RAVE: A Modular and Extensible Framework for
Program State Re-Randomization

Christopher Blackburn Xiaoguang Wang Binoy Ravindran
Virginia Tech Virginia Tech Virginia Tech
Blacksburg, Virginia, USA Blacksburg, Virginia, USA Blacksburg, Virginia, USA
krizboy@vt.edu xiaoguang@vt.edu binoy@vt.edu
ABSTRACT 1 INTRODUCTION

Dynamic software diversification is an effective way to boost soft-
ware security. Existing diversification-based approaches often tar-
get a single node environment and leverage in-process agents to
diversify code and data, resulting in an unnecessary attack sur-
face on a fixed software/hardware stack. This paper presents RAVE,
a practical system designed to enable out-of-bound program state
shuffling on a moving target environment, avoiding any sensitive
agent code invoked within the running target. RAVE relies on a user-
space page fault handling mechanism introduced in the latest Linux
kernel and seamlessly integrates with CRIU [10], the battle-tested
process migration tool for Linux.

RAVE consists of two components: librave, a library for static
binary analysis and instrumentation, and CRIU-RAVE, a runtime
that dynamically updates program execution states (e.g., internal
stack data layout and the machine node the program runs on). We
built a prototype of RaVE and evaluated it with four real-world
server applications and 13 applications from the SPEC CPU 2017 and
the SNU C version of NAS Parallel Benchmarks (NPB) benchmark
suites. We demonstrated that RAVE can continuously re-randomize
the program state (e.g., internal stack layout, instruction sequences,
and machine node to run on). The evaluation shows that RAVE
increases the internal program state entropy with an additional
~200 ms time overhead for each re-randomization epoch on average.

CCS CONCEPTS

« Security and privacy — Systems security; Software and ap-
plication security;

KEYWORDS

Code and Stack Randomization, Moving Target Defense, Software
Security

ACM Reference Format:

Christopher Blackburn, Xiaoguang Wang, and Binoy Ravindran. 2022. RAVE:
A Modular and Extensible Framework for Program State Re-Randomization.
In Proceedings of the 9th ACM Workshop on Moving Target Defense (MTD
’22), November 7, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3560828.3564008

MTD °22, November 7, 2022, Los Angeles, CA, USA

© 2022 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
9th ACM Workshop on Moving Target Defense (MTD °22), November 7, 2022, Los Angeles,
CA, USA, https://doi.org/10.1145/3560828.3564008.

Software diversification techniques have been proposed to break
static and predictable program layouts and states while maintain-
ing correct functionality [6, 11, 12, 23, 33, 36]. Among these tech-
niques, dynamic software diversification becomes more promis-
ing, as it demonstrates the capability of defeating advanced ex-
ploits [13, 31]. Existing approaches dynamically re-randomize a
target’s application memory layout [6, 23, 24, 36], update various
configurations [18] or change the execution environment at run-
time [11, 17, 33] to make the target less predictable. For example,
there are several code re-randomization approaches that leverage
an in-process randomization agent to dynamically update code and
data layouts [6, 11, 33, 36]. However, solutions that use a randomiza-
tion agent introduce an additional attack surface (the agent) which
often needs extra protection [36].

Moving target defense (MTD) is another concept of dynamic
software diversification [8, 18]. It aims to break static attack sur-
faces by dynamically changing the software execution environ-
ment, such as system configurations, software stacks, and net-
work addresses [18], to name a few. However, existing software-
oriented MTD approaches treat the target program as a whole entity
without diversifying the program’s internal state [8]. These ap-
proaches cannot prevent attacks that exploit the internal code vul-
nerability. Especially with the emergence of advanced code-reuse
attacks like position-independent return-oriented programming
(PIROP) [13] or non-control data attacks like data-oriented pro-
gramming (DOP) [15, 16]; defenses against these are growing thin.
These new variants of code-reuse attacks make existing mitigation
mechanisms less effective.

In this work, we present RAVE - a modular and extensible frame-
work for re-randomizing a live process’s code and memory space in
a distributed moving target defense environment. Specifically, RavE
can migrate a live process (or a container in our future implementa-
tion) to machine nodes with different hardware settings or software
stacks, obfuscating the attacker’s knowledge of the target’s location
and runtime software/hardware stack. Meanwhile, RAVE can also
update the program’s internal state, such as the stack layout or code
instruction sequences, at a minimal cost. More importantly, RAVE
allows out-of-bound program state transformation and execution
relocation without invoking any program agent within the target.

