
Relay: A Cache-Coherence Protocol for Distributed
Transactional Memory

Bo Zhang and Binoy Ravindran

ECE Dept., Virginia Tech
Blacksburg VA 24061, USA
{alexzbzb,binoy}@vt.edu

Abstract. Transactional memory is an alternative programming model for managing con-
tention in accessing shared in-memory data objects. Distributed transactional memory promises
to alleviate difficulties with lock-based (distributed) synchronization and object performance
bottlenecks in distributed systems. The design of the cache-coherence protocol is critical to
the performance of distributed transactional memory systems. We evaluate the performance
of a cache-coherence protocol by measuring its worst-case competitive ratio — i.e., the ratio
of its makespan to the makespan of the optimal cache-coherence protocol. We establish the
upper bound of the competitive ratio and show that it is determined by the worst-case num-
ber of abortions, maximum locating stretch, and maximum moving stretch of the protocol —
the first such result. We present the Relay protocol, a novel cache-coherence protocol, which
optimizes these values, and evaluate its performance. We show that Relay’s competitive ratio
is significantly improved by a factor of O(Ni) for Ni transactions requesting the same object
when compared against past distributed queuing protocols.

1 Introduction

Conventional synchronization methods based on locks and condition variables are inherently error-
prone. For example, with fine-grained locking, where each component of a data structure is pro-
tected by a lock, programmers must acquire only necessary and sufficient locks to obtain maximum
concurrency without compromising safety, and must avoid deadlocks when acquiring multiple locks.
Furthermore, lock-based code is non-composable. For example, atomically moving an element from
one hash table to another using those hash tables’ pre-existing atomic methods (e.g., insert, delete)
is not possible in a straightfoward manner. For these and other reasons, lock-based concurrent code
is difficult to reason about, program, and maintain [11].

Transactional memory (TM) is an alternative synchronization model (for shared in-memory
data objects) that promises to alleviate the difficulties with lock-based synchronization. A trans-
action is an explicitly delimited sequence of steps that is executed atomically by a single thread.
Transactions read and write shared objects. Two transactions conflict if they access the same
object and one access is a write. The transactional approach to contention management [12] guar-
antees atomicity by ensuring that whenever a conflict occurs, only one of the transactions involved
can proceed. Thus, a transaction ends by either committing (i.e., its operations take effect), or by
aborting (i.e., its operations have no effect). If a transaction aborts, it is typically retried until it
commits. Transactional memory API for multiprocessors have been proposed in hardware [8], in
software [10, 16], and in hardware/software combination [4].

In this paper, we focus on distributed transactional memory. We are motivated by the difficul-
ties of lock-based synchronization that plague distributed control-flow programming models such
as RPCs. For example, distributed deadlocks (e.g., due to RPCs that become remotely blocked on
each other) and livelocks are unavoidable for such solutions. Furthermore, in the RPC model, an
object can become a “hot spot,” and thus a performance bottleneck. In the data-flow distributed
TM model of [13] (that we also consider), such bottlenecks can be reduced by exploiting locality:
move the object to nodes. Moreover, if an object is shared by a group of geographically-close clients

2

that are far from the object’s home, moving the object to the clients can reduce communication
costs. Distributed (data-flow) TM can therefore alleviate these difficulties, where distributed trans-
actional conflicts and object inconsistencies are resolved through distributed contention managers
and cache-coherence protocols, respectively. See [13] for an excellent discussion on these issues.

Different TM models for distributed systems have been proposed in the past. In [13], Herlihy and
Sun identify three competing models: the control flow model, in which data objects are typically
immobile, and computations move from node to node via RPCs; the data flow model, where
transactions are immobile (running on a single node) and data objects move from node to node; and
the hybrid model, where data objects are migrated depending on an array of heuristics such as size
and locality. These transactional models make different trade-offs. Past work on multiprocessors [12]
suggest that the data flow model can provide better performance than the control flow model on
exploiting locality, reducing communication overhead, and supporting fine-grained synchronization.

Distributed TM differs from multiprocessor TM in two key aspects. First, multiprocessor TM
designs extend built-in cache-coherence protocols that are already supported in modern multipro-
cessor architectures. Distributed systems with nodes linked by communication networks typically
do not come with such built-in protocols. A distributed cache-coherence protocol has to be there-
fore designed. When a transaction attempts to access an object, the cache-coherence protocol must
locate the current cached copy of the object, and move it to the requesting node’s cache, invalidat-
ing the old copy. For example, in [13], Herlihy and Sun present a Ballistic cache-coherence protocol
based on hierarchical clustering for tracking and moving up-to-date copies of cached objects.

Secondly, the communication costs for distributed cache-coherence protocols to locate the copy
of an object in distributed systems are orders of magnitude larger than that in multiprocessors and
are often non-negligible. Such costs are typically determined by the different physical locations of
nodes that invoke transactions, as well as that of the performance of the cache-coherence protocol
used. These costs directly affect the system performance.

