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Abstract. We consider the problem of scheduling dependent real-time
tasks for overloads on a multiprocessor system, yielding best-effort tim-
ing assurance. The application/scheduling model includes tasks with
time/utility function time constraints, mutual exclusion constraints, and
arbitrary arrival, execution-time and resource access behaviors, with the
timeliness optimization objective of maximizing the total accrued utility
while ensuring mutual exclusion constraints and deadlock-freedom. Since
this problem is NP-hard, we develop a class of polynomial-time heuristic
algorithms, called the Global Utility Accrual (GUA) class of algorithms,
and present two algorithm instances, namely, Non-Greedy Global Utility
Accrual (NG-GUA) and Greedy Global Utility Accrual (G-GUA). We es-
tablish several properties of the algorithms including conditions under
which optimal total utility is accrued, mutual exclusion constraints are
satisfied, and deadlock-freedom is achieved. We develop a Linux-based
real-time kernel called ChronOS, extended from the CONFIG PREEMPT RT

real-time Linux patch. ChronOS provides a framework for the imple-
mentation and plugging-in of a variety of multiprocessor schedulers. Our
experimental study with ChronOS reveals the effectiveness of GUA al-
gorithms under a broad range of workloads.
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1 Introduction

Recently, there has been a shift in the computer industry from increasing clock
rates to designing multi-core and hyper-threading architectures in a quest to pro-
duce faster computers [29]. Motivated by heat and power issues, most chip man-
ufacturers have chosen the route of increasing system- and chip-level parallelism,
as opposed to increasing clock rates, to improve performance. Consequently, the
design of multiprocessor real-time scheduling algorithms has become important
in order to allow real-time applications to take advantage of these emerging
architectures.

One unique aspect of multiprocessor real-time scheduling is the degree of run-
time migration allowed for job instances of a task across processors (at scheduling
events). Example migration models include: (1) full migration, where jobs are
allowed to arbitrarily migrate across processors during their execution. This
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usually implies a global scheduling strategy, where a single shared scheduling
queue is maintained for all processors and a processor-wide scheduling decision
is made by a single (global) scheduling algorithm; (2) no migration, where tasks
are statically (off-line) partitioned and allocated to processors. At run-time, job
instances of tasks are scheduled on their respective processors by processors’
local scheduling algorithm, such as single processor scheduling; and (3) restricted
migration, where some form of migration is allowed—e.g., at job boundaries.

The Pfair class of algorithms [7] that allow full migration and fully dy-
namic priorities have been shown to be theoretically optimal—i.e., they achieve
a schedulability utilization bound, U , below which all tasks meet their deadlines,
that equals the total capacity of all m processors i.e., U = m. Under Pfair, tasks
are decomposed into several small uniform segments, which are then quantum-
scheduled and may cause frequent scheduling and migration. Thus, algorithms
other than Pfair have also been intensively studied though their utilization
bounds are lower. Examples of global algorithms include global-EDF [8], global-
non-preemptive-EDF [6] with a bound U ≈ m/2, LLREF [11], LRE-TL [15],
PG/PCG [9], NVNLF [14] with a bound U = m, and global-RMS with a bound
U ≈ 3m/8 [4]. In the partitioned space, examples include partitioned dynamic
priority algorithms, such as partitioned-EDF [3] with a bound U ≈ m/2, and
fixed priority algorithms such as partitioned-DMS with a bound U ≈ m/2 [26]
and PDMS-HPTS-DS with a bound of 65% [22].

Majority of these scheduling efforts focus on application contexts where key
aspects of application behavior—e.g., task arrivals, execution times, resource
accesses—are deterministically bounded or known. Although this is an extremely
important subspace of the real-time problem space, there also exist some real-
time applications with behaviors outside this envelope—e.g., unpredictable task
arrival and execution-time behaviors, caused due to data- and context-dependent
executions, resulting in transient and permanent overloads (i.e., U > m) [13, 2].
During overloads, applications such as [13] desire graceful timeliness degradation
and “best-effort” timing assurance in the sense that as many processor cycles as
needed are assured to be allocated to the most important task, less so are allo-
cated to the least important task, and so on [25, 19]. (Note that task importance
may be orthogonal to task urgency.) An interesting feature of these applications
is that their task execution-time magnitudes are relatively longer—e.g., millisec-
onds to minutes. This allows relatively time-expensive real-time scheduling.

