
DSV: Disassembly Soundness Validation without
Assuming a Ground Truth⋆

Xiaoxin An, Freek Verbeek, and Binoy Ravindran

Virginia Tech, Blacksburg, USA
{xxan15,freek,binoy}@vt.edu

Abstract. Disassembly is a crucial step in binary security, reverse en-
gineering, and binary verification. Various studies in these fields use dis-
assembly tools and hypothesize that the reconstructed disassembly is
correct. However, disassembly is a challenging and undecidable problem.
Even state-of-the-art industrial disassemblers suffer from issues ranging
from incorrectly recovered instructions to incorrectly assessing which ad-
dresses belong to instructions and which to data. We thus present DSV:
a systematic and automated approach to validate whether the output of
a disassembler is sound with respect to the binary. No source code, de-
bugging information, or annotations are required. We apply DSV to 102
binaries of Coreutils with eight different state-of-the-art disassemblers
from academia and industry. DSV is able to find soundness issues in the
output of all these disassemblers. Using DSV to validate the output of a
disassembler increases trust in any research effort built on top of it.

Keywords: reverse engineering, disassembly soundness, concolic execu-
tion, bounded model checking

1 Introduction

Disassembly is a crucial part of many reverse engineering and related sub-
disciplines such as decompilation, binary analysis, binary verification, and binary
rewriting. Practitioners have a plethora of tools available [1,2,3,4] to recover as-
sembly instructions from an executable binary. Still, disassembly is not a solved
problem: new techniques are developed based on, among others, machine learn-
ing [5], advanced heuristics, and inference [1,2,3]. These new techniques improve
accuracy and soundness.

In most of the reverse engineering work, practitioners implicitly take the
premise that the disassembly process is trustworthy. This premise is based on
well-developed commercial and open-source disassemblers. For example, Ram-
blr [6] uses static binary rewriting to implement binary reassembling. The de-
velopers take angr [2] as the base platform to disassemble the binary and to

⋆ This is the authors’ version of the work posted here per the publisher’s guidelines for your
personal use. Not for redistribution. The final authenticated version was published in the
Proceedings of the 14th International Symposium on NASA Formal Methods, NFM 2022,
Pasadena, CA, USA, May 24–27, 2022, LNCS, volume 13260, and is available online at:
https://doi.org/10.1007/978-3-031-06773-0 34

https://doi.org/10.1007/978-3-031-06773-0_34

2 Xiaoxin An et al.

rebuild the control flow graph (CFG), which means the correctness of Ram-
blr highly relies on the correctness of angr. As another example, Ghidra [3] is a
state-of-the-art tool for decompilation. Its capabilities include control-flow recon-
struction, type-inference, and pointer-analysis. However, all the functionalities
are based on the assumption that disassembly is done correctly.

Disassembly, however, is by its very nature inherently an untrustworthy pro-
cess. It is an undecidable problem [7,8]. In a context where only the binary is
available (e.g., legacy systems or third-party proprietary software), there is no
ground truth as to what the “correct” assembly instructions are. Even state-of-
the-art disassemblers suffer from issues when, e.g., instructions are overlapping,
data and instructions are mixed, indirect jump/call targets are unresolved, or
a security vulnerability leads to unexpected control flow. Although mainstream
disassemblers, such as objdump, Hopper, and IDA Pro, are developed by nu-
merous researchers and are elaborately tested, different kinds of issues of these
disassemblers have been discovered and reported [9,10].

In this paper, we propose a formal definition for the soundness of disassembly.
Based on this definition, we implement a tool called DSV (short for Disassembly
Soundness Validation) to validate whether a binary has been soundly disassem-
bled or not. DSV takes a binary file and the assembly file disassembled from the
binary file as inputs, generates “sound” or “unsound” as output, and reports
all the “unsound” disassembled instructions. A key characteristic is that DSV
does not assume a ground truth; in other words, DSV does not presume the
availability of source code or debug information.

Essentially, DSV performs a recursive traversal starting at the binary’s en-
try point while validating all reached instructions. DSV over-approximates the
semantics of the binary under investigation in two ways. First, the semantics of
various instructions are over-approximated by treating their effects on certain
state parts as unknown. Second, the jumps and paths that can be traversed
at runtime are statically over-approximated. DSV needs to deal with three key
problems: unbounded loops, pointer aliasing, and indirect-branch instructions.
In order to deal with loops, we employ bounded model checking (BMC) [11].
To handle the pointer aliasing problem and indirect branches, we use concolic
execution [12].

We apply DSV to all the binaries of Coreutils library for eight different dis-
assemblers. Soundness issues are found in each of them. Some examples include:

1. Incorrectly recovering instructions, e.g., Ghidra [3] disassembles 49 0f a3

c8 to bt rax,rcx while the correct result should be bt r8,rcx;
2. Incorrectly recovering immediate values in operands, e.g., Dyninst [13] trans-

lates 48 b8 ff ff ff ff ff to mov rax, 0x4611686018427387903, how-
ever, the valid instruction is movabs rax,0x3fffffffffffffff;

3. Missing instructions due to under-approximating indirect control flow trans-
fers.

The contribution of this paper consists of:

1. A formal definition for the soundness of disassembly.

DSV: Disassembly Soundness Validation without Assuming a Ground Truth 3

2. An automated methodology called DSV (for: Disassembly Soundness Valida-
tion) for validating whether the output of a black-box disassembler is sound
w.r.t. a binary.

3. The application of this methodology to 102 binaries of Coreutils, each for
eight different disassemblers: angr 8.19.7.25 [2], BAP 1.6.0 [4], Ghidra 9.0.4 [3],
objdump 2.30, radare2 3.7.1 [1], Dyninst 10.2.1 [13], IDA Pro 7.6, and Hopper
4.7.3.