In this paper, we focus on the design of a cache-coherence protocol to minimize its worst-case
competitive ratio, which is the ratio of its makespan (the last completion time for a given set
of transactions) to the makespan of an optimal cache-coherence protocol. We first establish the
upper bound of the competitive ratio and show that it is determined by the worst-case number of
abortions, maximum locating stretch, and maximum moving stretch of the protocol. The design
of a cache-coherence protocol should therefore minimize these values.

Past works on transactional memory in distributed systems include [2], [13], and [14]. In [14],
the authors present a page-level distributed concurrency control algorithm, which maintains several
distributed versions of the same data item. In [2], the authors decompose a set of existing cache-
coherent TM designs into a set of design choices, and select a combination of such choices to support
TM for commodity clusters. None of these works present theoretical analysis of the fundamental
properties of TM for distributed systems, such as performance upper bounds of cache-coherence
protocols, which is our focus.

In [13], Herlihy and Sun present a Ballistic distributed cache-coherence protocol in a metric-
space network where the communication costs between nodes form a metric. The protocol’s perfor-
mance is evaluated by measuring its stretch, which is the ratio of the protocol’s communication cost
for obtaining a cached copy of an object to that of the optimal communication cost. The Ballistic
protocol mainly suffers from two drawbacks. First, it employs an existing distributed queuing pro-
tocol, which does not consider the contention between two transactions, and the worst-case queue
length, which is O(N2

i) for Ni transactions requesting the same object. Second, its hierarchical
structure degrades its scalability — e.g., whenever a node joins or departs, the whole structure has
to be rebuilt.

Our cache-coherence protocol design is motivated by the distributed queuing problem [9]. Simi-
lar to this problem, distributed TM must also synchronize accesses to mobile objects in a network.
Hence, the principles of management of distributed queues also apply to distributed TM: the trans-
action requests have to be ordered in a queue and each transaction needs to know the location of its

3

successor in the queue so that it knows where to forward the object to. However, most traditional
distributed queuing protocols often do not consider the contention between transactions: an abor-
tion of a transaction increases the length of the queue since the transaction has to be restarted. We
show that for the arrow protocol [15], which is a simple distributed queuing protocol, the worst-case
number of total abortions is O(N2

i) for Ni transactions requesting the same object. We improve
this bound in our cache-coherence protocol design by a factor of O(Ni).

We present a novel cache-coherence protocol, called the Relay protocol. Similar to the arrow
protocol, the Relay protocol works on a network spanning tree. Hence, its maximum locating
stretch and maximum moving stretch are determined by the maximum stretch of the underlying
spanning tree. The Relay protocol efficiently reduces the worst-case number of total abortions to
O(Ni). As a result, we show that the protocol has a better worst-case competitive ratio than the
arrow protocol by a factor of O(Ni).

Thus, the paper’s contribution is twofold. First, we identify the three factors that critically affect
the performance of a cache-coherence protocol. Second, we present the Relay protocol, illustrate
how these factors are optimized in its design, and show that its worst-case competitive ratio is
better than that of the arrow protocol by a factor of O(Ni). To the best of our knowledge, these
are the first such results.

The rest of the paper is organized as follows. We present our system model and formulate our
problem in Section 2. We analyze the general case of the competitive ratio and establish its upper
bound in Section 3. Section 4 presents the Relay protocol. The paper concludes in Section 5.

2 System Model and Problem Description

Network Model. We consider Herlihy and Sun’s metric-space network model [13]. Let G =
(V, E, d) be a weighted connected graph, where |V | = n and d is a function that maps E to the set
of positive real numbers. Specifically, we use d(u, v) to denote the communication cost of the edge
e(u, v). For two nodes u and v in V , let distG(u, v) denote the distance between them in G, i.e.,
the length of a shortest path between u and v.

We assume that the proposed Relay protocol runs on a fixed-rooted spanning tree of G. Given
a spanning tree T of G, we define the distance in T between a pair of two nodes, u and v, to be
the sum of the lengths of the edges on the unique path in T between u and v. Now, we define the
stretch of u and v in T with respect to G as: strT,G(u, v) = distT (u,v)

distG(u,v) .

Let the maximum stretch of T with respect to G be denoted as: max-str(T, G) = maxu,v∈V {strT,G(u, v)}.
When there is no ambiguity, we omit G, for convenience, i.e., we say strT (u, v) and max-str(T).

the graph G is clear from the context, we simply write strT (u, v) and max-str(T). We define the
diameter of G as: Diam = maxu,v,x,y∈V {distG(u,v)

distG(x,y)}.
Transaction Model. We are given a set of m ≥ 1 transactions T1, . . . , Tm and a set of s ≥ 1

objects R1, . . . , Rs. Since each transaction is invoked on an individual node, we use vTi to denote the
node that invokes the transaction Ti, and VT = {vT1 , . . . , vTm}. We use Ti ≺ Tj to represent that
transaction Ti is issued a higher priority than Tj by the contention manager (see the distributed
transactional memory model).