RaAVE leverages the user-space page fault handling mechanism
(i.e., userfaultfd [29] in Linux) to reload the randomized code
and data pages and seamlessly integrates with the transformation
logic provided by CRIU [10] to migrate processes among differ-
ent machine nodes. RAVE consists of two components: librave,
a library responsible for static binary analysis and instrumenta-
tion, and CRIU-RAVE, an extended version of CRIU [10], which is

https://orcid.org/0000-0001-5055-4552
https://doi.org/10.1145/3560828.3564008
https://doi.org/10.1145/3560828.3564008

MTD ’22, November 7, 2022, Los Angeles, CA, USA

a battle-tested process migration tool available for Linux. We also
built a prototype of RAVE and evaluated it using four server appli-
cations and 13 applications from the SPEC CPU 2017 and the SNU
C version of NAS Parallel Benchmarks (NPB) benchmark suites.
We demonstrate that RAVE can relocate the program execution
across the machine boundary and simultaneously re-randomize
the internal program state. The evaluation results show that RAVE
increases the internal program state entropy with an additional
~200 ms time overhead added to the live migration. Overall, we
made the following contributions:

e We propose a modular and extensible framework for code
and memory randomization in a distributed moving target
defense environment.

e We present the design and one type of implementation of
RaVE for dynamic program stack randomization during the
live migration for high program entropy; RAVE is transparent
and out-of-bound to the target program.

e We report evaluation results showing that RAVE increases
the entropy of internal program states during the process
migration at near-zero cost.

The rest of this paper is organized as follows: Section 2 provides
background information of dynamic software protection and the
threat model. We then describe the design and implementation
of RaVE in Section 3. The evaluation is presented in Section 4.
Afterwards, we discuss the limitations and potential future works
in Section 5 and summarize the related works in Section 6. Finally,
we conclude the paper in Section 7.

2 BACKGROUND

This section briefly introduces the background on dynamic software
diversification and CRIU and then defines the threat model and
assumptions.

2.1 Dynamic software diversification

Moving target defense (MTD) is a concept for dynamic software
system protection [8]. Many existing software defense methods
often employ static and predictable defense strategies, such as static
checks against the integrity of control flow data vulnerable to at-
tacks (CFI [1], shadow stack [7]), authentication of the identity of
users and their actions [30] or formal verification of program cor-
rectness against its original design [22]. Although practical, these
approaches give attackers time to analyze the target program and
eventually find the vulnerability of the defense method [21, 31].
Dynamic software defense aims to break the attacker’s advantage
by making their targets less predictable.

There are several ways to make the target program execution
unpredictable. One method is to dynamically change the target sys-
tem’s configurations. Previous research efforts leveraged dynamic
network configuration or hardware settings to shift the attack sur-
face [8, 17]. Such systems dynamically change the routing table by
assigning each virtual IP to different real IPs of the hosts, which
hides the actual server configurations [17]. However, even if the
hosts’ IP addresses are frequently changed, the internal state of the
server application does not change. A smart attacker can prepare
the payload through advanced techniques such as PIROP even if
the program is address-randomized [13].

Christopher Blackburn, Xiaoguang Wang, and Binoy Ravindran

Load-time address space layout randomization (ASLR) [12, 25]
is another form of dynamic software diversification. It generates
the position-independent executable (PIE) and loads the executable
into a randomized location. The original ASLR does not bring any
runtime overhead but it may suffer from heap spraying [14] or
just-in-time code reuse attacks [31]. Advanced ASLR techniques,
such as runtime code re-randomization and fine-grained memory
randomization, aim to either relocate code block locations during
process execution [6, 36] or randomize the code at the finer-grained
basic block level [20, 34]. They focus on building particular random-
ization mechanisms and often embed a randomizing agent within
the target application. This may create a larger attack surface [36]
and introduce difficulties in decoupling the randomization agent
from the target program.

Unlike existing works, we aim to decouple the randomization
tooling from the target program. The target program is first loaded
with ASLR; RavE shuffles the internal stack layout during each
cross-node migration.

2.2 Live process migration and CRIU

Process (container) live migration moves application instances to
different machines without disconnecting the clients. It has been
primarily used for server maintenance (e.g., OS kernel update)
and load balancing. There are several projects that implement live
process migration [3, 10, 32]. For example, Checkpoint/Restore
in Userspace (CRIU) is a recent project that supports userspace
process (container) live migration [10]. When users want to migrate
a process, they can invoke CRIU to dump the process’ state into a
set of image files, then, from those files, restore the process.

At the beginning of the dumping process, CRIU attaches to a
process and all its children using ptrace [35]. To stay as true to the
current state of the process, CRIU does not use ptrace to signal
the process to stop. Instead, it uses an in-kernel facility to freeze
the process before collecting and saving to disk information about
the running process(es). Information about the process is mostly
gathered from Linux’s /proc file system. The process image files
can be moved to the target machine node for restoration. On restor-
ing a process, CRIU will analyze the dumped process image then
morph itself into the target to be restored. For every restoree, CRIU
will fork itself then continue per-process restoration. Files are re-
opened, memory is remapped and filled with dumped data, thread’s
executions are resumed, and the process gets restored. This can
happen on the same or different machine, but there are some re-
strictions: the filesystems must match (or else things like open files
cannot be restored). Any kernel features that exist in the source
node, must also be available on the target node.