Paper Organization We discuss past and related work in Section 2. In Section 3,
we introduce a soundness definition for the disassembly process and discuss
the definition’s validity. Section 4 illustrates DSV’s implementation details. We
discuss soundness issues in existing disassemblers detected by DSV in Section 5.
Section 6 reports experimental results obtained by applying DSV to the Coreutils
library. We conclude in Section 7.

2 Past and Related Work

We first discuss the main approaches to disassembly. Then, the approaches for
the validation of disassembly are discussed.

2.1 Disassembly Techniques

Linear sweep and recursive traversal are the major techniques behind the bi-
nary disassembly process. PSI [14] and objdump are typical linear-sweep disas-
semblers. These disassemblers handled the byte sequences in the binaries se-
quentially. Linear-sweep disassemblers have superior performance under certain
circumstances. For example, some linear sweep disassemblers fulfilled a 100%
correctness on SPEC CPU2006 benchmarks generated by gcc and clang [10].
However, linear sweep disassemblers have poor performance in handling special
situations such as overlapping instructions, inline data, and jump tables.

On the other hand, disassemblers such as IDA pro, Dyninst [13], Ghidra [3], and
Hopper were implemented using recursive traversal. These disassemblers decoded
the instructions following the execution path of the sequential and branching
instructions and tried to resolve the indirect jump addresses. Essentially, they
reconstructed the control flow on-the-fly in order to perform disassembly. Recur-
sive traversal handles overlapping instructions and inline data in a more reliable
way than linear sweep disassemblers.

2.2 Soundness Validation

Andriesse et al. [10] checked the false positive and false negative rates for nine
mainstream disassemblers using SPEC CPU2006 and Glibc-2.22 as the bench-
marks. The researchers gave a comprehensive comparison between different dis-
assemblers on five critical criteria, including instruction recovery, function start-
ing address relocation, function signature restoration, control flow graph (CFG),

4 Xiaoxin An et al.

and callgraph reconstruction. They used the ground truth information derived
from LLVM analysis, DWARF debugging information, and some manual ancil-
lary work. These ground truths provided critical information for the five criteria.

Paleari et al. [15] developed a methodology called n-version disassembly to
apply differential analysis to verify the correctness of different x86 disassemblers.
The writers employed various disassemblers to recover the instruction from the
same string of bytes and compared the results to find out the divergences. This
paper validates the correctness of single-instruction disassembly, whereas our
paper focuses on a complete disassembly process.

Pang et al. [16] manually evaluated the code base of various disassemblers
and discussed the algorithm and heuristics used by these disassemblers. They
also studied 3,788 binaries from different sources on nine main-stream disas-
semblers to evaluate the instruction recovery, cross-reference accuracy, function
starting point, and CFG construction. They reported incorrectly disassembled
cases existing in these disassemblers. The ground truths were automatically col-
lected in the compiling and linking procedures when generating binaries with a
method similar to the technique used by Andriesse et al. [10].

3 Definition of Disassembly Soundness

In this section, we provide a definition of the soundness of a disassembly process.
Moreover, we discuss a crucial assumption required to ensure that this definition
reflects the correctness of a disassembly process without ground truth.

3.1 Soundness Definition

To formulate a formal notion of disassembly soundness, we first introduce the
types and notations used in the definition. An element of type Nword is a bit
vector with size N. Given a bit vector w, notation |w| provides the size of the bit
vector. The type Instruction indicates the type of valid x86-64 instructions. In
our soundness definition, an instruction is represented by, among other things,
an opcode mnemonic, its operands with size directives, and possibly certain
prefixes.

The definition of soundness is based on three components: a function read bytes
that reads bytes from a binary file, a function bytes of that assembles a single
instruction into bytes, and an abstract transition relation →A.

The first function read bytes reads, given an address and a size, a byte se-
quence from the binary file. In all the following definitions, the type of the address
is expressed as 64word, and the type of byte is 8word. Then the type annotation
of read bytes is represented as:

read bytes : 64word 7→ N 7→ [8word]

Function bytes of maps a single instruction to the corresponding byte se-
quence representation, which is the essential work of any assembler. Although

DSV: Disassembly Soundness Validation without Assuming a Ground Truth 5

the bytes of function represents an assembly process, our soundness definition
does not consider any specific implementation of an assembler. Function bytes of
is type-annotated as:

bytes of : Instruction 7→ [8word]

Let →C denote a deterministic concrete transition relation over concrete
addresses, and →∗

C represents the transitive closure of this transition relation.
Modeling this concrete transition relation is impossible: the relation depends
on the current state of registers, memory, and flags, but also on the state of
peripherals, the OS, etc. Let a0 be a binary’s entry address. An instruction
address a is reachable at run-time, if and only if:

a0 →∗
C a

The soundness definition is based on an over-approximative abstraction of this
concrete transition relation, which is defined as →A. This is a non-deterministic
transition relation over addresses: →A is of type 64word 7→ {64word}. This
transition relation solely concerns the 64-bit value of the instruction pointer rip
of the concrete state and produces a set of next instruction addresses.

Definition 1. Transition relation →A is a proper abstraction of concrete tran-
sition relation →C , if and only if, for any reachable concrete states s and s′:

s →C s′ =⇒ rip(s) →A rip(s′)

We use →∗
A to indicate the transitive closure of →A.

Finally, the input of our soundness definition is the output of a disassembler.
This output essentially is a partial mapping from byte sequence to instructions.
It is denoted as disasm. We also define an auxiliary function disasm n. Function
disasm n returns, given the current address, the size of bytes that are to be
disassembled for the next single instruction. The two functions are of type:

disasm : [8word] 7→ Instruction

disasm n : 64word 7→ N

Definition 2. Let a0 be a binary’s entry address and let disasm be some disas-
semblers’ output. Output disasm is sound, if and only if:

∀a · a0 →∗
A a =⇒ bytes of(disasm(β)) = β

where β = read bytes(a, disasm n(a))

Definition 2 indicates that for all reachable addresses a inside a binary file, the
bytes β of the disassembled instruction disasm(β) located at address a are equal
to the actual bytes that are read from the binary. If there exist some reachable
instructions whose bytes are not equal to those in the binary, the disassembler
is unsound.