Past works on scheduling for overloads with best-effort timing assurances
(e.g., LBESA [25], DASA [12], GUS [23, 24], Dover [20]) have focused on single
processor systems, with a few exceptions.1 The only efforts in this space that
consider multiprocessors include MOCA [21] and gMUA [10]. Both these algo-
rithms, however, exclude task dependencies that arise due to synchronization
constraints.

1 LBESA’s and DASA’s design were directly motivated by the “best-effort” real-time
notion, and have been transferred to the application in [13] due to its matching
operational requirements.
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In this paper, we focus on this multiprocessor problem space, directly moti-
vated by applications such as [13, 2]. We consider tasks with time/utility function
(TUF) time constraints [18] that subsume deadlines and allow task urgency to be
expressed independent of task importance. Tasks have unknown arrival behav-
iors and are subject to execution overruns, causing overloads. In addition, tasks
have mutual exclusion constraints; they use lock-based concurrency control, with
unknown lock-access and release behaviors. We consider the timeliness objective
of maximizing the total accrued timeliness utility, while satisfying mutual ex-
clusion constraints and freedom from deadlocks. This problem is NP-hard. We
develop a class of polynomial-time heuristic algorithms called the GUA class
of algorithms, and present two algorithm instances, namely, NG-GUA and G-
GUA. We establish several properties of the algorithms including conditions
under which optimal total utility is obtained, mutual exclusion constraints are
satisfied, and deadlock-freedom is achieved.

We develop a Linux-based real-time OS kernel called ChronOS, extended
from the CONFIG PREEMPT RT real-time Linux patch, which provides optimized
interrupt service latencies and real-time locking primitives. ChronOS provides
a scheduling framework for the implementation of a broad range of scheduling
algorithms as scheduler plugins. We implement the GUA algorithms and their
competitors (e.g., G-EDF, G-NP-EDF, gMUA, P-EDF, P-DASA) in ChronOS
and conduct experimental studies. Our results reveal the effectiveness of the
GUA algorithms under a broad range of workloads.

Thus, the paper’s contribution is the GUA class of algorithms that allow
tasks to be subject to run-time uncertainties, overloads and dependencies, and
yield optimal total utility (when possible) and best-effort timeliness behavior
otherwise — the first such multiprocessor real-time scheduling algorithms to do
so.

The rest of the paper is organized as follows: Section 2 describes our models
and objective. Section 3 presents the GUA class of algorithms. The algorithms’
rationale, design, and properties are described in this section. We report our
experimental studies in Section 4. Finally, we conclude in Section 5.

2 Models and Objective

We consider Clark’s phase abstraction [12] as the unit of scheduling. A phase
describes a single flow of execution. Phases arrive arbitrarily and may be pre-
empted arbitrarily.

Phases have time constraints. A time constraint has a “scope”—a segment
of the phase control flow that is associated with the time constraint [28]. Such
a scope is called a “scheduling segment”. Each phase has a single scheduling
segment. A phase i’s scheduling segment’s time constraint is specified using
a TUF. TUFs can only be downward step-shaped—i.e., a constant maximum
utility ui is accrued if the segment completes before a deadline time di; zero
utility otherwise.
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A good-faith estimate of a phase i’s scheduling segment’s execution time,
ei, is available (through off-line measurements). This time estimate is not the
worst-case; it can be violated at run-time (e.g., due to context dependence) and
can cause processor overloads.

A phase enters and exits a scheduling segment by invoking scheduler APIs—
e.g., Real-Time CORBA’s [28] begin scheduling segment and end scheduling

segment APIs. When a scheduling segment is entered, a phase passes its schedul-
ing parameters (e.g., di,ui,ei) to the API.

Phases may access non-CPU resources, which in general, are serially reusable.
Resources can be shared, and can be subject to mutual exclusion constraints. A
phase may request multiple shared resources during its lifetime. The requested
time intervals for holding resources may be nested, overlapped, or disjoint.
Phases may request and release resources arbitrarily—i.e., which phase needs
which resource and in what order is unknown.

An abort handler is associated with each phase scheduling segment. We
consider a termination model for all failures encountered during phase executions
including time-constraint violations and logical errors, which raises an exception
that is handled by the phase. The handler performs compensating actions that
are necessary to avoid inconsistencies and ensure the safety of the external state.