Each transaction is a sequence of actions, each of which is an access to a single object. Each
transaction Tj requires the use of Ri(Tj) units of object Ri for one of its actions. If Tj updates
Ri, i.e., a write operation, then Ri(Tj) = 1. If it reads Ri without updating, then Ri(Tj) = 1

n , i.e.,
the object can be read by all nodes in the network simultaneously. When Ri(Tj) + Ri(Tk) > 1, Tj

and Tk conflict at Ri. We use v0
Ri

to denote the node that holds Ri at the start of the system, and
vj

Ri
to denote the jth node that fetches Ri. We denote the set of nodes that requires the use of the

same object Ri as V Ri

T := {vTj |Ri(Tj) ≥ 0, j = 1, . . . ,m}.
An execution of a transaction Tj is a sequence of timed actions. Generally, there are four

action types that may be taken by a single transaction: write, read, commit, and abort. When a

4

transaction is started on a node, a cache-coherence protocol is invoked to locate the current copy
of the object in the network and fetch it. The transaction then starts its action sequence and
may perform local computations (not involving access to objects) between consecutive actions. A
transaction completes either with a commit or an abort. The duration of transaction Tj running
locally (without taking into account the time for fetching objects) is denoted by τi.

Distributed Transactional Memory Model. We consider Herlihy and Sun’s data-flow
model [13] to support the transactional memory API in a distributed system. In this model, trans-
actions are immobile (running at a single node), but objects move from node to node. Transactional
synchronization is optimistic: a transaction commits only if no other transaction has executed a
conflicting access. A contention manager module is responsible for mediating between conflicting
accesses to avoid deadlocks and livelocks. The core of this design is an efficient distributed cache-
coherence protocol. A distributed transactional memory system uses a distributed cache-coherence
protocol for read/write operations. When a transaction attempts to access an object, the cache-
coherence protocol must locate the current cached copy of the object, move it to the requesting
node’s cache, and invalidate the old copy.

Each node is assumed to have a transactional memory proxy module that provides interfaces
to the application and to proxies at other nodes. This module performs the following functions:

— Data Object Management : An application informs the proxy to open an object when it
starts a transaction. The proxy is responsible for fetching a copy of the object requested by the
transaction, either from its local cache or from other nodes. When the transaction requests to
commit, the proxy checks whether any object opened by the transaction has been modified by other
transactions. If not, the proxy makes the transaction’s tentative changes to the object permanent;
otherwise discards them.

— Cache-Coherence Protocol Invocation: The proxy is responsible for invoking a cache-coherence
protocol when needed. When a new data object is created in the local cache, the proxy invokes
the cache-coherence protocol to publish it in the network. When an object is requested by a read
access and is not in the local cache, the proxy invokes the cache-coherence protocol to look-up the
object and fetch a read-only copy. If it is a write request, the proxy invokes the cache-coherence
protocol to move the object to its local cache.

— Contention Management : When a transaction requests for an object that is currently used
by an active local transaction, the proxy can either abort the local transaction and make the object
available, or it can postpone a response to give the local transaction a chance to commit. This
decision is made by a globally consistent contention management policy that avoids deadlocks
and livelocks. An efficient contention management policy should guarantee progress—i.e., at any
given time, there exists at least one transaction that proceeds to commit without interruption.
For example, the Greedy contention manager [7] guarantees that the transaction with the highest
priority can be executed without interruption, using a globally consistent priority policy that issues
priorities to transactions.

Problem Statement. We evaluate the performance of a distributed transactional memory
system by measuring its makespan. Given a set of transactions accessing a set of objects under a
contention manager A and a cache-coherence protocol C, makespan(A, C) denotes the duration
that the given set of transactions are successfully executed under the contention manager A and
cache-coherence protocol C. We assume a fixed contention manager A, which satisfies the work
conserving [1] and pending commit [7] properties.

Definition 1 A contention manager is work conserving if it always lets a maximal set of non-
conflicting transactions to run.

Definition 2 A contention manager obeys the pending commit property if, at any given time,
some running transaction will execute uninterrupted until it commits.

For example, as shown in [1], the Greedy manager satisfies both properties.

5

We use makespan(A,Opt) to denote the makespan of the optimal cache-coherence protocol
with respect to A. We evaluate the performance of a cache-coherence protocol C with respect to
A by measuring its competitive ratio:

Definition 3 (Competitive Ratio) CR(A,C) = makespan(A,C)
makespan(A,Opt) .

When there is no ambiguity on the contention manager used, for convenience, we drop it from
the notations—i.e., we simply write makespan(C), makespan(Opt), and CR(C).

Our goal is to design a cache-coherence protocol C to minimize its competitive ratio.

3 Competitive Ratio Analysis

We first analyze the makespan of the optimal cache-coherence protocol makespan(Opt). Let the
makespan of a set of transactions which require accesses to an object Ri, be denoted as makespani.
It is composed of three parts:
(1) Traveling Makespan (makespand

i): the total communication cost for Ri to travel in the network.
(2) Execution Makespan (makespanτ

i): the duration of transactions’ executions involving Ri, in-
cluding all successful and aborted executions; and

(3) Waiting Makespan (makespanw
i): the time that Ri waits for a transaction request.

Generally, a cache-coherence protocol performs two functions: 1) locating the up-to-date copy
of the object and 2) moving it in the network to meet transactions’ requests. We define these costs
as follows:

Definition 4 (Locating Cost) In a given graph G, the locating cost δC(u, v) is the communica-
tion cost for a transaction request invoked by node u to travel in the network, to successfully locate
an object held by node v, under a cache-coherence protocol C.