This definition is independent of the inner mechanism of a disassembler.
Whether a disassembler is implemented using recursive traversal, linear sweep,
or machine-learning is irrelevant since we only try to validate the consistency
between a binary file and the output of the disassembler.

6 Xiaoxin An et al.

3.2 Loose Comparison of Instruction Bytes

For each reachable instruction address, Definition 2 compares the bytes produced
by reassembling a disassembled instruction with the original bytes from the
binary. However, a strict byte-by-byte comparison may incorrectly classify a
disassembler as unsound. Consider Figure 1. The original assembly process is
modeled as a asm function, which maps an instruction to the corresponding
bytes. This function is part of the trust base, but it is not available.

asm : Instruction 7→ [8word]

The ground truth is the original instruction i0 , assembled by the original
assembler asm to b0 . Both i0 and asm are assumed to be unavailable. The black-
box disassembler disasm produces an instruction i1 from b0 . Definition 2 suggests
that it suffices to reassemble instruction i1 into bytes b1 and then strictly com-
pare b0 and b1 to validate the soundness.

instruction (i0) bytes (b0)

instruction (i1)

bytes (b1)

instruction (i2)

Ground truth

asm

disasm bytes of disasm

Fig. 1. Comparison per instruction. The dashed box indicates that the ground truth,
i.e., the original instruction and original assembler, are unavailable. The disassembler
under investigation (disasm) is black-box.

This, however, is not necessarily correct for two reasons. First, the function
disasmmay produce an instruction different from i0 but with the same semantics.
In such a case, reassembling may not reproduce the same bytes. Second, function
bytes of may be different from the original assembler asm (since that function is
unavailable). Thus, even if the disassembler under investigation disasm was able
to reproduce the exact instruction i0 , a strict comparison between b0 and b1
may still fail in the soundness validation.

Listing 1.1. An example that does not satisfy the soundness definition.

objdump(0f1f440000) = nop DWORD PTR [rax+rax*1+0x0]

gcc(nop DWORD PTR [rax+rax*1+0x0]) = 0f 1f 04 00

objdump(0f1f0400) = nop DWORD PTR [rax+rax*1]

For example, we employ gcc as the assembler and objdump as the disassembler
and get the example in Listing 1.1. In this example, b0 is 0f 1f 44 00 00, b1 is

DSV: Disassembly Soundness Validation without Assuming a Ground Truth 7

0f 1f 04 00. They are not equivalent. If we solely compare b0 and b1 , we will
make the wrong declaration that the disassembly process carried out by objdump
is not sound. However, the disassembled result is sound since nop DWORD PTR

[rax+rax*1+0x0] and nop DWORD PTR [rax+rax*1] are semantically equiva-
lent. The reason behind this situation is that gcc would automatically apply
optimization when it encounters certain types of instructions.

Thus, instead of a strict comparison, we will use a loose comparison of bytes.
The bytes b1 produced by reassembling are again disassembled. This produces
instruction i2. We will consider b0 and b1 loosely equal if these instructions are
equal after normalization. The normalization is executed by a normalize function,
which rewrites an instruction to a normalized format following rules such as re-
formatting assembly code from AT&T format to Intel, removing *1 and +0, and
normalizing the representation of memory accesses. The normalized instruction
is ensured to be semantically equivalent to the original instruction.

Definition 3. Let β0 and β1 be two byte-sequences. They are loosely equivalent,
notation β0 ≃ β1, if and only if:

β0 = β1 ∨ normalize(i0) = normalize(i1)
where i0 := disasm(β0),

i1 := disasm(β1)

We can now summarise a fundamental part of the TCB of our approach.
Since there is no ground truth, this must be assumed and cannot be proven.

Assumption 1. For any instruction i0:

asm(i0) ≃ bytes of(disasm(asm(i0)))

implies that instruction i0 has been correctly disassembled by function disasm.

4 Validation Algorithm

In Section 3, we define the soundness of the output of a disassembler w.r.t. the
original binary file. According to that definition, there are three components that
must be implemented: read bytes, bytes of, and the abstract step function →A.

The first two are straightforward. For read bytes, we employ the readelf util-
ity to get the binary segment information and implement a Python program to
read a byte sequence from a binary file directly. To implement function bytes of,
we need to translate a single instruction to its byte-sequence representation. The
choice of the assembler, whether gcc, clang, or some other, is independent of the
disassembler under investigation and of the type of the source binary file.

The third component, an abstract transition relation →A, is more involved.
A perfect and exact implementation of this component does not exist since it
is undecidable which addresses are reachable from the entry point [7]. It is also
undecidable to distinguish instructions from raw data [8]. Implementation of →A

requires, among other things, dealing with indirect jumps and calls, jump tables,
data inlined in code, and overlapping instructions. Specifically, predicting where
an indirect branch jumps to is a major challenge for all existing disassemblers.

8 Xiaoxin An et al.

4.1 Consequences of An Inexact Abstract Transition Relation

We thus, necessarily, implement an inexact abstract transition relation. We will
use⇝A to denote this inexact implementation of the hypothetical exact abstract
transition relation →A. We introduce the following terminology (here a0 denotes
the binaries’ entry point):

White An instruction address a is white if it is deemed reachable by the im-
plementation ⇝A, i.e.:

a0 ⇝
∗
A a

We can now rephrase the notions of false positive and false negative w.r.t.
this terminology. A false positive occurs when disassembler-output is deemed
sound by DSV, whereas it is incorrect. We define a false positive as the exis-
tence of an incorrectly disassembled reachable instruction that is not white. It
is thus reachable at runtime and deemed unreachable (and therefore missed) by
the implementation ⇝A. A false negative, then, is an incorrectly disassembled
unreachable instruction that is white. In other words, it is deemed reachable by
the implementation ⇝A, but unreachable at runtime.