Scheduling Objective. Our objective is to schedule the phases on anm-processor
system such that the sum of the utility accrued by the completion of the phases
is maximized, as much as possible, while satisfying phase mutual exclusion con-
straints and ensuring deadlock-freedom. Additionally, the number of phase dead-
lines missed must be minimized as much as possible.

This problem is NP-hard because its one-processor version is NP-hard [12].
Thus, the GUA class of algorithms that we present are polynomial-time heuristic
algorithms.

3 GUA Class of Algorithms

3.1 Basic Rationale

Since the phase model is dynamic—i.e., when phases will arrive, how long they
will execute, which set of resources will be needed by which phases, the length of
time for which those resources will be needed, the order of accessing the resources
are all statically unknown—future scheduling events such as new phase arrivals
and new resource requests cannot be considered at a scheduling event. Thus, a
schedule must be constructed solely exploiting the current system knowledge.

Since the primary scheduling objective is to maximize the total utility, a
reasonable heuristic is a “greedy” strategy: Favor “high return” phases over low
return ones, and complete as many of them as possible before phases’ termination
times and also as early as possible.

The potential utility that can be accrued by executing a phase is an indication
of its “return on investment”. We measure this using a metric called the Potential
Utility Density (or PUD) pioneered in [12]. A phase’s PUD measures the utility
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(a) (b)

Fig. 1: (a) A phase and resource dependency chain (b) DAG representation show-
ing the zero in-degree phases

that can be accrued per unit time by immediately executing the phase and those
phase(s) that it (directly or transitively) depends upon for locked resources.

Ensuring Mutual Exclusion: The presence of phase dependencies can
result in many phase dependency chains, similar to the single-processor case.
But unlike the single-processor case, since there are m > 1 processors for the
multiprocessor case, up to m of these chains (or phases at the head of those
chains) can be potentially executed. In [12], the dependency chains are computed
at the per phase level which works well for the single-processor case as only one
phase needs to be selected. However, this method cannot be applied to the
multiprocessor case as, in order to ensure mutual exclusion, two phases that are
dependent on each other should not be allowed to be executed on processors
concurrently. Hence, there is a need to find the dependency relationship of all
phases in an effective way. We solve this problem by constructing a directed
acyclic graph (DAG) to represent the dependency relationship between phases.
Fig 1(a) shows the dependency relationship between phases and resources (e.g.,
phase J1 requires a resource that is owned by phase J4). In Fig 1(b), we represent
the dependency relationship using a DAG (the node represents the phase and
the edge represents the resource relationship). Thus, at the end of the graph
creation, we consider the zero in-degree (ZID) phases, which have zero input
edges and hence are not dependent on other phases, as eligible for the final
schedule.

Maximizing Accrued Utility: Once the ZID phases are found, we need to
determine them ZID phases that have the highest execution eligibility. The PUD
metric [12] has been shown to be highly effective in determining phase execution
eligibility for the single-processor case as a single phase needs to be selected at the
end of the schedule. On multiprocessors, unlike the single processor case, many
non-dependent phases can be concurrently dispatched for execution. However,
the PUD metric alone cannot be used to pick one phase over another, as there
could be a ZID phase that currently owns a resource, blocking other phases in
the system, but has a lower PUD. As a result, the phase could be pushed to
the back of the queue preventing other eligible phases that are currently blocked
on it, from executing. The challenge is to find a metric that provides a way
to represent the overall benefit the system can accrue if a particular phase is
selected for execution. To solve this, we define two metrics—Local Value Density
(LVD), which is equivalent to the PUD of a phase, and Global Value Density
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(GVD), which is defined as the sum of the LVDs of the individual phases that are
in a dependency relation with a ZID phase. For example, in Fig 1(b), GVD(J6)
= LVD(J6) + LVD(J4) + LVD(J5) + LVD(J1) + LVD(J2). The GVD for a
ZID phase J represents the aggregate value density for the entire dependency
chain of J . This gives a fair representation of the dependency relationship for
that phase, and thus provides the highest execution eligibility for a phase that
is currently blocking other phases.

