
Verification of Functional Correctness of
Code Diversification Techniques*

Jae-Won Jang1, Freek Verbeek1,2, and Binoy Ravindran1

1 Virginia Tech, Blacksburg VA, USA
2 Open University of The Netherlands

{jjang3,freek,binoy}@vt.edu

Abstract. Code diversification techniques are popular code-reuse at-
tacks defense. The majority of code diversification research focuses on
analyzing non-functional properties, such as whether the technique im-
proves security. This paper provides a methodology to verify functional
equivalence between the original and a diversified binary. We present
a formal notion of binary equivalence resilient to diversification. More-
over, an algorithm is presented that checks whether two binaries – one
original and one diversified – satisfy that notion of equivalence. The
purpose of our work is to allow untrusted diversification techniques in
a safety-critical context. We apply the methodology to three state-of-
the-art diversification techniques used on the GNU Coreutils package.
Overall, results show that our method can prove functional equivalence
for 85,315 functions in the analyzed binaries.
Keywords: Code Diversification, Functional Equivalence, Verification

1 Introduction

Generally, a binary is a result of compiling source code into machine code. Binary
compilation is a deterministic process where if the source code is unchanged, the
resulting binary will remain the same. Due to this deterministic nature, if a
binary contains a critical error that adversaries can attack, this issue propagates
to all instances of binaries. Code diversification is a software technique used
to defend such attacks (e.g., code-reuse [11] or return-oriented programming
(ROP) [6, 41]). The technique consists – broadly described – of modifying the
compilation process so that the same source code produces different binaries that
offer the same functionality. Code diversification ensures that when an attacker
has compromised a binary, the knowledge gained cannot easily be reused on the
other binaries (of the same type)

There have been a plethora of proposed code diversification techniques pre-
sented in the literature [21, 28]. Many of these techniques are based on either
recompilation from source-code or rewriting at the machine-code level. Examples
include nop insertion [20,24], stack layout randomization [15], and relocation of

* This is the authors version of the work posted here per publisher’s guide-
lines for your personal use. Not for redistribution. The final authenticated version
was published in the Proceedings of the 13th International Symposium on NASA
Formal Methods, NFM 2021, Virtual, May 24-28, 2021 and is available online at:
https://doi.org/10.1007/978-3-030-76384-8_11

2 J. Jang et al.

Table 1: Covered Code Diversification Techniques
Diversification Technique Reference
Instruction Reordering [15,19,23,25,36]
Basic Block Reordering [9, 15,27]
Stack Layout Randomization [2, 15,17,31]
nop Insertion [9, 20–22,24,28,46]
Function Reordering [3, 17,23,27]
Static Binary Rewriting [10,18,19,27,47]

basic blocks, functions, and instructions [27]. Without exception, these diversi-
fication techniques are evaluated on non-functional properties, such as whether
the entropy is increased, performance overhead, etc. None of the existing tech-
niques are evaluated on whether the diversification preserves functional equiva-
lence, which reduces trust in deploying such techniques in production settings.
Upon diversification, no proof or theorem shows that the diversified binary is
functionally equivalent to the vanilla (i.e., original) binary. A key challenge is
that strictly speaking, they are not functionally equivalent. Various registers
and memory locations may contain different values in both worlds. However, the
binaries should be similar for relevant state parts, such as the registers storing
in- and output.

In this paper, we propose a definition of functional equivalence between
vanilla and diversified binary. The definition is based on stuttering bisimula-
tion [1], thereby showing that the binaries share a large class of temporal prop-
erties. Moreover, we propose a methodology that takes an input of a disassem-
bled vanilla and diversified binary and establishes whether that definition holds
or provides a counterexample. We fold our methodology in a tool and evaluate
with several different code diversification techniques listed in Table 1. The pur-
pose of our work is to allow untrusted diversification techniques to be used in
safety-critical context. As a benchmark, we diversify GNU Coreutils with these
diversification techniques and show functional equivalence for many functions.
The main limitation is that we are not able to deal with indirect branching.
Moreover, we assume the a binaries can be successfully disassembled.

The state-of-the-art provides various techniques to compare two binaries
[7, 12, 33, 35, 39, 42, 50]. A broad class of the comparison techniques is statis-
tical or learning-based [13,48,50]. They give a probability instead of a guarantee
that the two binaries are related. Luo et al. [35] provide a binary similarity
comparison technique that is resilient to code diversification. Another class of
comparison techniques focuses on strong equivalence (e.g., requiring that the
same registers are used for the same variables) [7, 39]. They thus cannot deal
with code diversification since this produces two binaries that are not strongly
equivalent. In Section 6, we provide a further discussion of the state-of-the-art.
A verified diversifier is out of reach of the current state-of-the-art: a diversifier
typically is based on gcc or clang with specific compiler options. Thus verify-
ing the diversifier implies verifying one of those compilers. Moreover, such an
approach would limit the applicability of the methodology to that specific diver-
sifier. For these reasons, we consider the output of some black-box and untrusted

Verification of Functional Correctness of Code Diversification Techniques* 3

(a) Source code (b) Disassembled Code (c) Disassembled div. code

(d) Vanilla code CFG (e) Div. code CFG (f) Framework output

Fig. 1: Example

diversifiers and verify whether the diversified binary is functionally similar to its
vanilla version.

The main contributions of our work are:
1. A formal definition of functional equivalence resilient to code diversification
2. A scalable methodology for establishing that equivalence between a vanilla

and a diversified binary
3. The application of this methodology to different diversification techniques

on GNU Coreutils binaries
To the best of our knowledge, this paper is the first to present a formal definition
of functional equivalence for diversified binaries and to verify that equivalence.

This paper is organized in the following structure. Section 2 presents an
overview of our method. In Section 3, we formally define the equivalence relation,
followed by the algorithm for equivalence checking in Section 4. The evaluation
and limitations of our work are presented in Section 5. Section 6 presents related
work and compares them with our work. Lastly, we conclude in Section 7.

