j∈p∗∩R

[1 + ϵ · Lj(m, t, k)/L] , (18)

γi(m, t, k) = γi(m, t, k − 1)− f(m, t, k),∀i ∈ p∗ \ {t} (19)

where f(m, t, k) is the amount of flow routed in current procedure (m, t, k)
and Lj(m, t, k) means the cumulative delay of the routed flow through node
j which is on the path p∗ at step (m, t, k). Mathematically, it can be expressed
by Lj(m, t, k) = l(p∗j)x(p

∗
j), where p∗j is the segmental path from S to j on path

p∗. We can observe in each step for every capacity-saturated node i on the rout-
ing path, all the length metrics regarding i increase by a factor of 1+ϵ. Since the
assignments of stij are identical in Equation (17), we simply use si to represent
all stij .

We repeat the steps until the demand of viewer t is fully satisfied. Then we
call the end of iteration t, and start the iteration for next viewers which has
positive residual demand in the current phase. After the last step of a phase,
all viewers have no residual demands, i.e., γt = 0,∀t ∈ R. Then, we start a
new round of phase m+1 after resetting the residual demands equal to viewer’s
actual demands, i.e., γt = dt,∀t ∈ R. The whole procedure completes as soon as
W (m, t, k) ≥ 1. Obviously, the cumulative flows routed in all phases may strongly
violate the capacity and average delay constraints. Define F (p) as the cumulative
flows routed in all phases through path p. To obtain a feasible solution to the
primal problem, we need to scale down each F (p) by a factor of log1+ϵ 1/δ. We
will justify the correctness of this scaling down factor in Section 4.4.

We continue a binary search on L by repeating iStream-APX until λ tends to
1, denoted as λ → 1. The result of the binary search will provide a near-optimal
solution to MADPS problem. The detailed procedures about the approximation
algorithm are presented in [15].

4.4 Algorithm Analysis

In this section, we formally analyze the algorithm and prove the approxima-
tion factor. To facilitate the analysis, we make some definitions. Let W =∑

i∈V Ciwi + φL be the metric minimized by the dual. Let ζt be the shortest
length from S to t, i.e.,

ζt = min
p∈P t

∑
(i,j)∈p,i ̸=i′

stij + wi′ + φl(p). (20)

Here ζt actually represents and interprets the meaning of zt. Besides, we
define

α =
∑
t

(
dtζt

)
. (21)

10 Fei Huang, Maleq Khan, and Binoy Ravindran

Lemma 1 Denote the optimal solution to the dual by OPT(W). When OPT(W)
is obtained, α is 1.

Proof. We prove this lemma by contradiction. As we know, α represents
∑

t dtzt
in the dual. Let W = W ′ when α = 1. For the sake of contradiction, we assume
W ′ > OPT(W), where OPT(W) is achieved when α = α∗ > 1. Then, we scale
down α∗ to 1. Towards that, we can divide all the stij and φ by a factor of

∑
t dtzt.

As a result, wi will proportionally scale down the same factor. Consequently, it
leads to an update on W with a new value W ′, where W ′ = OPT(W)/

∑
t dtzt.

According to the assumption, W ′ should be larger than OPT(W). However,
because

∑
t dtzt > 1, we have W ′ = OPT(W)/

∑
t dtzt < OPT(W), which

contradicts the assumption. Thus, the lemma follows.

Define β as the minimum value of W/α, i.e., β = minW/α. We conclude the
following theorem.

Theorem 1 The optimal solution to the dual, denoted as OPT(W), is equiva-
lently to the optimal solution β under the same constraints in the dual.

Proof. From the definition of β,we know that β = minW/α. Suppose β is
achieved when α = α∗ > 1. We can always proportionally scale down all the
stij and φ by multiplying a factor of 1/α∗. As a result, α = 1. Since W will scale
down with the same factor, W/α will keep the optimal value β. That is to say
we can always find the optimal solution β with α = 1.

According to Lemma 1, it follows that α = 1 when OPT(W) is achieved.
Therefore, we can conclude the problem of finding OPT(W) for the dual is
equivalently to solving the optimization problem for W/α. This completes the
proof.

In iStream-APX, we update the length metrics si, wi, φ on the routing path.
In terms of that, we can conclude the following.

Lemma 2 wi increases at least by a factor of 1 + ϵ for every Ci units of flow
through node i,∀i ∈ V .

Proof. Due to space limitation, we do not prove this lemma here. The detailed
proof can be found at [15].

Corollary 2 si increases at least by a factor of 1 + ϵ for every Ci units of flow
through node i,∀i ∈ V .

Corollary 3

log1+ϵ

φ(m)

φ(0)
≥

∑
p inP

l(p)f(p)/L,

where f(p) represents the cumulative amount of flows through path p at the end
of phase m.