Deadlock Detection and Resolution: A deadlock can occur when a phase
Ja, which owns resource Ra, makes a request for another resource Rb, owned by
a phase Jb, wherein phase Jb directly or through its dependency chain requests
for the resource Ra (owned by Ja). Thus, a deadlock represents a cycle in the
dependency chain of a phase which can be detected using a cycle detection
algorithm. In [12], deadlocks are detected at the phase level when the individual
phase dependency chains are being computed. However, as we construct a DAG
to represent the dependency relationship of all the phases, deadlock detection
and resolution can be integrated with DAG construction. A DAG can be created
for a phase and all its dependencies in a single pass. During each step, phases in
the dependency chain can be maintained in a list such that if a dependent phase
is again added to the list, a deadlock is detected. In order to resolve the deadlock,
one of the phases needs to be rejected. In the design of GUA algorithms, we select
the least LVD phase as it contributes the least utility to the total accrued utility.

3.2 Overview

GUA’s scheduling events include the arrival of a phase, completion of a phase,
a resource request and a resource release. To describe the algorithms we define
the variables and auxiliary functions. For a phase J, J.RemExec is the estimated
remaining execution cost of the phase and J.Utility denotes the TUF at the
time of the scheduling event. The following auxiliary functions are used:

InsertEdge(J, DepJ) inserts an edge between phases J and DepJ.
RemoveEdge(J) removes all in-degree and out-degree edges of phase J.
InsertList(J, σ) inserts the phase J in the list σ.
InsDeadLnPos(J, σ) inserts phase J in the list σ at its deadline position.
FindZIDPhases(σ) returns the ZID phases from the list σ.
RemoveLeastLVD(σ) removes the phase with the least LVD from the list σ.
RemoveLeastGVD(σ) removes the phase with the least GVD from the list σ.
FindPIPDeadLn(σ) finds the earliest deadline amongst the dependents of the

ZID phases in list σ to ensure Priority Inheritance Protocol (PIP) behavior.
ComputeGVD(σ) computes the GVD for the ZID phases in the list σ.
SortByGVD(σ) sorts the list σ by the decreasing value of GVD.
IsPresent(J, σ) returns true if the phase J is present in the list σ.
IsFeasible(σ) returns true if schedule in σ is feasible, i.e., the predicted com-

pletion time of each phase in σ must never exceed its deadline.
Owner(R) returns the phase that holds resource R.
ResRequested(J) returns the resource requested by phase J.
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Algorithm 1: Creation of DAG with detection/resolution of deadlocks

Procedure: CreateDAGwithDRD (σT )1:

Input: σT // List of released phases2:

Vars: J, V, next // Phase pointers3:

Vars: σJ // Phase J ’s list of dependents4:

for each phase J in σT do5:
σJ = φ ;6:

J.Lvd = J.Utility
J.RemExec

;7:

InsertList(J, σJ);8:

next = Owner(ResRequested(J));9:

while next 6= φ do10:
if IsPhaseAborted(next) then11:

break;12:

if IsPresent(next, σJ) == false then13:
InsertEdge(J, next) ;14:

InsertList(next, σJ);15:

J = next;16:

next = Owner(ResRequested(next));17:

else18:
V = FindLeastLVD(σJ);19:

AbortPhase(V );20:

RemoveEdge(V );21:
break;22:

FindProcessor() returns the ID of the processor on which the currently as-
signed phases have the shortest sum of allocated execution times.

FindProcessor(cpu mask) is an extended version of FindProcessor() that
takes a cpu mask (mask of processors that have been checked earlier and
should be avoided). If all the processors are in the mask, it returns NULL.

AddCpuToMask(p, cpu mask) adds processor p to the cpu mask.
FindLeastLVD(J) finds the phase with the least LVD in dependency chain of J.
UpdateCpuEC(p, J, b) adds J.RemExec to the sum of remaining execution

times for phases allocated on processor p if b is true, subtracts otherwise.
AbortPhase(J) sends an aborting signal to the phase J.
IsPhaseAborted(J) returns true if phase J has been marked for abortion.
HeadOf(σ) returns the phase J which is at the head of the list σ.