A false positive can happen if the implementation ⇝A under-approximates
the concrete transition relation→C . In other words, it can happen if it is possible
that a reachable instruction is not white. We aim for an implementation that
does not suffer from false positives, and therefore require the implementation
to be proper (see Definition 1): any reachable instruction is visited. In the case
of proper over-approximation, a false negative can happen, i.e., an unreachable
instruction may be white.

Finally, we would like to note that there is no decidable way to determine
whether an instruction address is reachable or not. There is no ground truth and
no reliable way of establishing reachability without source code. In practice, how-
ever, it is possible to establish the unreachability of certain parts of the binary.
For example, in the current implementation, functions called inside an external
cxa atexit function are not considered to be reachable (e.g., deconstructors).

We thus use the following terminology:

Black An instruction address is black if it is not white and it can be established
(e.g., with conservative manual inspection) that it is unreachable.

Grey An instruction address is grey if it is not white and it is not black, i.e., if
it cannot be established whether it is reachable or not.

Given an over-approximative implementation ⇝A, all instruction addresses
reported by some disassembler are either white, black, or grey. The aim is to
construct an implementation ⇝A that minimizes the number of grey instruc-
tions. Only the case where DSV finds an issue in a grey instruction constitutes
a false negative.

4.2 DSV Overview

In essence, DSV employs a standard forward BMC exploration loop. At all times,
three parameters are maintained:

DSV: Disassembly Soundness Validation without Assuming a Ground Truth 9

s: the current state. A symbolic state is maintained that contains symbolic
expressions for registers, flags, and memory. The initial state solely consists
of an assignment of some concrete values to the stack pointer rsp and the
instruction pointer rip.

π: the current path constraint. A symbolic predicate is maintained that con-
tains the branching conditions of the current path. Its purpose is to prune
inconsistent paths (we check the consistency using the Z3 SMT Solver [17]).
Initially, this constraint is true.

Σ: the stored states. A key-value mapping with as keys instruction addresses
and as values symbolic states. This mapping allows DSV to keep track of
which addresses have been visited and to reduce the traversed state space.
Initially, this mapping is empty.

DSV first fetches the instruction i as disassembled by the disassembler under
investigation and validates that instruction (see Section 3.2). It then updates Σ
by adding the current state σ. It may be the case that the current instruction
address was already visited. In that case, a merge must happen between the
current state s and the stored state. If the current state s and the merged
state agree (intuitively: they contain the same information), then no further
exploration is necessary. If the instruction address was unvisited, the current
state is simply inserted into Σ. DSV then concolically executes instruction i
to the merged state sm, given the current path constraint π. This provides a
set of pairs of symbolic states and path constraints; one instruction may induce
multiple paths. Each of these pairs is explored.

4.3 State and Memory Model

The state consists of assignments of symbolic expressions to flags, registers, and
memory. Symbolic expressions consist of expressions with a standard set of oper-
ators (e.g., +, −, . . .) and as base operands either immediate values, registers, or
flags. Most notably, a symbolic dereference operator is supported that reads data
from memory. An operand may also be an unconstrained universally quantified
variable. We will use vf to denote a fresh variable. The symbolic expressions
used by DSV are close to that used in existing literature [18].

Since the bit length of all registers is fixed, we model general-purpose registers
as a 64-bit Z3 bit-vector and deal with register aliasing accordingly. We set the
initial values of all the registers, except for rip and rsp, to symbolic values and
modify the values of registers according to the semantics of instructions. The
value of each register can be either symbolic or concrete.

There are different techniques to model memory. To design a space-efficient
memory model that simulates the memory changes during the execution of a
binary, we model memory as a function mem of type 64word 7→ ([8word],N).
This function maps memory addresses to byte sequences and the size of the
region starting at the given address. Function mem is partial, which means that
not all addresses at the memory have explicit content. At all times, all regions
in the range of mem are separate.

10 Xiaoxin An et al.

Since we keep the stack pointer concrete, all local variables correspond to
memory regions with concrete addresses. The same holds for global variables.
Moreover, the Glibc functions malloc and calloc are modeled in such a way that
they return a concrete address that does not overlap with any existing region
in the memory. This concretizes the majority of addresses. Theoretically, this
approach may lead to unsoundness issues: for example, if a program successfully
allocates memory using malloc, then branches are taken based on whether that
(non-null) pointer is greater than some immediate value. To the best of our
knowledge, such behavior is undefined according to the C standard.

Assumption 2. We assume that the control flow of a binary does not depend on
the concrete values returned by memory allocation functions or on the concrete
value of the stack pointer.

However, not all memory addresses are concrete: symbolic addresses occur
when pointers are returned by external functions that are not linked statically.
In these cases, reading from a symbolic memory region returns a fresh symbol.
Writing to such a memory region will remove all heap-related regions from the
memory but will keep the local stack frame intact.

4.4 Merging and Agreeing

If the address of the current state s was already visited, the current state s and
the visited state sold are merged (see Algorithm 1). If the current value v at
a key k in s is symbolic, then v is possible to represent any value, and we do
not need to change it. However, if the current value v is concrete, we need to
compare v with vold at the same key k in sold to decide how to merge v and vold
to get the new result.

Algorithm 1 Merging algorithm.