CRIU also has additional methods for restoring a process. In
some cases, like live migration, it may be undesirable to copy all
the dumped process data to another machine before restoring that
process (since this data could be very large). CRIU provides a way
to lazily-load memory pages. Processes are restored like normal
for the most part, but instead of reading and copying all dumped
memory from the files into the restorees’ memory, some pages are
marked as lazy loadable and registered with a userfaultfd file
descriptor [29]. Userfaultfd is a Linux kernel facility that allows
users to handle page faults in user space. Basically, this allows us to

RAVE: A Modular and Extensible Framework for
Program State Re-Randomization

register regions of memory with a file descriptor, then when a page
fault happens (e.g. when some memory has not been loaded into the
current address space), we are notified of it and are able to serve the
fault. This allows the lazy-pages process to provide the restoree with
data only when it needs it (both locally or over the network). In this
work, we leverage lazy-pages restoration to perform randomization
outside of the target process’ context, making the randomization
tooling transparent to the target.

2.3 Threat Model

We assume the attacker has remote access to the target process
through a standard I/O interface; specifically, a socket connection.
The attacker may have access to the target program binaries. How-
ever, we assume the distributed MTD machine nodes are physically
hidden from external attackers. Similar to most existing dynamic
software diversification techniques, RAVE does not remove the vul-
nerabilities but relies on the uncertain program states and execution
environment to prevent attackers from successfully (or reliably)
launching the payload. We assume the implementation of CRIU
and the binary disassembler are correct and sound; we also assume
a strong trusted computing base (TCB), including the OS kernel
and the ELF loader. Side-channel attacks and kernel vulnerability
exploits and mitigation are out of the scope of this paper.

3 DESIGN AND IMPLEMENTATION
3.1 Overview

RAVE is designed as a modular and extensible framework for code
and memory randomization in an MTD environment (Figure 1). It
timely re-randomizes the program’s internal state as well as the
execution environment. Unlike existing code re-randomization or
MTD approaches [6, 11, 33, 36], RAVE is fully isolated from the
target program’s address space; thus an attacker cannot compro-
mise RAVE’s defense logic. RAVE also allows the target process to
be migrated in a distributed environment to dynamically change
hardware and software stack settings.

RAVE is split up into two main components: a library for defin-
ing randomization policies (1ibrave), and an executing engine to
update the randomized code at the runtime (CRIU-RAVE). In RaVE
design, we extended CRIU as the runtime to trigger the randomiza-
tion during the process migration with near-zero cost. Both RAVE’s
components are written entirely in user space. To defend against
memory corruption-based attack payloads, RAVE rewrites code and
live stack spaces to confuse attackers who are trying to take ad-
vantage of stack predictability. Meanwhile, RAVE leverages the rich
environment of CRIU’s process migration, which allows it to take
advantage of several existing features while bolstering features like
live migration through the additional security techniques it pro-
vides. Thus, even if an attacker accidentally locates the program’s
execution environment, the internal state shuffling can prevent the
already prepared payload from succeeding. In the remainder of this
section, we will describe RAVE in detail.

3.2 librave

One draw back of previous runtime code-randomization works is
that the driver code (re-randomizer) is often either a part of the
target binary [6, 36] or is tightly coupled to the randomization

MTD ’22, November 7, 2022, Los Angeles, CA, USA

. . process process
tr::;??;m '::g;slm??ne O re-randomization re-location

101
11) ST
——————————————————— \ (=== ===)

I librave — CRIU-Rave ! I I

I 1 I

1 Rave Node O | 1 Rave Node N |

Figure 1: Overview of RAVE on a multi-node MTD envi-
ronment. The target program’s internal state is (self) re-
randomized or shuffled during the live process migration.
CRIU-RAVE and librave are isolated from the target pro-
gram’s address space.

code [23, 24, 33]. That is, it would be a non-trivial engineering task
to disassociate randomization techniques in previous works from
the applications and adopt those techniques to a new execution
environment.

In order to avoid this type of behavior, 1ibrave was built as a
pluggable library so that no one program was tied to its capabil-
ities. This library aims to provide the basic capabilities that code
transformations can rely on. This includes abstractions for reading
and navigating binary files (in this case ELF files), abstractions for
reading and using binary metadata like DWARF [9] debug informa-
tion, binary rewriting (disassembly and reassembly), and methods
for maintaining records of code transformation (so that live pro-
cesses can be adjusted to match re-written code). librave can be
logically broken into two execution phases: an analysis phase, and
a transformation phase.