Algorithm 1 describes the pseudo-code for CreateDAGwithDRD(σT) that uses
the list of phases, σT , and creates a DAG representation along with deadlock
detection and resolution. We refer to the phase that has requested a resource as
a child while the phase that owns the resource being requested as a parent. In
lines 5-22, the algorithm iterates over the list, σT , and for each phase, J , checks
if a parent node exists and adds an edge from the parent to the child (line 14).
In lines 16-17, the algorithm sets the current parent node as the new child and
checks if it has requested a resource. The steps are repeated for all the phases
in the dependency chain of J .

In order to detect deadlocks we use list σJ (line 6) to which we add all the
dependencies for phase J (line 15). Before adding an edge between a child and a



8

parent, we check if the phase exists in σJ (line 13). The existence of the phase in
σJ indicates that the phase has already been added to the graph, thus detecting
a deadlock. To resolve the deadlock, we find the least LVD phase in σJ , abort
the phase and remove it from the graph (lines 19-21).

3.3 Non-greedy Global Utility Accrual (NG-GUA)

Algorithm 2 describes the NG-GUA scheduling algorithm. For a given list of
phases σT , the DAG is created (line 4) using ComputeDAGwithDRD(). To ensure
mutual exclusion we find the ZID phases and compute their GVD (lines 5-6).
In the presence of dependencies, NG-GUA defaults to G-EDF with PIP. We
compute the PIP deadlines for each of the ZID phases (line 7). The PIP deadline
of a ZID phase Jz is the earliest deadline of a phase Ji which is dependent on
Jz. In line 8, we sort the ZID phases by their PIP deadlines. The key idea here
is to sort the ZID phases by the deadlines of the phases which have an earlier
deadline but are currently blocked on a resource that is being held by the ZID
phases, thus ensuring a PIP behavior2.

In lines 9-11, we use FindProcessor() to assign phases to individual pro-
cessor lists σp. The processor that yields the shortest sum of allocated execution
times of all jobs in its local schedule is selected for assignment. The rationale for
this choice is that the shortest summed execution time processor results in the
nearest scheduling event for completing a job after assigning each job.

In lines 12-14, we check each of σp lists for schedule feasibility using the
IsFeasible() method. During overloads, the schedule might not be feasible.
Hence, NG-GUA attempts to maximize the total utility by allowing phases that
have a higher value density to be executed. In line 14, we remove the phase in
σp that has the least GVD and check the schedule for feasibility. Lines 12-14 are
repeated until a feasible schedule is found. Finally, the head of the final feasible
schedule, σp, for each processor p is dispatched (lines 15-17). In the absence of
dependencies, all the phases are treated as ZID phases and the PIP deadlines
for each phase is equivalent to the phase’s deadline. Hence, after the sort (line
8), NG-GUA defaults to a G-EDF order.

Algorithm 2 is referred to as non-greedy because it defaults to a deadline
order rather than a value density order along with support for priority inheri-
tance protocol, thus following a G-EDF with PIP behavior during underloads
and maximizing total accrued utility during overloads. A sample schedule for
NG-GUA is presented in [16].

3.4 Greedy Global Utility Accrual (G-GUA)

Algorithm 3 describes the G-GUA scheduling algorithm. Lines 6-8 are similar to
the NG-GUA algorithm, described in Section 3.3. We create the DAG, find the
ZID phases and compute their GVD. G-GUA does not default to G-EDF with
PIP. Hence, we do not need to find the PIP deadlines.

2 In the absence of dependencies, the PIP deadline of a ZID phase Jz can be considered
equal to the deadline of Jz.
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Algorithm 2: NG-GUA: Non-greedy Global Utility Accrual

Input: σT // List of released phases1:

Vars: σ1 · · ·σm // Per processor ready queues for m processors2:

Vars: σz // Zero in-degree phase list3:

ComputeDAGwithDRD(σT );4:

σz ← FindZIDPhases(σT );5:

ComputeGVD(σz);6:

σz ← FindPIPDeadLn(σz);7:

σd ← SortByPIPDeadLn(σz);8:

for each phase J in σd do9:
p← FindProcessor();10:

InsertList(J, σp);11:

for each processor p do12:
while IsFeasible(σp) == false do13:

RemoveLeastGVD(σp);14:

for each p processor’s schedule σp in m do15:
Jobp ← HeadOf(σp) ;16:

return { Job1, · · · , Jobm };17:

G-GUA differs from NG-GUA in two ways— (i) the ZID phases are sorted by
GVD instead of the PIP deadlines (line 9); and (ii) instead of assigning phases to
all the processors and then running the feasibility check, G-GUA follows a greed-
ier approach to accrue total utility. For all individual GVD-sorted ZID phases in
σd (lines 10-24), G-GUA assigns the phase to a processor which has the smallest
sum of total phase remaining execution cost and checks for feasibility of schedule
on that processor. If the schedule is feasible, G-GUA moves to the next phase in
σd. However, during overloads, if the schedule is not feasible (after the phase was
added to the first processor it was assigned to), G-GUA removes it from that
processor’s list and tries the same phase on all the other available processors
(using cpu mask, lines 18-22). The key idea is to ensure that a high GVD phase
is checked on all processors before being rejected. In lines 25-27, the head of
the final feasible schedule (σp) for each processor p is taken and dispatched to
the individual processor for scheduling. In the absence of dependencies, all the
phases are treated as ZID phases. Thus, GVD for each phase is equivalent to the
phase’s LVD.

G-GUA is greedier than NG-GUA for accrued utility during overloads. It does
not default to any deadline-based scheduling algorithm and attempts to maxi-
mize accrued utility both during underloads and overloads. A sample schedule
for G-GUA is presented in [16].

3.5 Algorithm Properties

The properties of NG-GUA and G-GUA are summarized in this section. For
brevity, the proofs have been omitted and provided in [16].

Theorem 1 NG-GUA, without dependencies, defaults to G-EDF during under-
loads.
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Algorithm 3: G-GUA: Greedy Global Utility Accrual

Input: σT // List of released phases1:

Vars: σ1 · · ·σm // Per processor ready queues for m processors2:

Vars: σz // Zero in-degree phase list3:

Vars: cpu mask4:

Vars: not fes5:

ComputeDAGwithDRD(σT );6:

σz ← FindZIDPhases(σT );7:

ComputeGVD(σz);8:

σd ← SortByGVD(σz);9:

for each phase J in σd do10:
cpu mask = 0; not fes = true;11:

while not fes == true do12:
p← FindProcessor();13:

if p == φ then14:
break;15:

InsDeadLnPos(J, σp);16:

UpdateCpuEC(p, J, true);17:

if IsFeasible(σp) == false then18:
RemoveList(J, σp);19:

UpdateCpuEC(p, J, false);20:

AddCpuToMask(p, cpu mask);21:
not fes = true;22:

else23:
not fes = false;24:

for each p processor’s schedule σp in m do25:
Jobp ← HeadOf(σp) ;26:

return { Job1, · · · , Jobm };27:

Theorem 2 NG-GUA, with dependencies, defaults to G-EDF with PIP during
underloads.

Theorem 3 The gMUA scheduling algorithm is a special case of NG-GUA.

Theorem 4 Both NG-GUA and G-GUA ensure mutual exclusion.

Theorem 5 For both algorithms considered, an application always makes progress,
i.e., executes application-specific code, if there is work offered and the application
is not deadlocked.

Property 1 In [17], Theorem 16.3.1 shows that when the schedule length is
used as a criteria, a greedy algorithm that schedules the ZID nodes in a DAG
produces a schedule that is within a factor of two from being optimal. Further,
for a multi-threaded application with P threads, work T1 and critical path length

T∞, the length of the schedule is bounded by T1

PA
+ T∞(P−1)

PA
, where PA is defined

as the average number of threads executed at each scheduling interval.

Theorem 6 Property 1 applies for both NG-GUA and G-GUA.

Theorem 7 For m processors and n phases, the asymptotic cost for both NG-
GUA and G-GUA is O(mn log n).
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4 Experimental Evaluation

4.1 ChronOS Real-time Linux

In order to implement and evaluate the performance of NG-GUA and G-GUA
with other state-of-the-art scheduling algorithms, we created a real-time Linux
kernel, called ChronOS [1], based on the CONFIG PREEMPT RT patch [27]. The
key motivation was to take advantage of the CONFIG PREEMPT RT real-time patch
which enables complete preemption in Linux and improves interrupt latencies.
ChronOS provides a set of APIs and a scheduler plugin infrastructure using
which various single-processor and multiprocessor (including utility accrual and
non-utility accrual) scheduling algorithms can be implemented. ChronOS is the
first academic real-time Linux kernel based on the CONFIG PREEMPT RT patch.
The architectural details of ChronOS are discussed in [1, 16].