Definition 5 (Moving Cost) In a given graph G, the moving cost ζC(u, v) is the communication
cost for an object held by node u to travel in the network to node v, which invokes a transaction
request of the object, under a cache-coherence protocol C.

For the set of nodes V Ri

T that invoke transactions with requests for object Ri, we build a
complete graph Gi = (Vi, Ei, di), where Vi = {V Ri

T

∪
v0

Ri
} and di(u, v) = distG(u, v). We use

H(Gi, v
0
Ri

, vTj) to denote the cost of the minimum-cost Hamiltonian path that visits each node
from v0

Ri
to vTj exactly once. Now, we have:

Theorem 1

makespand
i (Opt) ≥ min

vTj
∈V

Ri
T

H(Gi, v
0
Ri

, vTj), makespanτ
i (Opt) ≥

∑
vTj

∈V
Ri

T

τj

makespanw
i (Opt) ≥

∑
vTj

∈V
Ri

T

min
vTk

∈{V
Ri

T

S

v0
Ri

}
distG(vTk

, vTj)

Proof. The execution of the given set of transactions with the minimum makespan schedules each
transaction exactly once, which implies that Ri only has to visit each node in V Ri

T once. In this case,
the node travels along a Hamiltonian path in Gi starting from v0

Ri
. Hence, we can lower-bound the

traveling makespan by the cost of the minimum-cost Hamiltonian path and the execution makespan
by the sum of τj . For the optimal cache-coherence protocol, each object is located via the shortest
path. The theorem follows.

Let λ∗
C(j) denote Tj ’s worst-case number of abortions under cache-coherence protocol C and

λC(j) = λ∗
C(j) + 1. Let Λ∗

C denote the worst-case number of total transactions’ abortions under C
and ΛC = Λ∗

C + Ni. Generally, we have the following theorem for a cache-coherence protocol C:

6

Theorem 2 makespand
i (C) ≤ ΛC ·max

vTj
∈V

Ri
T

{max
vTk

∈{V
Ri

T

S

v0
Ri

} ζC(vTj , vTk
)}

makespanτ
i (C) ≤

∑
vTj

∈V
Ri

T

{λC(j) ·τj}, makespanw
i (C) ≤ ΛC · max

vTj
∈V

Ri
T

{ max
vTk

∈{V
Ri

T

S

v0
Ri

}
δC(vTj , vTk

)}

Hence, we have the following relationship of CRi(C), the competitive ratio of cache-coherence
protocol C for transactions requesting object Ri:

CRd
i (C) ≤

ΛC ·max
vTj

∈V
Ri

T

{max
vTk

∈{V
Ri

T

S

v0
Ri

} ζC(vTj , vTk
)}∑

vTj
∈V

Ri
T

{min
vTk

∈{V
Ri

T

S

v0
Ri

} distG(vTj , vTk
)}

, CRτ
i (C) ≤ max

vTj
∈V

Ri
T

λC(j)

CRw
i (C) ≤

ΛC ·max
vTj

∈V
Ri

T

{max
vTk

∈{V
Ri

T

S

v0
Ri

} δC(vTj , vTk
)}∑

vTj
∈V

Ri
T

{min
vTk

∈{V
Ri

T

S

v0
Ri

} distG(vTj , vTk
)}

We define the locating stretch and moving stretch of u and v under cache-coherence protocol C

as: Strδ
C(u, v) = δC(u,v)

distG(u,v) and Strζ
C(u, v) = ζC(u,v)

distG(u,v) . Let the maximum locating stretch and maxi-

mum moving stretch with respect to C be denoted, respectively, as: max-Strδ
C = maxu,v∈V { δC(u,v)

distG(u,v)}

and max-Strζ
C = maxu,v∈V { ζC(u,v)

distG(u,v)}. Let Ni = |V Ri

T |, i.e, Ni represents the number of transac-
tions that request access to object Ri. Now we have the following theorem:

Theorem 3 CRi(C) ≤ max{max
vTj

∈V
Ri

T

λC(j), ΛC

Ni
·max{max-Strζ

C ,max-Strδ
C} ·Diam}

Remarks: Theorem 3 gives the upper bound of the competitive ratio of cache-coherence protocol C.
Clearly, the design of a cache-coherence protocol should therefore focus on minimizing its worst-case
number of abortions, maximum locating stretch, and maximum moving stretch.

4 The Relay Protocol

Rationale. Our work is motivated by the arrow protocol of Raymond [15], which is a simple
distributed queuing protocol based on path reversal on a network spanning tree. Distributed queuing
is a fundamental problem in the management of synchronization accesses to mobile objects in a
network. When multiple nodes in the network request an object concurrently, the requests must be
queued in some order, and the object travels from one node to another down the queue. To manage
such a distributed queue, an efficient distributed queuing protocol must solve two problems: a) how
to order the requests from different nodes into a single queue; and b) how to provide the necessary
information to nodes such that each node knows the location of its successor in the queue and the
object can be forwarded down the queue. Note that the protocol is “distributed” in the sense that
no single node needs to have the global knowledge of the queue. Each node only has to know its
successor in the queue and forward the object to it.