1: function merge(sold, s)
2: snew ← copy(s)
3: for all (k, v) ∈ s do
4: vold ← sold[k]
5: if v is a concrete value then
6: if vold is a concrete value then
7: if v ̸= vold then
8: snew[k]← fresh variable
9: end if

10: else
11: snew[k]← fresh variable
12: end if
13: end if
14: end for
15: return snew

16: end function

DSV: Disassembly Soundness Validation without Assuming a Ground Truth 11

The current state s is not explored if state s and merged state sm contain the
same information, i.e., if the two state agree. Two states agree if they have the
same keys and for any key-value pair (k, e) in s and (k, em) in sm the expression e
and em agree.

Definition 4. Let fresh(e) denote the set of fresh variables in symbolic expres-
sion e. Two expressions e0 and e1 agree if and only if there exists a bijection β
between fresh(e0) and fresh(e1), such that e0 and e1 are syntactically equal if all
fresh variables vf in e0 are replaced with β(vf).

Example 1. Consider a loop in which register rax is incremented with 4 every
iteration. Let the visited state sold = {rax := vf0 , rdi := vf0 + 100}. After one
loop iteration, the current state s = {rax := vf0 + 4, rdi := vf0 + 100}. The
merged state will be sm = {rax := vf1 , rdi := vf0 + 100} and will be stored.
States sm and s do not agree and exploration will continue. However, after one
more iteration, we will obtain state s′ = {rax := vf1 + 4, rdi := vf0 + 100}.
States s′ and state sm will be merged, resulting in s′m = {rax := vf2 , rdi :=
vf0 + 100}. States sm and s′m do agree, and therefore the loop is not unrolled
further.

4.5 Instruction Semantics

There is no need to set up complete semantics for all instructions. In our imple-
mentation, instruction semantics is constructed to change the value of the rip

register to guide the symbolic execution. We only need to build up semantics for
instructions that – be it directly or indirectly – influence the rip register. We
will call this the set of relevant instructions.

The set of relevant instructions include push, pop, mov, lea, call, ret, simple
arithmetic instructions, logical instructions, bitwise instructions, jump instruc-
tions, etc. According to the statistics taken in some literature [19], these instruc-
tions would make up over 96% of instructions in multiple C/C++ applications
and web browsers. Advanced instructions such as floating-point instructions and
SIMD extensions typically do not impact register rip. It is not necessary to
construct specific semantics for these instructions.

For all the irrelevant instructions, we use unknown semantics by assigning
fresh variables any time an irrelevant instruction is executed. In most cases,
an instruction has an opcode and different operands, and the content of the
destination operand is modified by the instruction. For irrelevant instructions,
the semantics assigns some fresh variable vf to the destination operand, repre-
senting that the current status of the corresponding register, flag, or memory is
undefined or undetermined. The fresh variables are handled using the symbolic
execution rules in our DSV SE engine.

4.6 Concolic Execution

As discussed in Section 4.3, we make use of concolic execution that concretizes
memory addresses as much as possible while leaving the remainder as symbolic as

12 Xiaoxin An et al.

possible. As such, the branching conditions that are taken are generally symbolic.
In the case of a conditional jump based on a symbolic flag value, both paths are
taken (sequential execute and jump). This over-approximates reachability.

A key challenge is to resolve indirect-branch addresses. An indirect branch
is a control flow transfer (jump or call) where the target is computed instead
of an immediate. Indirect branches happen, e.g., in the case of compiled switch
statements, function callbacks, or virtual tables. Three cases may arise:

1. The current state is sufficiently concrete that the computation can be re-
solved. In this case, exploration continues.

2. The expression that computes the next value of rip is symbolic, but the
current state and the path constraint contain sufficient information to both
bind and over-approximate the set of next addresses. In this case, exploration
continues to all next addresses.

3. The current state does not contain sufficient information to bind the set of
next addresses; the expression that computes rip contains unbounded sym-
bolic values. An error message is produced, and we manually investigate how
to resolve the issue. Generally, we need to trace back and see which irrelevant
instructions need to be considered relevant. This situation is infrequent since
we have modeled the semantics of the most common instructions based on
their usage rate.

With the state model for registers, flags, and memory, we carry out the
concolic execution to construct a CFG for the machine code. Concolic execution
is over-approximative. The vast majority of branches are taken due to symbolic
conditions. Meanwhile, rsp is always concrete, and therefore local variables in the
stack frame can be read/written. Besides, addresses are concrete in the memory
allocation functions. The concrete addresses prevent memory aliasing issues.

In the construction of CFG, indirect jump, indirect call, and return instruc-
tions pose a challenge in how to resolve the indirect-branch addresses. The path
constraint provides a bound on the set of next addresses. Besides, we introduce a
trace-back model to fix the problem of unimplemented instruction semantics. We
also implement an algorithm [20] to solve the challenge of jump table without
determined upperbound. However, there still exist unresolved indirect-branch
addresses in the concolic execution since it is an undecidable problem.

5 Soundness Issues Exposed by DSV

This section summarises some of the soundness issues found by DSV. We mainly
focus on instructions that are erroneously recovered by different disassemblers.

In Section 6.1, we use DSV to evaluate the disassembly results generated by
eight disassemblers on the Coreutils library. Even though most of the reachable
instructions for these disassemblers are correctly recovered, there are few excep-
tions where the disassembled instruction is incorrect w.r.t. the byte sequence.
We report on some cases found by DSV that are inappropriately disassembled by
certain disassemblers. Table 1 summarises the found results, which are disagreed

DSV: Disassembly Soundness Validation without Assuming a Ground Truth 13

for different disassemblers. Some of the disagreements (row 1, 2 of the table) are
trivial and can be argued not to impact soundness. Row 3, 4, 5, and 6 of the
table consist of actual soundness issues.