4.2 Experimental Setup

Both NG-GUA and G-GUA do not assume any specific task arrival model (e.g.,
periodic, aperiodic, sporadic). Tasks can arrive at any time in the system and
generate scheduling events. However, in order to evaluate NG-GUA/G-GUA
against other state-of-the-art algorithms, we use a periodic model which helps
quantify the schedulability criteria of the algorithms and allows us to com-
pare the performance with other scheduling algorithms. We create a synthetic
real-time test application in ChronOS which enables evaluation using a wide
range of workloads. Tasks are represented as threads and the application pe-
riodically fires threads with specified time-constraints. For each task, we use a
burn cpu(exec cost) method, which takes the execution cost of the task as an
input and burns processor cycles for that amount of time.

We conduct the experiments on a quad-core platform based on AMD Phenom
9650 processor with 2.3 GHz frequency and 2 MB L3 cache, and measure the
Deadline Satisfaction Ratio (DSR) and the Accrued Utility Ratio (AUR). At a
given utilization load U , the DSR is measured as the ratio of the tasks that met
their deadlines to the total number of tasks released in the system. In a similar
fashion, the AUR is measured as the total accrued utility of the tasks that met
their deadlines to the total possible accrued utility in the system.

We consider two types of task-sets in this paper—12 tasks (12T) with periods
in the range [300ms − 20000ms] and 27 tasks (27T) with periods in the range
[50ms−7500ms]. The utilization load per task are in the range [0.01−0.5]. We use
a downward “step” TUF and consider three models: (i) Increasing Utility (IU),
utilities assigned to the tasks are proportional to their deadlines. The task with
the earliest deadline has the least utility and vice-versa; (ii) Decreasing Utility
(DU), utilities assigned to a task are inversely proportional to their deadlines.
The task with the earliest deadline has the highest utility and vice-versa; and
(iii) Random Utility (RU), tasks are assigned random utilities with no two tasks
having the same utility. These models are used to ascertain whether, irrespective
of the TUF ordering, our algorithms perform comparable to the competitors and
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to ensure that we do not create a bias based on the TUF assignment against
the deadline-based algorithms. The data points on all results are shown as an
average of ten samples along with the standard deviation.

We have additional extensive results using a wide range of task-sets on two,
four, and eight processor platforms and those have been excluded here due to
space limitation. We present those results in [16].

4.3 Results Without Dependencies

Comparison with global scheduling algorithms. Fig 2(a) and Fig 2(b)
show the AUR and DSR results, respectively, for 27T using RU on a 4-core
platform. No locks have been used. We observe that both NG-GUA and G-
GUA are able to accrue higher utility during overload conditions as compared
to the deadline-based scheduling algorithms. As a consequence, the algorithms
are able to satisfy more task deadlines during overloads when compared to the
deadline-based scheduling algorithms. On a 4-core platform, G-EDF is able to
meet all deadlines upto ≈ 380% CPU utilization load, after which it suffers
from a domino effect. G-NP-EDF starts missing deadlines earlier than G-EDF.
On the other hand, NG-GUA not only defaults to G-EDF during underloads,
it is able to sustain higher DSR during overloads. As NG-GUA defaults to a
deadline-based order, we observe that it is able to meet more deadlines than
G-GUA in Fig 2(b). The performance improvement for AUR is manifold. We
observe ≈ 900% improvement in AUR during overloads for both G-GUA and
NG-GUA over the deadline-based algorithms.

Comparison with partitioned scheduling algorithms. Figs 2(c) and 2(d)
show the AUR and DSR results, respectively, for 27T using RU on a 4-core
platform with the task-set partitioned using Baruah’s optimized first-fit (BF)
heuristic [5]. The task-set was partitioned off-line and assigned to the individual
processors using ChronOS APIs. We compare our algorithms against P-EDF
and P-DASA. In Fig 2(d), we observe that P-EDF is able to meet all dead-
lines upto ≈ 390% CPU utilization, after which it suffers from a domino effect.
P-DASA uses the single-processor utility accrual scheduling algorithm, DASA,
on individual processors. DASA defaults to EDF during underloads and maxi-
mizes accrued utility during overloads. We observe a similar behavior in Fig 2(c).
However, both NG-GUA and G-GUA perform better than P-EDF and P-DASA
during overloads by yielding a “best-effort” utility accrual behavior, with an
improvement of ≈ 50% in AUR over P-DASA.