2 System Overview

This section provides an overview of the input, intermediate steps and the output
of our method, using Figure. 1 as a running example. Note that the C code in

4 J. Jang et al.

Figure. 1a is shown for the sake of presentation only: it is not required as input to
our method; we use this example to demonstrate how a diversification technique
affects the original binary.
2.1 Disassembly

The methodology takes as input a vanilla and a diversified (div.) binary. The
first step for our methodology is disassembly (see Figures 1b and 1c). An ex-
ample of diversification is shown in Figure. 1c, where text sections (e.g., main,
foo, bar) are reordered due to function reordering. A key feature of disassem-
bly that we require is symbolization. Symbolization replaces concrete addresses
with symbolic values, i.e., labels. Binaries are usually compiled (or translated
into machine-readable code) from high-level source code. After compilation, it
goes through the assembler to generate an object file (architecture-dependent),
which is linked with different libraries to create a binary executable. During this
process, a large portion of useful high-level information disappears. Specifically,
relocation information disappears, which a linker uses to maintain the coherence
between multiple libraries that the binary calls. Symbolization aims at recovering
relocation-related information.

An example of symbolization is shown in Lines 11 and 14 of Figures 1b and 1c.
The text section names of main, foo and bar are preserved by compilation from
the source code. The labels (.label_8 and .label_9), however, are not present
in the original binary. They are the result of symbolizing concrete addresses.

We use Ramblr for disassembly and symbolization [45]. Ramblr is a subset
of an open-source disassembler framework angr. angr reliably disassembles the
binary, and this was demonstrated on a set of binaries from the DARPA cy-
ber grand challenge (a computer security competition dealing with malicious
binaries) [43].
2.2 Control-Flow Graph Construction

The second step is the CFG construction. We extract CFGs from the binary
using an off-the-shelf algorithm similar to angr’s CFGFast [43]. A CFG consists
of nodes and edges. A node consists of a basic block, (i.e., a list of instructions).
Edges are labeled with flags. We construct one CFG per text section (for both
vanilla and diversified binaries). The reason for this is because our methodology
proves functional equivalence per text section rather than iterating through the
complete CFG of an entire binary.

The vanilla and diversified binaries are supposed to be functionally equiva-
lent, but as Figures 1d and 1e show, the diversified CFG is different. The process
of nop insertion [20] actually inserted a lea instruction just before the call foo
statement (between Lines 7–8 in Figure. 1c). This causes the difference in CFGs,
and it complicates the functional equivalence verification process, as we cannot
only check whether the two CFGs are equal. Instead, we must check whether
they are stuttering bisimilar.

2.3 Local Variable Normalization

Variables are storage locations that the program can manipulate. Local variables
are referenced by an offset from special-purpose registers (the frame pointer rbp

Verification of Functional Correctness of Code Diversification Techniques* 5

or the stack pointer rsp). Register rbp points to the top of the current stack
frame, and rsp points to the bottom.

After constructing CFGs, we normalize local variables to prepare for our com-
parison algorithm. Normalizing in this context means that local variable offsets
become relative to the initial value of the stack (rsp0) pointer. For example, in
Figure. 1b, the memory address rbp−0x4 is accessed at Line 5. Since the frame
pointer is a copy of the stack pointer (Line 3), which has been decremented with
8, this memory address becomes rsp0−0x12 after normalization. Normalization
allows us to compare memory locations that are shuffled.

2.4 CFG Comparison

Bisimulation is a relation between two transition systems, where one can simulate
the others’ (transitions) and vice versa. In particular, we use divergence-sensitive
stuttering bisimulation [1,4] for our work. To check whether two CFGs are stut-
tering bisimilar, we treat them as transition systems and check whether they
are stuttering bisimulation-equivalent. In other words, we check if there exists a
stuttering bisimulation between both transition systems.

The intuition behind a stuttering bisimulation is that it deals with internal
steps, steps that perform no visible behavior. Stuttering bisimulation allows two
transition systems to be equivalent regardless of how many internal steps it takes
to get to the next state, and mainly deals with basic blocks consisting solely
of instructions that perform no state change, such as a basic block [main_18,
main_19] in Figure. 1e. Divergence-sensitivity prevents a situation where one of
the transition systems permanently executes internal steps, whereas the other
does not.

A divergence-sensitive stuttering bisimulation is a strong notion of equiva-
lence, as it preserves a large set of properties. This set of properties includes
safety, liveness, and reachability properties. Formally, the set of properties pre-
served is computation tree logic (CTL) except the next operator, i.e., CTL∗\X [1].
In words, this means that any CTL∗ property is preserved as long as it does not
concern specifically the current branching decision.
2.5 Output

If our methodology finds no counterexample, it provides an output stating that
the binaries are functionally equivalent (see Figure. 1f). In addition, our work
offers evidence for that claim, which is a mapping between vanilla and diversified
parts of the binaries. If we find any potential issues (e.g., limitations or problems),
our work can provide the output stating the basic block causing the discrepancy.
A third possible output is “Unsupported” (see Section 5.2).

When a program becomes diversified by a technique such as reordering of in-
struction or basic blocks, relocation information of such a program gets affected.
For example, .label_8 and .label_11 from Figures 1b and 1c are semantically
equivalent (Line 11 for both), but different in label names. The CFG comparison
algorithm thus keeps track of a map relating labels in the vanilla world to la-
bels in the diversified world. Similarly, stack shuffling may cause local variables
to be put into different memory regions. A mapping is maintained that relates

6 J. Jang et al.

diversified memory regions to vanilla ones. For example, the 4-byte vanilla mem-
ory region [rsp0 − 16, 4] (accessed at Line 6 in Figure. 1b) is mapped to the
diversified memory region [rsp0 − 12, 4] (accessed at Line 6 in Figure. 1c).

3 Soundness of Code Diversification

This section defines an equivalence relation over binaries. We will call a code
diversification effort sound if the vanilla binary and the produced diversified
binary are equivalent under that relation.

The key idea is to establish a divergence-sensitive stuttering bisimulation
over the transition systems modeling the two binaries [1]. Formally, a transition
system TS is defined by a tuple 〈S, , I〉. Here S is a set of states, of type
S × S 7→ B is a transition relation, and I is a set of initial states.

Note that this definition omits either a labeling function or actions on edges.
Typically, definitions of stuttering bisimulation are based on one of these two.
However, due to stack-frame shuffling, neither of these is convenient. For exam-
ple, let both the vanilla and diversified binaries have two labeling functions L0

and L1. Both translate concrete states to atomic propositions. Stuttering bisim-
ulation then considers two states s and s′ to be equal only if L0(s) = L1(s

′).
Consider again function main in Figures 1b and 1c. The labeling functions should
translate states to atomic propositions in such a way that the value stored at
the vanilla memory region [rsp0 − 16, 4] and the value stored at the diversified
memory region [rsp0 − 12, 4] map to the same atomic proposition. The labeling
function is thus hard to define, as it is dependent on the relation established
between the two binaries. Instead, we will formalize a state comparison function
.
= of type S0 × S1 7→ B, and define stuttering bisimilarity relative to the given
state comparison function.