On Minimizing Average End-to-End Delay in P2P Live Streaming Systems 11

Given the assumption that the total bandwidth resources in P2P networks
is sufficient to support the full services on all the viewers, we can do a binary
search on L so as to find the smallest λ that satisfies λ ≥ 1. According to the
weak-duality theorem, it follows that β ≥ λ ≥ 1.

Lemma 3 Given β ≥ 1, we have

β ≤ ϵ(M − 1)

(1− ϵ) ln 1−ϵ
(|V |+1)δ

.

Proof. We start the proof by analyzing the change on W on each step. At the
end of this analysis, we will carry out the cumulative increment on W when
algorithms stops.

Let p(m, t, k) be the shortest path found at procedure (m, t, k), and f(m, t, k)
be the quantity of flow routed through path p(m, t, k). Because in our algorithm
we assign si = wi for any procedure (m, t, k), we can simplify the length function
as ∑

(i,j)∈p,i ̸=i′

sti + wi′ + φl(p) =
∑

(i,j)∈p

(wi + φlij), (22)

where (i′, t) ∈ p. Consequently, we can carry out the following.
Since the objective is to find the cumulative increment, we can think of the

change on length metrics wi and φ regarding node i at procedure (m, t, k), where
i ̸= t, will hold until procedure (m, i, 0) without loss on the final cumulative
increment on W .

W (m, t, k)−W (m, t, k − 1)

=Ci′ ·
(
wi′(m, t, k)− wi′(m, t, k − 1)

)
+

+
(
φ(m, t, k)− φ(m, t, k − 1)

)
· L

≤
∑

i∈p(m,t,k)\{t}

(
Ci · wi(m, t, k − 1)ϵf(m, t, k)/Ci

)
+

+
(
φ(m, t, k − 1)ϵL(m, t, k)/L

)
· L

=ϵ ·
[∑
i∈p(m,t,k)\{t}

(
wi(m, t, k − 1)f(m, t, k)

)
+

+ φ(m, t, k − 1)L(m, t, k)
]
.

Let Kmt be the number of steps in a given iteration t of phase m, ζt(m, t, k)
be the shortest path at the end of procedure (m, t, k), and l(m, t, k) be the
cumulative latency on path p(m, t, k). We have

12 Fei Huang, Maleq Khan, and Binoy Ravindran

W (m, t+ 1, 0)−W (m, t, 0)

≤ϵ ·
Kmt∑
k=1

[∑
i∈p(m,t,k)\{t}

(
wi(m, t, k − 1)f(m, t, k)

)
+

+ φ(m, t, k − 1)L(m, t, k)
]

=ϵ ·
Kmt∑
k=1

[
f(m, t, k) ·

∑
i∈p(m,t,k)\{t}

(
wi(m, t, k − 1)

)
+

+ φ(m, t, k − 1)l(m, t, k)
]

=ϵ ·
Kmt∑
k=1

[
f(m, t, k) ·

∑
(i,j)∈p(m,t,k)

(
wi(m, t, k − 1)+

+ φ(m, t, k − 1)lij

)]
=ϵ ·

Kmt∑
k=1

f(m, t, k) · ζt(m, t, k − 1)

≤ϵ · dtζt(m, t, k).

For brevity on notations, we define W (m) as the value of W at the end of
phase m, and make a similar definition for α(m). Then, it follows that

W (m)−W (m− 1)

=W (m, |R|,Km|R|)−W (m, 0, 0)

≤ϵ ·
|R|∑
t=1

(
dtζt(m, t,Km|R|)

)
≤ϵα(m). (23)

Combining the property of W (m)/α(m) ≥ β with Equation (23), we can
carry out

W (m) ≤ W (m− 1)

1− ϵ/β
.

In light of the initial settings, wi(0) = δ/Ci and φ(0) = δ/L. Thus, we obtain
W (0) = (|V |+ 1)δ.

Given m ≥ 1 and β ≥ 1, it follows that

W (m) ≤ (|V |+ 1)δ

(1− ϵ/β)m

On Minimizing Average End-to-End Delay in P2P Live Streaming Systems 13

=
(|V |+ 1)δ

1− ϵ/β
(1 +

ϵ

β − ϵ
)m−1

≤ (|V |+ 1)δ

1− ϵ/β
e

ϵ(m−1)
β−ϵ

≤ (|V |+ 1)δ

1− ϵ
e

ϵ(m−1)
(1−ϵ)β .

Let the last phase in the algorithm be numbered by M . It follows that 1 ≤
W (M) ≤ (|V |+1)δ

1−ϵ e
ϵ(M−1)
(1−ϵ)β . Hence, we carry out

β ≤ ϵ(M − 1)

(1− ϵ) ln 1−ϵ
(|V |+1)δ

.