4.4 Results With Dependencies

To compare the performance of G-GUA and NG-GUA in the presence of depen-
dencies against global scheduling algorithms, we consider three models: (i) vary-
ing utilization load, keeping the number of locks and critical section length fixed;
(ii) varying critical section length, keeping the utilization load and the number of
locks fixed; and (iii) varying number of locks, keeping the utilization load and the
critical section length fixed. We implement locks using futexes, which allow us
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Fig. 2: Experimental results without dependencies against (a-b) global scheduling
and (c-d) partitioned scheduling algorithms

to share a context between kernel-space and user-space. We consider the critical
section length as a percentage of the total execution cost of the task. The tasks
request the locks sequentially.

Fig 3(a) and Fig 3(b) show the AUR and DSR results for 12T with 4 locks
per task, using RU on a 4-core platform. The tasks use the locks sequentially.
The locks have a fixed critical section length of 5% of the total task execution
cost. In the presence of locks, none of the scheduling algorithms are able to meet
all deadlines during underloads. We observe that both G-GUA and NG-GUA
provide a better accrued utility as well as deadline satisfaction during overloads.
In Fig 3(a), G-GUA and NG-GUA provide a consistent 80% accrued utility
benefit when compared with the deadline-based algorithms. Fig 3(c) provides
the AUR results for a fixed utilization load of 800% and 4-locks by varying the
critical section length. With an increase in the critical section length, the overall
AUR decreases. G-GUA is able to provide an improvement of ≈ 5% over NG-
GUA. Fig 3(d) shows the AUR results for a fixed utilization load of 800% and
critical section length of 5% while varying the number of locks. We observe that
both NG-GUA and G-GUA consistently accrue higher utility when compared to
the deadline-based algorithms.
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Fig. 3: Experimental results with dependencies by (a-b) varying utilization load
(c) varying critical section length (d) varying number of locks

4.5 Scheduling Overheads

As mentioned earlier, both NG-GUA and G-GUA have a worst-case asymp-
totic cost of O(mn log n). Figs 4(a) and 4(b) show the scheduling overheads for
G-GUA and NG-GUA on ChronOS. We observe that with an increase in the
number of tasks and also the task utilization load, the scheduling overhead of
both algorithms increase. In particular, G-GUA is seen to have a higher over-
head compared to NG-GUA. This is primarily because G-GUA is more greedy
for accruing overall utility as compared to NG-GUA. For a 27T task-set, we
observe ≈ 30µs overhead for G-GUA and ≈ 15µs overhead for NG-GUA.

5 Conclusions

This paper focuses on the dynamic, multiprocessor real-time scheduling prob-
lem space—i.e., those characterized by execution overruns, unpredictable task
arrivals, causing transient and permanent overloads. The paper demonstrates
that it is possible to design scheduling algorithms for this problem space, such
that they yield an optimal timeliness behavior (e.g., meeting all deadlines; ob-
taining maximum total utility), when total utilization demand does not exceed
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Fig. 4: Scheduling overheads under variable CPU utilization loads and various
task-sets for (a) G-GUA (b) NG-GUA

the algorithms’ utilization bound, and a best-effort timeliness behavior at all
other times. This approach was pioneered in the Alpha OS kernel [19], which
included two generations of TUF scheduling algorithms for scheduling single-
processor systems [25, 12]. At its core, the paper’s algorithms demonstrate that
a similar approach can also be successfully extended for multiprocessors. Addi-
tionally, the paper’s ChronOS real-time Linux kernel, provides a framework for
implementing and plugging-in a broad range of multiprocessor real-time sched-
ulers, while taking advantage of CONFIG PREEMPT RT patch’s optimized interrupt
service latencies and real-time locking primitives. Ongoing work is transitioning
the GUA algorithms and the ChronOS kernel to a US Department of Defense
system.

There are several directions for future work. Immediate directions include
improving the algorithms’ utilization bound from ≈ m/2 and reducing their
time overheads. Other directions include developing scalable and approximate
algorithms for GUA’s problem space with lower bounds on accrued utility and
satisfied deadlines.
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