Definition 1. Let TS0 and TS1 be two transition systems, and let .
= of type S0 ×

S1 7→ B be a state comparison function. Binary relation B of type S0 × S1 7→ B is
a divergence-sensitive stuttering bisimulation wrt. .

=, if and only if, for any states
s0 ∈ S0 and s1 ∈ S1, such that B(s0, s1):

1. s0
.
= s1

2. if s0 0 s
′
0 and ¬B(s′0, s1), then there exists a finite path fragment [s1, t0 . . . tn, s′1]

such that B(s0, ti) for all i and B(s′0, s′1)
3. if s1 1 s

′
1 and ¬B(s0, s′1), then there exists a finite path fragment [s0, t0 . . . tn, s′0]

such that B(ti, s1) for all i and B(s′0, s′1)
4. there exists an infinite path fragment [s0, t0, t1 . . .] such that B(ti, s1) for all i, if

and only if, there exists an infinite path fragment [s1, u0, u1 . . .] such that B(s0, uj)
for all j.

Two transition systems are divergence-sensitive stuttering bisimilar wrt. .=,
notation TS 0 ≈ TS 1, if and only if there exists a divergence-sensitive stuttering
bisimulation B that relates all initial states, i.e., for all s0 ∈ I0, there exists some
s1 ∈ I1 such that R(s0, s1), and the other way around.

Soundness of diversification is expressed as a property over CFGs. We assume
the existence of a function cfg that takes as input a binary and produces a CFG.

Verification of Functional Correctness of Code Diversification Techniques* 7

Formally, a CFG consists of a tuple 〈B,_, e〉, where B denotes a set of basic
blocks, _ of type B × B 7→ B denotes a transition relation, and e of type B
denotes the entry point. The start address of a basic block b can be accessed via
b.addr, the list of instructions via b.instrs.

We consider the transition system corresponding to a given CFG. The transi-
tion system consists of concrete states that map registers, 64-bit byte-addressable
memory, and flags to values. We use SC to denote the set of concrete states, R to
denote the set of registers, and A to denote the address space. Given a concrete
state s, we use s.rip to denote the value stored in register rip, and similar
for other registers and flags. Notation s.mem(a) returns given a 64-bit address
a the byte-value stored in the memory at that address. Function run of type
B×SC 7→ {SC} takes as input a basic block and the current concrete state, and
runs the list of instructions in the basic block. It returns the set of possible next
concrete states. Since a basic block does not have loops, this function terminates.

Definition 2. Let g = 〈B,_, e〉 be a CFG. The transition system of g, notation g,
is defined by 〈SC , , I〉. Here set of initial concrete states I is defined as follows:

I
def
= {s | s.rip = e.addr}

and transition relation is constructed as follows:

s′ ∈ run(b, s) ∧ b _ b′ ∧ s.rip = b.addr ∧ s′.rip = b′.addr

s s′

In words, the transition system g starts at states whose instruction pointer rip
is equal to that of the first instruction of the basic block that is the CFGs’ entry
point. It then moves from state to state by executing entire basic blocks. The
transition system is thus at the same granularity as the CFG.

Definition 1 depends on a state comparison function. The stronger this com-
parison function, the stronger the equivalence. As illustrated, if s0

.
= s1 is true

for any state, then any two transition systems are bisimilar. We thus define a
comparison function for concrete states that is as strong as possible. Ideally, we
want to compare all state parts, i.e., all registers, memory, and flags. In prac-
tice, we consider only the set of relevant registers. For instance, the instruction
pointer (rip) is irrelevant: in the two worlds, it will differ since the executed
instructions have different addresses due to, e.g., nop insertion. The frame-and
stack-pointers are irrelevant since stack frame shuffling can enlarge the stack
frame. Which registers are relevant may depend on the current state. This is
modeled with a function R that returns relevant registers (e.g., all registers ex-
cept the irrelevant ones) given the current state. In practice, we ignore flags:
their impact on execution is covered by proving that the same branching deci-
sions are made. Finally, we need to map diversified memory addresses to their
vanilla counterparts. This is modeled with a mappingM.

Definition 3. Let R of type SC 7→ {R} be a function that returns a set of relevant
registers given a concrete state. Let M of type A 7→ A be a mapping from diversi-
fied memory addresses to vanilla memory addresses. The concrete state comparison

8 J. Jang et al.

1 | main:
2 | push rbp
3 | mov rbp, rsp
4 | sub rsp, 0x30
5 | lea rdi, [rdi]
6 | xor eax, eax
7 | mov dword ptr [rbp - 0x14], eax
8 | mov dword ptr [rbp - 0x4], edi
9 | cmp dword ptr [rbp - 0x4], esi
10 | jne .label_22

(a) Diversified main Basic Block

rsp := rsp − 0x38

rbp := rsp − 0x8

rax := 0

[rsp − 0x8, 8] := rbp

[rsp − 0x1c, 4] := 0

[rsp − 0xc, 4] := 〈31, 0〉(rdi)

ZF := 〈31, 0〉(rdi) = 〈31, 0〉(rsi)

CF := 〈31, 0〉(rdi) < 〈31, 0〉(rsi)

SF := 〈31, 0〉(rdi) <s 〈31, 0〉(rsi)

(b) Symbolic Execution Output

Fig. 2: Symbolic Execution Example

function of M , notation c
=〈R,M〉, is defined as follows:

s0
c
=〈R,M〉 s1

def
=

{
∀r ∈ R(s0) · s0.r = s1.r

∧ ∀a ∈ A · s0.mem(a) = s1.mem(M(a))

In words, two concrete states are considered equal if all relevant registers are
equal and all memory in both worlds is the same after mapping diversified ad-
dresses to vanilla addresses. For example, in Figure. 1, the values stored at vanilla
address rsp0 − 16 and diversified address rsp0 − 12 will be compared.

Definition 4. Let B be a binary and let D be a diversification function that takes as
input a binary and produces a diversified binary. Diversification D is sound for binary
B, if and only if, there exists a function R and mapping M such that the transition
systems of the CFGs are divergence-sensitive stuttering bisimilar wrt. the concrete state
comparison function of R andM.

sound(D,B)
def
= ∃R,M · cfg(B) ≈ cfg(D(B)) wrt. c

=〈R,M〉

4 Algorithm
In order to check soundness (see Definition 4), a witness must be found for
function R and mapping M. This section presents an algorithm to find these
witnesses. It consists of four steps:

1. Produce the function R and mappingM by running symbolic execution on
each basic block in the two CFGs; for each symbolic block, keep track of the
relevant registers.