Thus, the lemma follows.

Lemma 4 iStream-APX generates a feasible streaming solution that makes λ ≥
M−1

log1+ϵ 1/δ
.

Proof. At the end of the (M − 1)th phase, W (M − 1) ≤ 1 for all node i. Thus,
we deduct si(M − 1) = wi(M − 1) ≤ 1/Ci.

From Lemma 2 and Corollary 2, we know wi and si increase at least by a
factor of 1 + ϵ for every Ci units of flow through node i. Denoting the total flow
through node i as Fi, we can carry out

Fi ≤ Ci log1+ϵ

wi(M − 1)

wi(0)

≤ Ci log1+ϵ

1/Ci

δ/Ci

= Ci log1+ϵ

1

δ
.

Therefore, dividing all the flows through node i by a scaling factor of log1+ϵ
1
δ ,

we obtain feasible flows through i without violating its uploading capacity Ci.
Applying the scaling factor, we can get feasible flows received by t of a total

value (M − 1)dt/ log1+ϵ
1
δ units. Accordingly, a feasible λ will follow

λ ≥
(M − 1)dt/ log1+ϵ

1
δ

dt

=
(M − 1)

log1+ϵ
1
δ

.

Theorem 2 The result of iStream-APX follows the property of
∑

p∈P l(p)f(p) ≤
L.

14 Fei Huang, Maleq Khan, and Binoy Ravindran

Proof. According to Corollary 3, in our procedure every time we route every
flow with a cumulative delay of L, we increase φ by at least a factor of 1 + ϵ.

Because W (M − 1) < 1, we deduct that φ(M − 1) < 1/L. Thus, in the first

M − 1 phases, the cumulative delay is at most L · log1+ϵ
φ(M−1)

φ(0) = L · log1+ϵ
1
δ ,

i.e.,
∑

p∈P l(p)f(p) ≤ L · log1+ϵ
1
δ .

In the final procedure of the algorithm, we scale down all the flows propor-
tionally by a scaling factor. Thus, applying the scaling factor of log1+ϵ

1
δ , we

have

∑
p∈P

l(p)f(p) ≤
L log1+ϵ

1
δ

log1+ϵ
1
δ

= L.

The theorem follows.

Theorem 3 The approximation factor, denoted as ρ, is 1 + ω.

Proof. From Lemma 4, we have a feasible solution λ = M−1
log1+ϵ

1
δ

. It follows that

β

λ
=

β log1+ϵ
1
δ

(M − 1)

=
ϵ ln 1

δ

(1− ϵ) ln(1 + ϵ) ln 1−ϵ
(|V |+1)δ

.

Let δ =
(

1−ϵ
|V |+1

)1/ϵ

. We have

β

λ
≤

ϵ ln 1
δ

(1− ϵ) ln(1 + ϵ) ln 1−ϵ
(|V |+1)δ

=
ϵ

(1− ϵ)2 ln(1 + ϵ)

≤ ϵ

(1− ϵ)2(ϵ− ϵ2/2)

≤ (1− ϵ)−3.

According to the strong duality theorem, if the dual has the optimal solution
β, the primal also has an optimal value, denoted as OPT(λ), such that OPT(λ) =
β. Therefore, the approximation factor ρ can be obtained by

ρ = max
OPT(λ)

λ

= max
β

λ
.

Now, we make an assignment of ω = (1− ϵ)−3 − 1. We have ρ = 1 + ω.
Thus, the proof is complete.

On Minimizing Average End-to-End Delay in P2P Live Streaming Systems 15

4.5 Running Time

In this section, we analyze the bound on running time. We define maximum
binary search bound on L as Γ =

∑
j∈R dj ·maxp∈P l(p).

Theorem 4 Suppose the shortest path algorithm employed will consume a run-
ning time of Ψ . The running time of iStream is O(ϵ−2Ψ |V | log |V | logΓ).

Proof. According to weak duality theorem, we have β
λ ≥ 1, which deduces

β

M − 1
log1+ϵ

1

δ
> 1.

So the number of phases M < 1 + β log1+ϵ
1
δ . Because δ =

(
1−ϵ

|V |+1

)1/ϵ

, it

follows that

M = ⌈β
ϵ
log1+ϵ

|V |+ 1

1− ϵ
⌉

If iStream-APX does not stop within 2⌈ 1
ϵ log1+ϵ

|V |+1
1−ϵ ⌉ phases, we must have

β ≥ 2. We know OPT(λ) = β and we are pursuing OPT(λ) = 1. In the case of
β ≥ 2, we break the current call for iStream-APX, and continue the binary search

on L. So each call for iStream-APX will have 2⌈ 1
ϵ log1+ϵ

|V |+1
1−ϵ ⌉ = O(ϵ−2 log |V |)

phases.
In order to compute the total running time, we need to calculate the number

of steps in each call for iStream-APX. It is easy to see at every step except the
the last step in an iteration, we increase either wi of some node or φ by a factor
at least 1 + ϵ. So the number of steps exceeds the number of iterations by at
most

|V | log1+ϵ

wi(M − 1)

wi(0)
= |V | log1+ϵ

1

δ
= O(ϵ−2|V | log |V |). (24)