The arrow protocol runs on a fixed spanning tree T of G. Each node v keeps an “arrow” or a
pointer p(v) to itself or to one of its neighbors in T . If p(v) = v, then v is the tail of the queue,
i.e., the next request should be forwarded to v. In this case, the node v is defined as a “sink”.
Clearly, at any time, there exists only one sink for each object. If p(v) = u, then p(v) only knows
the “direction” of the tail of the queue and the request is forwarded following that direction.

The protocol works based on path reversal. When an object is created by a node, the arrows
are initialized such that following the arrows from any node leads to the object. A node v requests
the object by sending a find message to p(v). When a node u receives a find message from its
neighbor w, there are two possible cases: a) if p(u) ̸= u, then it forwards the find message to p(u)
and flips p(u) to point to w; and b) if p(u) = u, then the find message has arrived at the tail of

7

Fig. 1. The Arrow Protocol

the queue. The object will move to v after it arrives at u, and p(u) is also flipped to point to w.
See Figure 1 for an example of the arrow protocol. We only give an informal description here and
more details can be found in [5].

The arrow protocol is attractive as a candidate cache-coherence protocol. In the context of
distributed transactional memory, nodes request access to mobile objects in the network. Hence,
a cache-coherence protocol has to be able to arrange the requests to be ordered in a queue. If
we directly apply the arrow protocol as a cache-coherence protocol, we can immediately have the
following relationships: max-Strδ

arrow = max-str(T) and max-Strζ
arrow = 1. Hence, the maximum

locating stretch of the arrow protocol is the maximum stretch of the underlying spanning tree, and
the maximum moving stretch of the arrow protocol is 1 — i.e., the object can be directly moved
via the shortest path.

However, the difference between the arrow protocol and a cache-coherence protocol is that
the arrow protocol does not consider the contention between two transactions. Hence, the arrow
protocol is not able to reduce the worst-case number of abortions λC(j). We have the following
theorem:

Theorem 4 max
vTj

∈V
Ri

T

λarrow(j) ≤ Ni, Λarrow ≤ Ni(Ni+1)
2

Proof. Note that we assume a contention manager with work conserving and pending commit
properties. Hence, we know that at any time, there exists at least one transaction in V Ri

T that will
execute uninterruptedly until it commits. Let T ∗

arrow denote the transaction with the maximum
worst-case number of abortions in V Ri

T under the arrow protocol. We first prove that, for each time
that T ∗

arrow is aborted by another transaction in V Ri

T , at least one transaction in V Ri

T will commit
before T ∗

arrow is aborted again.
Assuming that T ∗

arrow is aborted by another transaction Thead
arrow, we have Thead

arrow ≺ T ∗
arrow.

According to the arrow protocol, the “arrows” are now pointed to the tail of the queue, which is
the latest transaction requesting the object. Transaction T ∗

arrow’s new request will be forwarded
to the tail of the queue. We now focus on the set of transactions between Thead

arrow and T ∗
arrow in the

queue, denoted by S. Let T ′ be the transaction with the highest priority in S. If T ′ ≺ Thead
arrow, then

T ′ will commit before it forwards the object down the queue. Otherwise, Thead
arrow will commit. In

both cases, at least one transaction will commit before the object is forwarded to T ∗
arrow again.

Now, it is easy to prove that max
vTj

∈V
Ri

T

λarrow(j) ≤ Ni, as for each time that T ∗
arrow is

aborted, at least one transaction in V Ri

T commits. By induction, we can further prove that the
second-maximum worst-case number of abortions in V Ri

T is at most Ni − 1, the third-maximum
worst-case number of abortions is at most Ni − 2, etc. The theorem follows. We now have the
following corollary:

Corollary 1 CRi(arrow) ≤ (Ni+1)
2 ·max-str(T) ·Diam

8

Hence, a new cache-coherence protocol should focus on minimizing the number transaction abor-
tions to improve the upper-bound of the competitive ratio.

Protocol Description. We design a novel cache-coherence protocol, called the Relay protocol,
based on a fixed spanning tree T on G. The Relay protocol inherits the advantages of the arrow
protocol and significantly reduces the number of transaction abortions by a factor of O(Ni). We
start with an informal description of the protocol.

The protocol is initialized in the same way as the arrow protocol. The node where the object
resides is selected to be the tail of the queue. Each node v ∈ V maintains a pointer p(v) and is
initialized so that following the pointers from any node leads to the tail.

After the initialization, the protocol works as follows. To request the object, a transaction Tp

invoked by node v sends a find message to node p(v). Note that p(v) is not modified when a find
message is forwarded. If a node w between v and the tail of the queue receives a find message, it
simply forwards the find message to p(v). At the end, the find message will be forwarded to the
tail of the queue without changing any pointers.