2. Express all local variables in terms of the initial value of the stack pointer
rsp0.

3. Check for stuttering bisimulation on the symbolized CFGs, while keeping
track of memory mappingM.

Step 1 (Symbolic Execution) The purpose of symbolic execution is to ex-
press the semantics of each basic block in a way that is independent of the actual
instructions. Figure. 2 depicts an example of symbolic execution where we show
a basic block and its symbolic output. The symbolic output consists of assign-
ments of symbolic expressions to state parts (registers, memory flags). Symbolic

Verification of Functional Correctness of Code Diversification Techniques* 9

expressions consist of, among others, immediate values, reading from state parts,
and common bit-vector operations. These operations include taking bit subsets,
concatenation, logical operators, casting operators, floating-point operators, and
signed and unsigned arithmetic. For example, after the execution of the basic
block in Figure. 2, register rax (eax is the lower 32 bits of rax) has become 0,
and the sign flag is set by a signed integer comparison of the lower 32 bits of
the rdi and rsi registers. All values are relative to the initial state of the basic
block. For example, the instruction at Line 8 uses the frame pointer rbp, but
since that value at that line is equal to the initial stack pointer minus 8, the
instruction results in a write to the symbolic memory region [rsp− 0xc, 4].

In Figure. 2b, it can be seen that symbolic execution produces a result largely
agnostic of diversification. For the sake of presentation, the basic block has been
manually modified with two features found in typical diversification tools. At
Line 5 in Figure. 2a, a lea instruction has been inserted that performs no state
change: it is effectively a nop. Instead of directly writing 0 to memory with one
instruction, we use two instructions (Lines 6 and 7). First, xor is used to write
zero to register eax (which denotes the lower 32 bits of register rax), and then
mov is used to do the memory write. Symbolization does not reflect these modi-
fications since they do not influence the semantics of the basic block. The basic
block without the manual modifications would have produced the same symbolic
output. Finally, the example shows that to compare a vanilla and a diversified
basic block, only the register modified in the vanilla world is to be considered
relevant. Register rax would not have been part of the symbolic output for the
non-modified basic block. However, all state parts that are modified in the vanilla
world are similarly modified in the diversified world.

Formally, a symbolic state σ consists of registers, memory and flags (we
use s and σ for resp. concrete and symbolic states). For each modified register r,
notation σ.r returns a symbolic expression. The set of modified registers is re-
turned by σ.regs. The memory is modeled by assigning symbolic expressions
to symbolic memory regions. Consider again example in Figure. 2b. The nota-
tion σ.[rsp− 0x8, 8] returns the symbolic expression rbp. The set of modified
memory regions is denoted by σ.mems.

The algorithm will compare symbolic states instead of concrete ones. This
requires us to formulate a symbolic state comparison function, which is the sym-
bolic counterpart to its concrete version (see Definition 3).
Definition 5. Let N be a mapping from diversified symbolic memory regions to
vanilla symbolic memory regions. The symbolic state comparison function of N , nota-
tion s

=N , is defined as follows:

σ0
s
=N σ1

def
=

{
∀r ∈ σ0.regs · σ0.r = σ1.r

∧ ∀r ∈ σ0.mems · σ0.r = σ1.N (r)

Mapping N is defined over symbolic memory regions and symbolic expres-
sions. Given a concrete state, the memory regions, all symbolic values can be
concretized. Function γ takes as input a symbolic mapping N , and produces
a concrete mapping M = γ(N). For example, if diversified memory region

10 J. Jang et al.

[rsp− 8, 8] is mapped by N to vanilla region [rsp− 16, 8], then M will re-
late 8 individual concrete addresses based on the values of the concrete stack
pointers.

Definition 6. Symbolic execution is sound, if and only if, for any basic blocks b0
and b1, assumption

se(b0)
s
=N se(b1)

implies:

∀s0, s1 ∈ SC · s0.rip = b0.addr ∧ s1.rip = b1.addr =⇒ run(b0, s0)
c
=〈R,M〉 run(b1, s1)

where
R(s0) = se(b0).regs

M = γ(N)

In words, comparing two symbolic states should suffice to show successful com-
parison of all the concrete states they represent. The set of relevant registers R
is the set of all modified registers in the vanilla world. The concrete memory
mapM is obtained by concretizing the symbolic memory region map.
Step 2 (substitute for rsp0) Local variables are addressed relative to either
the stack pointer rsp or the frame pointer rbp. The values in these registers are
not static, i.e., they change during the execution of the function. This change
complicates formulating a static address mappingM. Consider, Lines 5 and 9 of
Figure. 1b, which deal with addresses [rbp− 0x4] and [rbp− 0x20]. In between
these lines, the value of register rbp may have changed in such a way that
these addresses are actually equal. To formulate a static mapping M, we thus
make all local variables relative to the initial value of the stack pointer rsp0.
This is achieved by propagating two substitutions through the symbolized CFG.
Initially, these two substitutions are rsp := rsp0 and rbp := rbp0. Thus, for the
entry block, any occurrence of the stack pointer is simply replaced by rsp0. The
substitutions are updated if the current basic block updates either the stack- or
frame pointer. In the example, after the first basic block, the current substitution
is rsp := rsp0 − 0x38 and rbp := rsp0 − 0x8.

In this fashion, substitutions are propagated through the CFG. In case of an
encountering a visited node (i.e., a loop or paths in the CFG converging), it is
verified that the current substitution is equal to the substitution already applied
to the visited node. If this holds any time a visited node is encountered, then
the current substitutions constitute an invariant.
Step 3 (checking for stuttering bisimulation) Algorithm 1 presents a pro-
cedure Check that compares two CFGs. It takes as input the current basic
blocks – initially starting with the entry points – and traverses the CFGs simul-
taneously. It provides as output a Boolean indicating the existence of a stuttering
bisimulation (Line 19). Before we explain the algorithm in more detail, we in-
troduce some definitions.