Table 1. Examples of instruction recovery results for different disassemblers. All the
results are normalized to Intel format.

bytes objdump radare2 angr Hopper BAP IDA Pro Ghidra Dyninst
f3c3 repz ret ret rep ret rep retn ret rep ret

4881a4249000

0000fffbffff

and qword ptr [rsp+0x90],

0xfffffffffffffbff

and qword ptr [rsp+

0x90],0xfffffbff

4899 cqo cdq rax

4d0fa3f7 bt r15,r14 bt rdi

,r14

bt r15,r14

48be00000000

00f0ffff

movabs rsi,

0xfffff00000000000

mov rsi,0xffff

f00000000000

mov rsi,0x-17

592186044416

64488b042528

000000

mov rax,qword ptr fs:[0x28] mov rax,0x28

Row 1 and 2 of Table 1 mainly concern different representations of the same
semantical intent. There are cases where the operands of an instruction are
not represented since default behavior is assumed. For instance, both Ghidra
and Dyninst (correctly) assume that immediates are sign-extended to fit the
destination operand, if necessary. However, minor differences may be relevant.
For example, the instructions repz ret and ret have the same semantical intent
but their execution time may differ for certain architectures.

Row 3, 4, 5, and 6 concern semantically different recovered instructions. For
instance, Dyninst disassembles 4899 to cdq rax, which is not a valid instruction
in x86-64 ISA (note that cdq performs sign-extension to 64 bits, whereas cqo

performs sign-extension to 128 bits). An example is shown where Ghidra misrep-
resents a register (rdi instead of r15). Besides, a 64-bit immediate is wrongly
disassembled by Dyninst. Finally, Dyninst sometimes seems to omit representa-
tions of segment registers such as ds and fs.

Except for the examples listed in Table 1, there are some ambiguous cases
for different disassemblers. The outputs generated by Dyninst do not have any
ptr operator to indicate the operand size of a memory operand, which leads
to ambiguous semantical behavior. For example, 49837c242800 is translated to
cmp [r12 + 0x28],0x0 by Dyninst while the other disassemblers’ result is cmp
qword ptr [r12+0x28],0x0. Without the qword ptr specifying the size of the
operand as 64-bit, we cannot determine what the exact value reading from the
memory is. Thus the result of the cmp instruction is undetermined.

6 Experimental Results

In Section 6.1, we apply DSV on eight different disassemblers: objdump 2.30,
radare2 3.7.1, angr 8.19.7.25, BAP 1.6.0, Hopper 4.7.3, IDA Pro 7.6, Ghidra 9.0.4,

14 Xiaoxin An et al.

and Dyninst 10.2.1, using 102 test cases from Coreutils-8.31. Here, we evaluate
the performance of DSV.

All these experiments are carried out on a machine with Intel Core i7-7500U
CPU @ 2.70GHz × 4 and 16GB RAM. The OS is Ubuntu 20.04.2 LTS, and
the Coreutils-8.31 library is compiled using gcc 7.5.0 through the standard build
process.

6.1 Coreutils Library

We apply DSV on 102 test cases in the Coreutils library, which are disassem-
bled using eight disassemblers. For each test case, we report the number of
instructions: total, white, gray, and black. The definition of white, black, or grey
instructions are given in Section 4.1. Roughly speaking, white indicates instruc-
tions that are proven to be reachable by DSV, and black illustrates unreachable
instructions. The grey instructions are those that are reported by the disassem-
bler but are not visited by DSV; the reachability of these instructions is unknown.
Table 2 shows the results of basename, expand, mknod, realpath, and dir test
cases in the Coreutils library for different disassemblers. These 5 test cases are
selected based on the number of total instructions and the diversity of various
instruction types.

Instruction Recovery Most disassemblers are capable to correctly disassemble
all the reachable instructions. As shown in Figure 2, for most of test cases in
Coreutils library, objdump, angr, BAP, and IDA Pro achieve an accuracy rate of
100% for single-instruction recovery. Meanwhile, Ghidra and Dyninst make some
errors in the disassembly process for some test cases, and the accuracy would
decrease to around 97.5%.

Fig. 2. Ratio of correctly disassembled vs. the white disassembled instructions.

DSV: Disassembly Soundness Validation without Assuming a Ground Truth 15

Control Flow Recovery For all test cases, there exists a gap between the num-
ber of white instructions, which are reachable instructions detected by DSV, and
the number of total instructions; in other words, the number of black instructions
can be relatively high. This can be accounted for two reasons.

The first reason is that different disassemblers consider different parts of the
binary. For example, BAP generates the instructions from sections .symtab, .de-
bug line, .debug ranges, and so on, while some disassemblers may solely generate
instructions from .text, .plt, and .plt.got sections.

The second reason lies in the technique that DSV employs to handle external
functions. DSV treats external functions as black boxes and does not go inside
the external functions to execute them. Internal functions that are called by
external functions may be considered black. For example, the internal function
close stdout is called by the external function cxa atexit (it calls the close
function after program exit). Thus, the close stdout function is considered
black. Some exceptions include libc start main and pthread create. These
two external functions execute the function pointer passed through the rdi reg-
ister, and the internal functions pointed to are not executed by DSV. Broader
coverage, i.e., fewer black instructions, can be reached by providing semantics
to external functions that call internal ones.

The ratio of grey vs. white instruction is an indication of how accurate con-
trol flow has been recovered. If the ratio is low (zero), then the disassembler
highly accurately decides which instructions are reachable and which are not.
If it becomes higher, this may indicate either that the disassembler coarsely
over-approximated which instructions are reachable (many grey instructions),
or that the disassembler missed instructions. The ratio is on average about 4%.
As shown in Figure 3, BAP usually has the highest ratio since the instructions
whose addresses are stored in indirect jump tables are missed by BAP due to lack
of support for indirect branching. Meanwhile, objdump and angr have similar ra-
tio for most of test cases , as we use angr to statically generate a CFG (CFGFast)
and to disassemble a binary file, which have similar outputs as objdump.