The find message from v keeps a path vector r(v) to record the path it travels. Each node
receiving the find message from v appends its ID to r(v). When the find message arrives at the tail
of the queue, the vector r(v) records the path from v to the tail. Suppose the tail of the queue x
receives a find message from node v. Now, there are two possible cases: a) if the transaction Tx on x
has committed, then the object will be moved to p; and b) if the transaction Tx has not committed,
the contention manager will compare the priorities of Tx and Tp. We discuss this scenario case by
case.
- Case 1: If Tp ≺ Tx, then Tx is aborted and the object will be moved to p. Node p stores a field

next(p) = Tx after receiving the object.
- Case 2: If Tx ≺ Tp, then Tp will be postponed to let Tx commit. Node x stores a field next(x) = Tp.

Node x may receive multiple find messages since the pointers are not changed before the object
is moved. Suppose it receives another find message from node u. If Tu ≺ Tx, then it falls into
Case 1. If Tx ≺ Tu, then the contention manager compares the priorities of next(x) (in this case
it is Tp) and Tu. If Tp ≺ Tu, then the find message from u is forwarded to p. If Tu ≺ Tp, then u
sets next(x) to Tu and forwards the find message from p to u.

The key idea of the Relay protocol is the way it updates the pointers and path vectors to make
those operations feasible. When the object is available at node x, it will be moved to next(x) via
the path from x to next(x) of the spanning tree T . The problem is, how does x learn that path so
that the object can be correctly moved? Note that the Relay protocol uses path vectors to record
the path. Suppose that x moves an object to v. The Relay protocol keeps a route vector route at
x which records the path from v to x by copying the path vector r(v) after the find message from
v arrives. Hence, node x is able to move the object by following the reverse path saved in route.

An important part of the protocol is the way it updates the path vector. Since a find message
from v may be forwarded to several destinations before the object is moved to v, the path that
the find message travels to the last destination may not be the shortest path in the spanning tree
T , since some nodes may be visited multiple times. Since there is only one path in a spanning
tree between two nodes such that each node in the path is visited exactly once, the path vector is
updated in the following way. When the find message from v is forwarded to a node w, it checks
the last two elements in r(v), say r(v)[max−1] and r(v)[max]. If r(v)[max−1] ̸= r(v)[max], then
w is added to the path vector by setting r(v)[max + 1] = w. If r(v)[max − 1] = r(v)[max], then
it checks r(v)[max− 2]. If r(v)[max− 2] ̸= w, then r(v)[max] is removed and w is added to rv. If
r(v)[max− 2] = w, then a loop forms in r(v) by {r(v)[max− 2], r(v)[max− 1], r(v)[max], w}. In
this case, both r(v)[max−1] and r(v)[max] are removed and w is added to r(v). The new updated
path vector will not contain r(v)[max− 1] or r(v)[max] any more. See Figure 2 for an example of
the path vector updating process of the Relay protocol.

The pointers are updated when the object is moved. Suppose that node x moves the object
to node v, node x sends a move message with the object to move(x).route[max]. Meanwhile,

9

Fig. 2. Updating of the Path Vector of the Relay Protocol: Tx ≺ Tv ≺ Tz

node x sets p(x) to move(x).route[max]. Suppose a node u receives a move message from one of
its neighbors. It updates move(x).route by removing move(x).route[max] and sends the object
to the new move(x).route[max], setting p(u) = move(x).route[max]. Finally, when the object
arrives at v, p(v) is set to v and all pointers are updated. Such operations guarantee that at any
time, there exists only one sink in the network, and, from any node, following the direction of its
pointer leads to the sink.

We now describe the protocol formally.
Variables. We use the following variables:

1. p(v) is v’s pointer pointing to a neighbor on the tree or to itself.
2. r(v) is a vector recording the path from v to the node it resides.
3. route is a vector to store the route that the message follows.
4. next(v) stores v’s successor in the queue.

Messages. There are three types of messages:
1. Node v sends a publish message to publish the object.
2. Node v sends a find(v) message to request the object.
3. Node v sends a move(v) message with the object when the object is moved from v.

Operations. All operations are of the form: (event) followed by (actions). The following op-
erations are performed on node v. Note that r(v)[max] or route[max] always point to the last
element of the referred vector.
1. Event: Object Ri is created by v. /* publish a new object */

a Set p(v)← v. /* set the pointer to itself */
b Probe all neighbors of node v: Neighbor(v) on T .
c Send publish(Ri) to Neighbor(v).

2. Event: Receive publish(Ri) from u. /* receive a publish message: set the pointer */
a Set p(v)← u.
b Probe all neighbors of node v: Neighbor(v) on T .
c Forward publish(Ri) to {Neighbor(v)\{u}}.

3. Event: Transaction Tv requests the object Ri. /* invoke a transaction request */
a Set find(v).route← null /* route vector reserved for future use */
b Set find(v).r(v)[1]← v. /* initialize the path vector */
c Send find(v) to p(v).