Definition 7. Let b0 and b1, be two basic blocks (vanilla and diversified respectively).
Branching for basic blocks is equivalent, if and only if:

eq_branching(b0, b1)
def
= ∀f · (∃b′0 · b0

f
_ b′0)⇔ (∃b′1 · b1

f
_ b′1)

Verification of Functional Correctness of Code Diversification Techniques* 11

Algorithm 1 Check Between Vanilla and Diversified CFGs
1: function Check(b0, b1)
2: if b0 and b1 are unvisited then
3: mark b0 and b1 as visited
4: σ0 = se(b0)
5: σ1 = se(b1)
6: Update (N , σ0, σ1)

7: if σ0
s
=N σ1 ∧ eq_branching(b0, b1) then

8: for each (b′0, b
′
1) ∈ get_children(b0, b1) do

9: Check (b′0, b
′
1)

10: end for
11: else if is_skip(b1) then
12: mark b1 as visited
13: Check (b0, b′1) with b1 _ b′1
14: else
15: mark current b1 text section as counterexample
16: return False
17: end if
18: else
19: return True
20: end if
21: end function

In words, equal branching returns true if both blocks have the same number of
children with the same flags.

Definition 8. Let b0 and b1, be two basic blocks (vanilla and diversified respectively).
The set of children of b0 and b1 is defined as follows:

get_children(b0, b1)
def
= {(b′0, b′1) · ∃f · b0

f
_ b′0 ∧ b1

f
_ b′1}

In words, get_children returns the set of children that is to be explored from
current basic blocks b0 and b1.

Definition 9. Basic block b is a skip if and only if:

is_skip(b)
def
= σ.regs ⊆ {rip} ∧ σ.mems = ∅

In words, a basic block is a skip if it does not modify memory and the only
register that is modified (if any) is the instruction pointer rip.

Algorithm 1 essentially is a simultaneous depth-first exploration. If both basic
blocks are flagged as visited, a stuttering bisimulation for the current basic blocks
b0 and b1 has been established. If not, both basic blocks are flagged as visited, and
the comparison continues. Each block is first symbolically executed, producing
symbolic states σ0 and σ1. The currently established stuttering bisimulation
relation is updated (Line 6). This update stores that from now on, R(s0) returns
the set of registers modified by basic block b0, i.e., R(s0) = σ0.regs for all
states s0 such that s0.rip = σ0.rip. Moreover, memory mapping N is updated.

If the two basic blocks are semantically equivalent and they have equal
branching (Line 7) the check proceeds by exploring all children. If not, then
the current diversified basic block may be a skip. In that case, the check pro-
ceeds by comparing the current vanilla basic block b0 to the child of the skip b′1.
If diversified basic block b1 was not a skip, then a discrepancy has been found
and the algorithm returns false (Line 16).

12 J. Jang et al.

Theorem 1. Let g0 = 〈B0,_0, e0〉 and g1 = 〈B1,_1, e1〉 be the control flow
graphs of the vanilla and diversified binaries respectively. Let R andM = γ(N)
be the mappings produced by the algorithm. The algorithm decides a divergence-
blind stuttering bisimulation:

Check(e0, e1)←→ g0 ≈ g1 wrt. c
=〈R,M〉

Proof. Soundness of the algorithm is based on the work of Fernandez et al. [14].
In that paper, it is shown that a bisimulation can be decided by a depth-first
search that explores two transition systems simultaneously. Proposition 3.2 of
that paper states that two deterministic transition systems are bisimilar, if and
only if, a simultaneous depth-first search is not able to find a path to a pair of
states with a different number of children. That is exactly what is verified by
our algorithm. A key difference is that the work of Fernandez et al. is formulated
for an algorithm checking strong bisimulation. Line 11 of Algorithm 1 adds an
additional case for dealing with stuttering steps: the diversified world can do an
arbitrary number of skips before a bisimilar node is encountered. Divergence-
sensitivity is guaranteed by checking whether the number of children is always
equivalent for all encountered bisimilar nodes (Line 7).

5 Evaluation
The methodology is applied to all 93 binaries of GNU coreutils 8.31. The
source code is compiled on Linux Ubuntu 16.04 x86-64 using the clang with
a variety of optimization levels (-O0 to -O3) (depending on the diversification
tool). All experiments are run on a machine with an AMD FX-8350 CPU and 8
GB RAM. GNU Coreutils is a suitable benchmark as it contains realistic and
sufficiently complex binaries, ranging from small (10,692 assembly LOCs) to
large (133,065 assembly LOCs).

We cover three off-the-shelf diversification tools which, combined, cover all
techniques listed in Table 1: 1) nop insertion [20], 2) Compiler-assisted Code
Randomization (CCR) [27], and 3) stack shuffling [15]. nop insertion inserts nop
in front of targeted instruction [20]. CCR [27] leverages a compiler-rewriter pro-
cess to transform inserted metadata into security primitive. The stack shuffling
technique [15] diversifies the stack layout per binary.

5.1 Results

Table 2 presents the results. Consider the data for the CCR tool on binaries
compiled with -O1. Out of 93 binaries, 87 binaries were analyzed. The remainder
is split into one binary that could not be diversified by CCR (column Not Div.)
and five binaries that could not be disassembled by Ramblr (column Not Dis.).
Of the 11769 text sections of the 87 analyzed binaries, 10808 text sections were
analyzed and proven to be soundly diversified. Zero text sections were shown to
be unsoundly diversified, and 961 text sections contained behavior unsupported
by our tool (see Section 5.2).

The table shows we did not find a diversification issue in any of the binaries.
However, for each of the listed techniques in Table 1, we manually introduced

Verification of Functional Correctness of Code Diversification Techniques* 13

Table 2: The evaluation of our methodology on GNU Coreutils v8.31
Diversification Analyzed Not Div. Not Dis. Sound Counterexample Unsupported
Tools Binaries Text Sections
nop ins. [20] -O0 93 0 0 12966 0 546

-O1 91 0 2 7427 0 831
-O2 88 0 5 7519 0 930
-O3 88 0 5 7694 0 1079

CCR [27] -O0 93 0 0 12805 0 697
-O1 87 1 5 10808 0 961
-O2 83 2 8 6681 0 868
-O3 79 8 6 6619 0 836

S. shuf. [15] -O0 93 0 0 12796 0 706
Binaries = result with respect to the number of binaries

Text Sections = result with respect to the number of text sections from analyzed binaries

Fig. 3: The coverage rate per diversification techniques over all GNU Coreutils

bugs indicative of that technique. For example, we manually inserted one nop too
many in the diversified version of the wc program and reran our tool. For each
inserted bug, our methodology reports a counterexample. This report provides
information on which text section that the bug is in. Moreover, it also gives the
line number of parsed disassembled code for both vanilla and diversified binaries
for in-depth debugging purposes.