Also, the maximum number of iterations in all phases is |R| ·O(ϵ−2 log |V |) =
O(ϵ−2|R| log |V |). Combining this with Equation (24), we have the total number
of steps in each call for iStream-APX isO(ϵ−2(|V |+|R|) log |V |) = O(ϵ−2|V | log |V |).

Considering the number of calls for iStream-APX in binary search is bounded
by logΓ . Consequently, we can carry out the running time of iStream is bounded
by O(ϵ−2Ψ |V | log |V | logΓ). The theorem follows.

5 Conclusion

We present the design of iStream and derive a near-optimal approximation bound
for its core component iStream-APX. To achieve a tractable theoretical analysis,

16 Fei Huang, Maleq Khan, and Binoy Ravindran

we assume no network dynamics in the first stage of algorithm design. Although
the assumption is strong in practical P2P applications, the value of this paper
lies in the theoretical framework and analysis, which sheds light on the practical
design. To reduce the complexity of the problem, we focus only on minimizing
the communication delay. For packet scheduling, there exists a vast array of
solutions. The mesh built from our algorithm can adopt any of these scheduling
algorithms to yield low-delay streaming.

References

[1] D.-C. Tomozei and L. Massoulie, “Flow control for cost-efficient peer-to-peer
streaming,” in INFOCOM, 2010 Proceedings IEEE, 14-19 2010, pp. 1 –9.

[2] A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, and S. Tewari, “Will IPTV ride
the peer-to-peer stream?” Communications Magazine, IEEE, vol. 45, no. 6, pp.
86–92, June 2007.

[3] Z. Liu, Y. Shen, S. S. Panwar, K. W. Ross, and Y. Wang, “Using layered video to
provide incentives in p2p live streaming,” in P2P-TV ’07: Proceedings of the 2007
workshop on Peer-to-peer streaming and IP-TV, 2007.

[4] D. Ren, Y.-T. Li, and S.-H. Chan, “On reducing mesh delay for peer-to-peer live
streaming,” in INFOCOM ’08.

[5] F. Huang, B. Ravindran, and V. A. Kumar, “An approximation algorithm for
minimum-delay peer-to-peer streaming,” in Peer-to-Peer Computing ’09, 2009.

[6] C. Wu and B. Li, “rstream: Resilient and optimal peer-to-peer streaming with
rateless codes,” Parallel and Distributed Systems, IEEE Transactions on, vol. 19,
no. 1, pp. 77–92, Jan. 2008.

[7] G. Bianchi, N. Blefari Melazzi, L. Bracciale, F. Lo Piccolo, and S. Salsano,
“Streamline: An optimal distribution algorithm for peer-to-peer real-time stream-
ing,” Parallel and Distributed Systems, IEEE Transactions on, vol. PP, no. 99,
pp. 1 –1, 2010.

[8] Z. Chen, K. Xue, and P. Hong, “A study on reducing chunk scheduling delay for
mesh-based P2P live streaming,” in GCC ’08.

[9] Y. Liu, “On the minimum delay peer-to-peer video streaming: how realtime can
it be?” in ACM MULTIMEDIA ’07, 2007.

[10] N. Garg and J. Könemann, “Faster and simpler algorithms for multicommodity
flow and other fractional packing problems,” SIAM J. Comput., vol. 37, no. 2, pp.
630–652, 2007.

[11] G. Karakostas, “Faster approximation schemes for fractional multicommodity flow
problems,” ACM Trans. Algorithms, vol. 4, no. 1, pp. 1–17, 2008.

[12] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A measurement study of a large-
scale P2P IPTV system,” Multimedia, IEEE Transactions on, vol. 9, no. 8, Dec.
2007.

[13] M. Hefeeda and O. Saleh, “Traffic modeling and proportional partial caching for
peer-to-peer systems,” Networking, IEEE/ACM Transactions on, vol. 16, no. 6,
pp. 1447–1460, Dec. 2008.

[14] V. V. Vazirani, Approximation Algorithm. New York: Springer-Verlag New York,
LLC, 2007.

[15] B. R. Fei Huang, Maleq Khan, “Technical report: On minimizing average
end-to-end delay in p2p live streaming systems,” Tech. Rep., 2010. [Online].
Available: http://staff.vbi.vt.edu/maleq/papers/APX P2P average delay.pdf