4. Event: Receive find(w) message from u.
a If p(v) = v then /* v holds the object */

i If Ri is idle then /* move the object */
A Set move(v).route← find(w).r(w). /* set the route vector */

10

B Send move(v) and object Ri to move(v).route[max]. /* move(v).route[max] = u */
C Set p(v)← move(v).route[max]. /* update the pointer */

ii Else if Tw ≺ Tv then /* the local contention manager compares priorities */
A Abort Tv. /* Tv is aborted by Tw */
B Move the object following actions in 4aiA — 4aiC.
C Set find(v).route← find(w).r(w). /* Tv is restarted immediately and initializes the

find message */
D Set find(v).r(v)[1]← v. /* initialize the path vector */
E Send find(v) to find(v).route[max]. /* send a find message to w following the route

vector */
iii Else if next(v) = null then /* Tv ≺ Tw */

A Set next(v)← w /* w is queued after v */
B Set next(v).route← find(w).r(w). /* save the route vector */

iv Else if Tw ≺ Tnext(v) then
A Set find(next(v)).route← find(w).r(w).
B Forward find(next(v)) to find(next(v)).route[max]. /* forward find(next(v)) to w

following the route vector */
C Set next(v)← w /* w is queued after v */
D Set next(v).route← find(w).r(w). /* save the route vector */

v Else, /* Tnext(v) ≺ Tw */
A Set find(w).route← find(next(v)).route. /* set the route vector to forward find(w)

to node next(v) */
B Forward find(w) to find(w).route[max].

b Else if find(w).route = null then /* forward the message to the tail of the queue following
pointers */

i Set find(v).r(v)[max + 1]← v. /* node v is added to the path vector */
ii Forward find(w) to p(v).

c Else if |find(w).route| = 1 then follow actions in 4aiii — 4av. /* v is the destination to
forward find(w) following the route vector and Tv ≺ Tw */

d Else if find(w).r(w)[max−1] ̸= find(w).r(w)[max] /* the find message comes from the tail
of the queue */

i Set find(w).r(w)[max + 1]← v. /* node v is added to the path vector */
ii Remove find(w).route[max]. /* find(w).route[max] = v before removing */
iii Forward find(w) to find(w).route[max].

e Else if find(w).r(w)[max− 2] ̸= v /* find(w).r(w)[max− 1] is the intersection node of two
paths find(w).route and find(w).r(w) */

i Remove find(w).r(w)[max]. /* find(w).r(u)[max] = find(w).r(w)[max− 1] before re-
moving it */

ii Set find(w).r(w)[max + 1]← v. /* node v is added to the path vector */
iii Remove find(w).route[max]. /* find(w).route[max] = v before removing */
iv Forward find(w) to find(w).route[max].

f Else, /* a loop forms */
i Remove find(w).r(w)[max−1] and find(w).r(w)[max]. /* find(w).r(w)[max] = find(w).r(w)[max−

1] before removing */
ii Set find(w).r(w)[max + 1]← v. /* node v is added to the path vector */
iii Remove find(w).route[max]. /* find(w).route[max] = v before removing */
iv Forward find(w) to find(w).route[max].

5. Event: Receive move(w) message and object Ri from u
a If |move(w).route| = 1 then /* v is the destination */

i Set p(v)← v. /* update the pointer */
b Else, /* forward the move message and the object */

11

i Remove move(w).route[max]. /* move(w).route[max] = v before removing */
ii Forward move(w) and object Ri to move(w).route[max].
iii Set p(v)← move(w).route[max]. /* update the pointer */

6. Event: Transaction Tv on v commits and Ri(Tv) ̸= 0
a if next(v) ̸= null then /* move the object */

i Set move(v).route← next(v).route. /* set the route vector */
ii Send move(v) and object Ri to move(v).route[max].
iii Set p(v)← move(v).route[max].

b Else, /* wait for transaction requests */
Protocol Analysis. The correctness of the protocol can be proved from the protocol descrip-

tion. The pointers are only “flipped” when the object is moved, which guarantees that at any time
there is only one sink in the network and following the pointer from any node leads to the sink.
The key to proving the correctness of the protocol is that find and move messages are forwarded
along the correct path on T . As explained in the protocol description, we use path vectors and
route vectors to record paths. As long as they are correctly updated, a find or a move message can
be forwarded along the unique path on T to its destination.

We now focus on the performance of the Relay protocol, which we measure through its com-
petitive ratio. We can directly derive the following relationships from the protocol description:

max-Strδ
Relay = max-Strζ

Relay = max-str(T), (1)

since the object is located and moved via a unique path on T . To illustrate the advantage of the
Relay protocol on reducing the number of abortions, we have the following theorem:

Theorem 5 max
vTj

∈V
Ri

T

λRelay(j) ≤ Ni, ΛRelay ≤ 2Ni − 1

Proof. The first part of the theorem can be proved following the same way as that of Theorem 4.
To prove the second part, we first order the set of transactions in the priority order such that
{T1 ≺ T2 ≺ . . . ≺ TNi}. Suppose a transaction Tv is aborted by another transaction. In this case,
Tv is restarted immediately and a find message is sent to its predecessor on the queue. Finally,
a node w keeps a variable next(w) = v. In other words, for each time that a node is aborted, a
successor link next between two nodes is established. Now, assume the next abortion occurs and a
successor link next(w′) = v′ is established. If Tw ≺ {Tw′or Tv′} ≺ Tv, we say that these two links
are joint ; otherwise we say that they are disjoint. We can prove that, if next(w) and next(w′) are
joint, at least one transaction in {Tw, . . . , Tv} has committed. Hence, there are only two outcomes
for an abortion: at least one transaction’s commit or a successor link disjoint to other successor
links established. Hence, we just need at most Ni − 1 abortions to let Ni transactions commit or
establish a chain of links among all transactions (since they are disjoint). For the latter case, no
more abortion will occur since the object is moved following that chain. The theorem follows.