Figure. 3 shows, per binary, the percentage of text sections proven to be
soundly diversified. The binaries are sorted from the least number of assem-
bly LOCs (false, 10,692 LOCs) to the largest number of LOCs (date, 133,065
LOCs). The zero-outliers are the 31 cases where a binary could either not be di-
versified or be disassembled for the given diversification technique and the given
optimization level. For the remaining binaries the average coverage is 91.26%

14 J. Jang et al.

with a minimum of 87.7% for nop insertion with optimization O3 and a maxi-
mum of 95.95% for nop insertion without optimizations.

5.2 Limitations

Our work’s main limitation is that we cannot deal with indirect branching (e.g.,
indirect jumps). Indirect branching occurs when jump- or call-addresses are
computed dynamically, and solving indirect branching requires assembly-level
invariants on the values involved in that computation. Second, we cannot reason
about shuffled local arrays, e.g., due to an alloca statement,. The key prob-
lem here is that the array-size is not known at the assembly-level. Third, as
the optimization level increases, a compiler performs expensive analyses and ap-
plies more aggressive transformations (e.g., perform a scalar replacement or loop
transformations) to improve the binary. Therefore, as Figure. 3 shows, as the op-
timization level increases, proving functional equivalence becomes harder, due
to optimized instructions (e.g., packed instructions such as puncpkhbw). Lastly,
if a disassembler is unable to disassemble the binary, then our tool cannot do
any verification. Currently, our methodology only supports diversification tech-
niques. Proving the functional equivalence between code obfuscated binaries to
the vanilla binaries is more difficult due to the convoluted modifications that
obfuscation techniques do to camouflage the code.

6 Past and Related Work

Our work is closely related to the topic of software similarity detection, which
has been widely studied in the context of code plagiarism, clone detection, bug
finding, and identifying zero-day vulnerability.

Static and dynamic analysis. There are static and dynamic approaches to
analyze software similarity. Static approach analyzes the code without executing
it [40], while dynamic approach run functions of the target binaries with the same
input and dynamically measure similarity [13]. Among many static approaches,
our work is closely related to the graph-based method. [5, 26, 32, 34, 48]. Graph-
based methods parse code into CFGs whose subtrees are searched using different
graph matching techniques to obtain matching pairs. Lim and Nagarakatte [32]
checked for equivalence using a graph-based methodology and symbolic execu-
tion. However, this work focused specifically on cryptographic algorithms and
does not deal with diversified binaries.

Equivalence checking using symbolic execution. Various research projects use
symbolic execution to prove equivalence, such as BinHunt [16], KLEE [39], and
many others [33, 38, 44]. KLEE checks, among others, code equivalence. How-
ever, this work is source-code based. The most similar work to ours is BinHunt,
where the authors propose a technique based on backtracking to find semantical
differences in binaries that have different register allocation and basic block re-
ordering. However, they do not deal with instruction reordering and stack-frame
shuffling. Moreover, they do not provide a formal definition of their soundness
criterion and therefore do not show what class of properties is preserved between
the vanilla and the diversified binaries. The other papers are similar in that their

Verification of Functional Correctness of Code Diversification Techniques* 15

focus lies on different subjects such as finding bugs or equivalence checking be-
tween cross-architecture. Lastly, CoP [35] is a code-obfuscation resilient work
that searches for the semantical difference of the original and the suspicious bi-
nary. However, CoP approximates the similarity between the binaries and reports
a score indicating the likelihood that the original binary’s components will be
reused. This is different from our work as we check and prove the functional
equivalence between the binaries.

Learning-based analysis. In recent years, there has been significant research
on applying learning-based techniques such as machine learning [30,37,42], deep
neural networks [33, 48], and natural language processing [50] for similarity de-
tection. Although learning-based methods are efficient and show promising re-
sults, they require extraneous training of an available dataset. Moreover, pre-
processing necessary information for different diversification techniques is diffi-
cult due to the uncertainty of target modification. Hence, learning-based binary
similarity detection is not yet resilient concerning code diversification techniques.

Low-level Formal Verification. Formal verification of low-level code (e.g., as-
sembly Language) has been an active research field for decades [8, 49]. Com-
pCert [29] is a formally verified compiler which provides the guarantee that
safety properties proved on the source code hold for executable. However, to the
best of our knowledge, CompCert cannot be used for binary diversification.

Address Space Layout Randomization. Address Space Layout Randomization
(ASLR) is a widely deployed code diversification technique. ASLR randomly
arranges the addresses of various parts of a process without major modifications
to the actual binary; instead, the operating system ensures diversification at
execution time. In other words, it executes the same binary in different ways.
Our methodology thus does not apply to ASLR, as our methodology is targeted
towards establishing equivalence between two different binaries.

7 Conclusion
Code diversification is a security technique that produces multiple binaries that
are different but semantically equal. This paper presents the first scalable and
automated technique to establish the soundness of a diversification tool. Sound-
ness is expressed by establishing an equivalence relation between vanilla and
diversified binary. The technique is based on disassembly, symbolic execution,
establishing stack-pointer related invariants, and establishing mappings between
memory regions in both the vanilla and the diversified world. Overall, our work
provides proof of semantical equivalence between roughly 87% and 96% of the
text sections in the binaries. Our work’s main limitation is indirect branching
(e.g., indirect jumps) due to dynamically computed addresses. We aim to resolve
these limitations for future work.

Acknowledgement
Project information can be found at: https://llrm-project.org/. All source codes
and scripts are available at: https://github.com/jjang3/NFM_2021 This work
is supported in part by the US Office of Naval Research (ONR) under grant
N00014-17-1-2297 and NSWCDD/NEEC under grant N00174-20-1-0009.