The amount of white instructions per disassembler is an indication of how
many instructions have been reached. objdump, radare2, angr, and Ghidra have
similar numbers of white instructions. Meanwhile, BAP has smaller results in
all these test cases since it does not employ any heuristics to solve the indirect
branch problem caused by the jump table. The results for Dyninst are unstable
because there are some instruction-recovery errors in the disassembly results.

Soundness Results Most disassemblers are sound for most of the test cases.
We find that Ghidra sometimes incorrectly recovers instructions. There are three
other major exceptions.

First, BAP does not resolve indirect branches. Since BAP essentially reports
an empty set of next addresses for indirect jump tables – whereas DSV wants
to continue exploration – DSV reports a soundness issue. We marked these as
missing instructions: the issue is not that BAP incorrectly recovers instructions,
but that it misses instructions by “under-approximating” control flow.

16 Xiaoxin An et al.

Fig. 3. Ratio of grey instructions to white for different disassemblers.

Additionally, radare2 sometimes translates instructions to data. For example,
in dir test case, radare2 disassembles the bytes ff2552c72100 at address 3888
to data .qword 0x90660021c75225ff, which should be translated to a call

instruction to malloc. This kind of mistranslation leads to missing instructions.

In some situations, Hopper is not capable to correctly determining the in-
struction boundaries. For example, in dir test case, at address 0xf2a8, the
disassembler should generate an instruction sub r12d,0x1. However, Hopper
classifies it as data and continues the disassembly process from address 0xf2a9.

Another exception is Dyninst. There are various examples showing that Dyninst
involves errors in instruction recovery. These errors may cascade since incorrectly
recovering instructions may also lead to incorrectly assessing which instruction
addresses are to be disassembled. For instance, Dyninst cannot recover control
flow for the seq test case from the Coreutils library since incorrectly recovered
instructions lead to unrealistic paths.

7 Conclusion

Disassembly is a challenging and undecidable problem that lies at the base of
various research in reverse engineering, formal verification, binary hardening,
and security analysis. Even state-of-the-art disassemblers that have been elabo-
rately designed and tested have soundness issues, such as whether a disassembly
accurately reflects the semantical behavior of the binary under investigation. We
propose a definition for soundness of the output of a disassembler w.r.t. the orig-
inal binary. Moreover, we propose DSV, a tool for validating whether a binary
has been correctly disassembled. DSV finds incorrectly disassembled instruc-
tions and assesses whether the disassembler under investigation could determine
at which addresses instructions need to be recovered correctly.

DSV: Disassembly Soundness Validation without Assuming a Ground Truth 17

DSV does not assume the existence of ground truth in the form of source
code, an LLVM representation, or debugging information. We, therefore, neces-
sarily make assumptions and aim to provide an explicit insight into the trusted
codebase. The trusted codebase of DSV contains two key assumptions. First,
we assume that the proposed way of loosely comparing byte sequences allows
DSV to decide whether a single byte sequence correctly corresponds to a single
instruction. Second, DSV employs concolic execution leaving certain parts, such
as the stack pointer, concrete. It is assumed that leaving these parts concrete
does not influence the reachability of instruction addresses.

DSV has been applied to validate the output of eight state-of-the-art disas-
sembler tools on 102 binaries of Coreutils library. Soundness issues were exposed,
ranging from incorrect instruction recovery to incorrectly recovered control flow
of the binary (leading to missing instructions).

Future Work: DSV essentially is a binary exploration tool. We argue that
DSV demonstrates that the combination of bounded model checking and concolic
execution is very applicable in the context of stripped binaries as it mitigates the
complexity of some fundamental issues. Even though its current version solely
focuses on the validation of disassembly, we aim to use the core algorithm and
concepts of DSV for other binary exploration efforts. For example, We aim to
use DSV for validating the correctness of generated control flow and call graphs,
and generally for exposing “weird” edges [21] and security vulnerabilities in
binaries. Currently, DSV is restricted to binaries with the x86-64 format. Since
our formal definition is general, we intend to extend our implementation and
validation efforts to other ISAs, such as ARM.

Source Code Availability

The complete source code, benchmarks, and experimental results are open-
sourced and available at the project website: https://ssrg-vt.github.io/DSV. The
source code artifact is archived with a DOI link at:
https://doi.org/10.5281/zenodo.6380975.

Acknowledgments

We thank the anonymous reviewers for their insightful comments, which greatly
improved the paper. This work is supported by the Defense Advanced Research
Projects Agency (DARPA) under Agreement No. HR00112090028 and contract
N6600121C4028, and the US Office of Naval Research under grants N00014-17-
1-2297 and N00014-18-1-2665.

References

1. Radare2: Unix-like reverse engineering framework. https://github.com/

radareorg/radare2 (2021)

https://ssrg-vt.github.io/DSV
https://doi.org/10.5281/zenodo.6380975
https://github.com/radareorg/radare2
https://github.com/radareorg/radare2

18 Xiaoxin An et al.

2. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Kruegel, C., et al.: Sok:(state of) the art of war:
Offensive techniques in binary analysis. In: 2016 IEEE Symposium on Security and
Privacy (SP). pp. 138–157. IEEE (2016)

3. Rohleder, R.: Hands-on ghidra-a tutorial about the software reverse engineering
framework. In: Proceedings of the 3rd ACM Workshop on Software Protection. pp.
77–78 (2019)

4. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: Bap: A binary analysis plat-
form. In: International Conference on Computer Aided Verification. pp. 463–469.
Springer (2011)

5. Park, J., Xu, X., Jin, Y., Forte, D., Tehranipoor, M.: Power-based side-channel
instruction-level disassembler. In: 2018 55th ACM/ESDA/IEEE Design Automa-
tion Conference (DAC). pp. 1–6. IEEE (2018)

6. Wang, R., Shoshitaishvili, Y., Bianchi, A., Machiry, A., Grosen, J., Grosen, P.,
Kruegel, C., Vigna, G.: Ramblr: Making reassembly great again. In: NDSS (2017)

7. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society 74(2), 358–366 (1953)

8. Wartell, R., Zhou, Y., Hamlen, K.W., Kantarcioglu, M.: Shingled graph disas-
sembly: Finding the undecideable path. In: Pacific-Asia Conference on Knowledge
Discovery and Data Mining. pp. 273–285. Springer (2014)

9. Meng, X., Miller, B.P.: Binary code is not easy. In: Proceedings of the 25th Inter-
national Symposium on Software Testing and Analysis. pp. 24–35 (2016)

10. Andriesse, D., Chen, X., Van Der Veen, V., Slowinska, A., Bos, H.: An in-depth
analysis of disassembly on full-scale x86/x64 binaries. In: 25th USENIX Security
Symposium (USENIX Security 16). pp. 583–600 (2016)

11. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking (2003)

12. Sen, K., Marinov, D., Agha, G.: Cute: A concolic unit testing engine for c. ACM
SIGSOFT Software Engineering Notes 30(5), 263–272 (2005)

13. Bernat, A.R., Miller, B.P.: Anywhere, any-time binary instrumentation. In: Pro-
ceedings of the 10th ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools. pp. 9–16 (2011)

14. Zhang, M., Qiao, R., Hasabnis, N., Sekar, R.: A platform for secure static binary in-
strumentation. In: Proceedings of the 10th ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments. pp. 129–140 (2014)

15. Paleari, R., Martignoni, L., Fresi Roglia, G., Bruschi, D.: N-version disassembly:
differential testing of x86 disassemblers. In: Proceedings of the 19th international
symposium on Software testing and analysis. pp. 265–274 (2010)

16. Pang, C., Yu, R., Chen, Y., Koskinen, E., Portokalidis, G., Mao, B., Xu, J.: Sok:
All you ever wanted to know about x86/x64 binary disassembly but were afraid to
ask. arXiv preprint arXiv:2007.14266 (2020)

17. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008)

18. Cadar, C., Dunbar, D., Engler, D.R., et al.: Klee: unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In: OSDI. vol. 8, pp.
209–224 (2008)

19. Akshintala, A., Jain, B., Tsai, C.C., Ferdman, M., Porter, D.E.: X86-64 instruction
usage among c/c++ applications. In: Proceedings of the 12th ACM International
Conference on Systems and Storage. pp. 68–79 (2019)

DSV: Disassembly Soundness Validation without Assuming a Ground Truth 19

20. Cifuentes, C., Van Emmerik, M.: Recovery of jump table case statements from
binary code. Science of Computer Programming 40(2-3), 171–188 (2001)

21. Shapiro, R., Bratus, S., Smith, S.W.: “weird machines” in ELF: A spotlight on the
underappreciated metadata. In: 7th USENIX Workshop on Offensive Technologies
(WOOT 13) (2013)

20 Xiaoxin An et al.

Table 2. Execution results for Coreutils library on different disassemblers. Only 5 of
102 binaries are shown.

Number
of total

Number
of white

Number
of grey

Number
of black

Ratio of
grey vs.
white

Number
of

indirects

Missing
instr

Sound

objdump basename 3310 2217 18 1075 0.01 59
expand 3928 2742 112 1074 0.04 79
mknod 4101 2775 216 1110 0.08 65

realpath 5828 2644 89 3095 0.03 72
dir 19029 12751 417 5861 0.03 230

radare2 basename 3409 2217 18 1174 0.01 59
expand 4027 2742 111 1174 0.04 79
mknod 4200 2775 214 1211 0.08 65

realpath 5927 2644 86 3197 0.03 72
dir 19124 12900 320 5904 0.02 231 × ×

angr basename 3415 2217 18 1180 0.01 59
expand 4033 2742 111 1180 0.04 79
mknod 4206 2775 214 1217 0.08 65

realpath 5933 2644 86 3203 0.03 72
dir 19134 12751 413 5970 0.03 230

BAP basename 5894 826 114 4954 0.14 37 ×
expand 7373 1320 205 5848 0.16 56 ×
mknod 7022 1282 162 5578 0.13 43 ×

realpath 11368 1251 108 10009 0.09 46 ×
dir 28906 5718 667 22521 0.12 150 × ×

Hopper basename 3250 2217 18 1015 0.01 59
expand 3845 2742 111 992 0.04 79
mknod 4022 2775 68 1179 0.02 65

realpath 5636 2644 86 2906 0.03 72
dir 18292 12607 350 5335 0.03 230 × ×

IDA Pro basename 3221 2217 18 986 0.01 59
expand 3820 2742 111 967 0.04 79
mknod 3995 2775 68 1152 0.02 65

realpath 5607 2644 87 2876 0.03 72
dir 18220 12751 268 5201 0.02 230

Ghidra basename 3256 2217 18 1021 0.01 59
expand 3826 2742 99 985 0.04 79
mknod 4029 2775 68 1186 0.02 65

realpath 5658 2644 86 2928 0.03 72
dir 18303 12751 267 5285 0.02 230 ×

Dyninst basename 3269 2222 16 1031 0.01 60 ×
expand 3874 2707 123 1044 0.05 79 ×
mknod 4058 2747 214 1097 0.08 64 ×

realpath 5724 2609 85 3030 0.03 71 ×
dir 18694 12845 329 5520 0.03 230 ×

	DSV: Disassembly Soundness Validation without Assuming a Ground TruthThis is the authors' version of the work posted here per the publisher's guidelines for your personal use. Not for redistribution. The final authenticated version was published in the Proceedings of the 14th International Symposium on NASA Formal Methods, NFM 2022, Pasadena, CA, USA, May 24–27, 2022, LNCS, volume 13260, and is available online at: https://doi.org/10.1007/978-3-031-06773-0_34