From Equation 1 and Theorem 5, we have the following corollary:

Corollary 2 CRi(Relay) ≤ max{Ni, 2max-str(T) ·Diam}

Thus, the Relay protocol successfully improves the competitive ratio by reducing the number
of total transactions’ abortions.

5 Concluding Remarks

We conclude that the worst-case performance of a cache-coherence protocol is determined by its
worst-case number of abortions, maximum locating stretch, and maximum moving stretch. Com-
pared with the traditional distributed queuing problem, the design of a cache-coherence protocol
must take into account the contention between two transactions because transaction abortions

12

increase the length of the queue. Motivated by a distributed queuing protocol with excellent per-
formance, the arrow protocol, we show that its worst-case number of total abortions is O(N2

i) for
Ni transactions requesting the same object. Based on this protocol, we design the Relay protocol
which reduces the worst-case number of total abortions to O(Ni). Meanwhile, the Relay proto-
col inherits the advantage of the arrow protocol—i.e., the maximum locating stretch and moving
stretch are exactly the maximum stretch of the underlying spanning tree. As a result, the Relay
protocol yields a better competitive ratio.

We show that the worst-case performance of the Relay protocol is determined by the maximum
stretch of the underlying spanning tree. Hence, choosing a good spanning tree for the protocol
is an important problem. The problem of finding a spanning tree that minimizes max-str(T) is
referred to as the Minimum Max-Stretch spanning Tree (or MMST) problem and is known to be
NP-hard [3]. Emek and Peleg [6] presents an O(log n)-approximation algorithm for this problem
for unweighted graphs.

The Relay protocol is designed to support multiple objects. Since the protocol is totally dis-
tributed (all nodes are of the same importance in the protocol), it avoids significantly overloading
some nodes in the network. There are several directions for future work. Fault-tolerance is an
important issue. Similar to [17], a self-stabilizing algorithm can also be designed for the Relay
protocol. We assume a bounded communication cost between nodes and evaluate the worst-case
performance in this paper. Studying the average-case performance of cache-coherence protocols in
a network with stochastic behavior of message loss and delay will be an interesting future direction.

References

1. Hagit Attiya, Leah Epstein, Hadas Shachnai, Tami Tamir: Transactional contention management as a
non-clairvoyant scheduling problem. In PODC ’06, 308–315

2. R. L. Boccino, V. S. Adve, B. L. Chamberlain: Software Transactional Memory for Large Scale Clusters.
In PPoPP’08, 247–258

3. Cai, Leizhen, Corneil, Derek G.: Tree Spanners. SIAM J. Discret. Math., 8(3): 359–387 (1995)
4. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Hybrid transactional

memory. In ASPLOS’06, 336–346
5. Demmer, Michael J., Herlihy, Maurice: The Arrow Distributed Directory Protocol. In DISC ’98, 119–133
6. Emek, Yuval, Peleg, David: Approximating Minimum Max-Stretch spanning Trees on unweighted

graphs. In SODA ’04, 261–270
7. Rachid Guerraoui, Maurice Herlihy, Bastian Pochon: Toward a theory of transactional contention man-

agers. In PODC ’05, 258–264
8. Lance Hammond, Vicky Wong, Mike Chen, Ben Hertzberg, Brian D. Carlstrom, John D. Davis, Manohar

K. Prabhu, Honggo Wijaya, Christos Kozyrakis, Kunle Olukotun: Transactional Memory Coherence and
Consistency. In ISCA’04, 102–113

9. Herlihy, Maurice, Tirthapura, Srikanta, Wattenhofer, Roger: Competitive concurrent distributed queu-
ing. In PODC ’01, 127–133

10. Maurice Herlihy, Victor Luchangco, Mark Moir: Obstruction-free Synchronization: Double-ended
Queues as an Example. In ICDCS’03, 522–529

11. Herlihy, Maurice, Luchangco, Victor, Moir, Mark: A flexible framework for implementing software
transactional memory. In OOPSLA ’06, 253–262

12. Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer, III: Software transactional memory
for dynamic-sized data structures. In PODC ’03, 92–101

13. Maurice Herlihy, Ye Sun: Distributed Transactional Memory for Metric-space Networks. Distributed
Computing, 20(3): 195–208 (2007)

14. K. Manassiev, M. Mihailescu, C. Amza: Exploiting Distributed Version Concurrency in a Transactional
Memory Cluster. In PPoPP’06, 198–208

15. Raymond, Kerry: A tree-based algorithm for distributed mutual exclusion. ACM Trans. Comput. Syst.,
7(1): 61–77 (1989)

16. N. Shavit, D. Touitou: Software Transactional Memory. In PODC ’95, 204–213
17. Srikanta Tirthapura, Maurice Herlihy: Self-Stabilizing Distributed Queuing. IEEE Transactions on

Parallel and Distributed Systems, 17(7): 646–655 (2006)