16 J. Jang et al.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press (2008)

2. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: An efficient approach
to combat a board range of memory error exploits. In: Proceedings of the 12th
Conference on USENIX Security Symposium - Volume 12. p. 8. SSYM’03, USENIX
Association, USA (2003)

3. Bhatkar, S., Sekar, R., DuVarney, D.C.: Efficient techniques for comprehensive
protection from memory error exploits. In: Proceedings of the 14th Conference on
USENIX Security Symposium - Volume 14. p. 17. SSYM’05, USENIX Association,
USA (2005)

4. Browne, M., Clarke, E., Grümberg, O.: Characterizing finite kripke structures in
propositional temporal logic. Theoretical Computer Science 59(1), 115–131 (1988),
https://doi.org/10.1016/0304-3975(88)90098-9

5. Chae, D.K., Ha, J., Kim, S.W., Kang, B., Im, E.G.: Software plagiarism detection:
A graph-based approach. In: Proceedings of the 22Nd ACM International Confer-
ence on Information & Knowledge Management. pp. 1577–1580. CIKM ’13, ACM,
New York, NY, USA (2013), http://doi.acm.org/10.1145/2505515.2507848

6. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H.,
Winandy, M.: Return-oriented programming without returns. In: Proceed-
ings of the 17th ACM Conference on Computer and Communications
Security. pp. 559–572. CCS ’10, ACM, New York, NY, USA (2010),
https://doi.acm.org/10.1145/1866307.1866370

7. Churchill, B., Padon, O., Sharma, R., Aiken, A.: Semantic program alignment for
equivalence checking. In: Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. pp. 1027–1040. PLDI 2019,
ACM, New York, NY, USA (2019), https://doi.acm.org/10.1145/3314221.3314596

8. Clutterbuck, D.L., Carré, B.A.: The verification of low-level code. Softw. Eng. J.
3(3), 97–111 (May 1988), https://dx.doi.org/10.1049/sej.1988.0012

9. Cohen, F.B.: Operating system protection through program evolution. vol. 12,
p. 565–584. Elsevier Advanced Technology Publications, GBR (Oct 1993),
https://doi.org/10.1016/0167-4048(93)90054-9

10. Crane, S., Homescu, A., Larsen, P.: Code randomization: Haven’t we solved this
problem yet? In: 2016 IEEE Cybersecurity Development (SecDev). pp. 124–129
(2016)

11. Crane, S., Liebchen, C., Homescu, A., Davi, L., Larsen, P., Sadeghi, A.R., Brun-
thaler, S., Franz, M.: Readactor: Practical code randomization resilient to memory
disclosure. In: Proceedings of the 2015 IEEE Symposium on Security and Pri-
vacy. pp. 763–780. SP ’15, IEEE Computer Society, Washington, DC, USA (2015),
https://doi.org/10.1109/SP.2015.52

12. David, Y., Partush, N., Yahav, E.: Statistical similarity of binaries. In: Proceed-
ings of the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation. pp. 266–280. PLDI ’16, ACM, New York, NY, USA (2016),
https://doi.acm.org/10.1145/2908080.2908126

13. Egele, M., Woo, M., Chapman, P., Brumley, D.: Blanket execution: Dynamic sim-
ilarity testing for program binaries and components. In: 23rd USENIX Security
Symposium (USENIX Security 14). pp. 303–317. USENIX Association, San Diego,
CA (Aug 2014), https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/egele

Verification of Functional Correctness of Code Diversification Techniques* 17

14. Fernandez, J.C., Mounier, L.: Verifying bisimulations “on the fly”. In: FORTE.
vol. 90, pp. 95–110 (1990)

15. Forrest, S., Somayaji, A., Ackley, D.: Building diverse computer systems. In: Pro-
ceedings of the 6th Workshop on Hot Topics in Operating Systems (HotOS-VI).
pp. 67–. HOTOS ’97, IEEE Computer Society, Washington, DC, USA (1997),
http://dl.acm.org/citation.cfm?id=822075.822408

16. Gao, D., Reiter, M.K., Song, D.: Binhunt: Automatically finding semantic differ-
ences in binary programs pp. 238–255 (2008)

17. Giuffrida, C., Kuijsten, A., Tanenbaum, A.S.: Enhanced operating system security
through efficient and fine-grained address space randomization. In: Proceedings of
the 21st USENIX Conference on Security Symposium. p. 40. Security’12, USENIX
Association, USA (2012)

18. Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., Davidson, J.W.: Ilr: Where’d my
gadgets go? In: 2012 IEEE Symposium on Security and Privacy. pp. 571–585 (2012)

19. Hiser, J., Nguyen-Tuong, A., Hawkins, W., McGill, M., Co, M., Davidson,
J.: Zipr++: Exceptional binary rewriting. In: Proceedings of the 2017 Work-
shop on Forming an Ecosystem Around Software Transformation. p. 9–15.
FEAST ’17, Association for Computing Machinery, New York, NY, USA (2017),
https://doi.org/10.1145/3141235.3141240

20. Homescu, A., Neisius, S., Larsen, P., Brunthaler, S., Franz, M.: Profile-guided
automated software diversity. In: Proceedings of the 2013 IEEE/ACM In-
ternational Symposium on Code Generation and Optimization (CGO). pp.
1–11. CGO ’13, IEEE Computer Society, Washington, DC, USA (2013),
https://doi.org/10.1109/CGO.2013.6494997

21. Hosseinzadeh, S., Rauti, S., Laurén, S., Mäkelä, J.M., Holvitie, J., Hyrynsalmi, S.,
Leppänen, V.: Diversification and obfuscation techniques for software security: A
systematic literature review. Information and Software Technology 104, 72 – 93
(2018)

22. Jackson, T., Homescu, A., Crane, S., Larsen, P., Brunthaler, S., Franz, M.: Diver-
sifying the software stack using randomized nop insertion. In: Jajodia, S., Ghosh,
A.K., Subrahmanian, V.S., Swarup, V., Wang, C., Wang, X.S. (eds.) Moving Tar-
get Defense, Advances in Information Security, vol. 100, pp. 151–173. Springer
(2013)

23. Jackson, T., Salamat, B., Homescu, A., Manivannan, K., Wagner, G., Gal, A.,
Brunthaler, S., Wimmer, C., Franz, M.: Compiler-Generated Software Diversity,
pp. 77–98. Springer New York, New York, NY (2011)

24. Junod, P., Rinaldini, J., Wehrli, J., Michielin, J.: Obfuscator-LLVM – software
protection for the masses. In: Wyseur, B. (ed.) Proceedings of the IEEE/ACM
1st International Workshop on Software Protection, SPRO’15, Firenze, Italy, May
19th, 2015. pp. 3–9. IEEE (2015). https://doi.org/10.1109/SPRO.2015.10

25. Kil, C., Jun, J., Bookholt, C., Xu, J., Ning, P.: Address space layout permuta-
tion (aslp): Towards fine-grained randomization of commodity software. In: 2006
22nd Annual Computer Security Applications Conference (ACSAC’06). pp. 339–
348 (2006)

26. Komondoor, R., Horwitz, S.: Using slicing to identify duplication in
source code. In: Proceedings of the 8th International Symposium on Static
Analysis. pp. 40–56. SAS ’01, Springer-Verlag, London, UK, UK (2001),
http://dl.acm.org/citation.cfm?id=647170.718283

27. Koo, H., Chen, Y., Lu, L., Kemerlis, V.P., Polychronakis, M.: Compiler-assisted
code randomization. In: 2018 IEEE Symposium on Security and Privacy (SP). pp.
461–477 (May 2018). https://doi.org/10.1109/SP.2018.00029

18 J. Jang et al.

28. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: Sok: Automated software di-
versity. In: 2014 IEEE Symposium on Security and Privacy. pp. 276–291 (May
2014). https://doi.org/10.1109/SP.2014.25

29. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (Jul 2009), http://doi.acm.org/10.1145/1538788.1538814

30. Li, L., Feng, H., Zhuang, W., Meng, N., Ryder, B.: Cclearner: A deep
learning-based clone detection approach. In: 2017 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME). pp. 249–260 (Sep 2017).
https://doi.org/10.1109/ICSME.2017.46

31. Liang, Y., Ma, X., Wu, D., Tang, X., Gao, D., Peng, G., Jia, C., Zhang, H.: Stack
layout randomization with minimal rewriting of android binaries. In: Kwon, S.,
Yun, A. (eds.) Information Security and Cryptology - ICISC 2015. pp. 229–245.
Springer International Publishing, Cham (2016)

32. Lim, J.P., Nagarakatte, S.: Automatic equivalence checking for as-
sembly implementations of cryptography libraries pp. 37–49 (2019),
http://dl.acm.org/citation.cfm?id=3314872.3314880

33. Liu, B., Huo, W., Zhang, C., Li, W., Li, F., Piao, A., Zou, W.: αdiff:
Cross-version binary code similarity detection with dnn. In: Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software En-
gineering. pp. 667–678. ASE 2018, ACM, New York, NY, USA (2018),
http://doi.acm.org/10.1145/3238147.3238199

34. Liu, C., Chen, C., Han, J., Yu, P.S.: Gplag: Detection of software pla-
giarism by program dependence graph analysis. In: Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. pp. 872–881. KDD ’06, ACM, New York, NY, USA (2006),
http://doi.acm.org/10.1145/1150402.1150522

35. Luo, L., Ming, J., Wu, D., Liu, P., Zhu, S.: Semantics-based obfuscation-resilient
binary code similarity comparison with applications to software plagiarism detec-
tion. In: Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. pp. 389–400. FSE 2014, ACM, New York,
NY, USA (2014), https://doi.acm.org/10.1145/2635868.2635900

36. Pappas, V., Polychronakis, M., Keromytis, A.D.: Practical software diversification
using in-place code randomization. In: Moving Target Defense (2013)

37. Peng, H., Mou, L., Li, G., Liu, Y., Zhang, L., Jin, Z.: Building program vector
representations for deep learning. In: Zhang, S., Wirsing, M., Zhang, Z. (eds.)
Knowledge Science, Engineering and Management. pp. 547–553. Springer Interna-
tional Publishing, Cham (2015)

38. Pewny, J., Garmany, B., Gawlik, R., Rossow, C., Holz, T.: Cross-architecture bug
search in binary executables. In: 2015 IEEE Symposium on Security and Privacy.
pp. 709–724 (May 2015). https://doi.org/10.1109/SP.2015.49

39. Ramos, D.A., Engler, D.R.: Practical, low-effort equivalence verification of real
code. In: Proceedings of the 23rd International Conference on Computer Aided
Verification. pp. 669–685. CAV’11, Springer-Verlag, Berlin, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=2032305.2032360

40. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Sci. Comput. Program.
74(7), 470–495 (May 2009), http://dx.doi.org/10.1016/j.scico.2009.02.007

41. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc with-
out function calls (on the x86). In: Proceedings of the 14th ACM Conference on
Computer and Communications Security. pp. 552–561. CCS ’07, ACM, New York,
NY, USA (2007), http://doi.acm.org/10.1145/1315245.1315313

Verification of Functional Correctness of Code Diversification Techniques* 19

42. Shalev, N., Partush, N.: Binary similarity detection using machine learning.
In: Proceedings of the 13th Workshop on Programming Languages and Anal-
ysis for Security. pp. 42–47. PLAS ’18, ACM, New York, NY, USA (2018),
http://doi.acm.org/10.1145/3264820.3264821

43. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Krügel, C., Vigna, G.: Sok: (state of) the art of
war: Offensive techniques in binary analysis. 2016 IEEE Symposium on Security
and Privacy (SP) pp. 138–157 (2016)

44. Siegel, S.F., Mironova, A., Avrunin, G.S., Clarke, L.A.: Using model check-
ing with symbolic execution to verify parallel numerical programs. In: Pro-
ceedings of the 2006 International Symposium on Software Testing and
Analysis. pp. 157–168. ISSTA ’06, ACM, New York, NY, USA (2006),
http://doi.acm.org/10.1145/1146238.1146256

45. Wang, R., Shoshitaishvili, Y., Bianchi, A., Machiry, A., Grosen, J., Grosen,
P., Kruegel, C., Vigna, G.: Ramblr: Making reassembly great again. In: In
The Network and Distributed System Security Symposium. NDSS ’17 (2017).
https://doi.org/10.14722/ndss.2017.23225

46. Wang, S., Wang, P., Wu, D.: Composite software diversification. In: 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME). pp.
284–294 (2017)

47. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In: Proceedings of the 2012
ACM Conference on Computer and Communications Security. p. 157–168.
CCS ’12, Association for Computing Machinery, New York, NY, USA (2012),
https://doi.org/10.1145/2382196.2382216

48. Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., Song, D.: Neural network-based
graph embedding for cross-platform binary code similarity detection. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security. pp. 363–376. CCS ’17, ACM, New York, NY, USA (2017),
http://doi.acm.org/10.1145/3133956.3134018

49. Xu, Z., Miller, B.P., Reps, T.: Safety checking of machine code. In: Proceed-
ings of the ACM SIGPLAN 2000 Conference on Programming Language Design
and Implementation. pp. 70–82. PLDI ’00, ACM, New York, NY, USA (2000),
http://doi.acm.org/10.1145/349299.349313

50. Zuo, F., Li, X., Zhang, Z., Young, P., Luo, L., Zeng, Q.: Neural machine trans-
lation inspired binary code similarity comparison beyond function pairs. CoRR
abs/1808.04706 (2018), http://arxiv.org/abs/1808.04706