The analysis phase of 1librave consists of any setup required
to transform code. This includes loading ELF binaries and parsing
metadata, creating internal representations of transformable func-
tions, and setting up pages for serving transformed code. The first
step in RAVE analysis is to prepare the ELF binary. When given
an executable ELF, librave parses the program headers and sec-
tion headers to find the . text section (the section containing the
user’s compiled code) as well as the segment indicating where the
code is loaded. This segment is artificially loaded into librave’s
address space for further analysis and transformation. librave
maintains this memory region for code transformation so that it
can be readily served to the target process via page faults or written
back to a randomized executable. Either way, RAVE separates the
code transformation logic from the target program itself.

Next, librave parses any metadata available to it through a
metadata abstraction class. In our prototype, we leverage the DWARF
debug information as the backing structure for this metadata class.
This class exposes an interface through which we can interact
with information about the code we just mapped. For example, the
DWARF debug information can provide function offset and the
location of their local variables to 1ibrave [9]. After parsing this
information, librave iterates through and processes each function
defined by the included DWARF metadata. Using the metadata and
mapped code region, RAVE disassembles each function to discover
and determine which functions are randomizable. Our current pro-
totype showcases callee-preservation code permutation (i.e., stack

MTD ’22, November 7, 2022, Los Angeles, CA, USA

slots containing the contents of function-owned registers). Func-
tions with more than one permutable stack slot are called random-
izable functions. By permuting the locations of these stack slots, we
can make it harder for attackers to guess where certain target slots
are located.

Transformable Functions

Target Binary push %ebp

F1 - mov %esp, %ebp
librave push %r12

_____________ = [— push %r13
text

Prologue Set

|
Epilogue Set

pop %r13

F3 | pop %r12
leave

ret

Figure 2: RavE analysis phase visualized. The binary is
loaded into librave ’s address space and analyzed. librave
searches for randomizable functions and records metadata
about those functions (e.g. locations of prologues and epi-
logues).

librave also exposes a way to artificially relocate the random-
ized code. For position-independent executables (PIEs), the exe-
cutable can be loaded into arbitrary addresses. CRIU-RAVE inter-
cepts the base address and adjusts the global offset table (GOT) in
the reserved memory region. Likewise, the executable segment may
not be located at the address given in the ELF program header. Thus,
for live programs, RAVE is able to consume a new base address for
these sections. This is mirrored in stack rewriting, since the base
address and offsets of the stack space could vary.

Once librave has finished analysis, RAVE triggers the code trans-
formation. This transformation is applied to each function captured
by the analysis phase, then re-encoded back into a local buffer (i.e.,
code cache). Currently, librave only shuffles stack slots (i.e., the
stack variable/object) in a function’s prologue and epilogue which
includes the corresponding instructions, such as push/pop instruc-
tions. Other instructions referencing the stack frame pointer (i.e.,
%rbp), outside of those in the prologue and epilogue, could also
be shuffled by further analyzing the stack slot types: if a pointer
stored on the stack points to another stack object, we would need
to update the pointer value after relocating the stack object. Also
consider cases where pointers on the heap point to stack slots that
could be relocated. In these instances, those pointer values stored
on the heap would likewise need adjustment.

Once a new order of stack slots has been determined, librave
re-encodes preservation instructions for each function and delivers
the code cache to the RAVE driver. The driver code is responsible
for taking the modified code and serving it. This could mean sav-
ing it to a new, randomized binary, or dynamically serving code
pages through page faults for code re-randomization (Section 3.3).
Although our current prototype only supports shuffling a subset of
stack-accessing instructions, we anticipate that other randomiza-
tion policies (e.g., fine-grained basic block shuffling [4, 34]) could
also be supported with minimal changes.

librave also supports data-space memory transformation. In
the case of stack slot shuffling, 1ibrave also transforms the stack

Christopher Blackburn, Xiaoguang Wang, and Binoy Ravindran

according to the new code layout. Specifically, RAVE can process the
process snapshot, locate the stack memory pages and unwind a live
application stack (using the frame pointer, we can traverse through
each stack frame). Each stack frame is matched to its respective
function (previously recorded in the analysis phase) by either the
instruction pointer in the case of the outermost frame or the return
address saved on the stack. After that, the driver program is re-
sponsible for providing librave with the stack space and relevant
information.

3.3 CRIU-RAVE

librave is a library, and thus can be driven by a third party. CRIU
is one such party which enables process migration in Linux. CRIU-
RAVE is a fork of CRIU built to link with and drive 1ibrave. Upon
the process restoration, CRIU-RAVE invokes 1ibrave to re-randomize
a process by rewriting its code and stack. CRIU-RAVE serves the
re-randomized pages (through userfaultfd) for page faults during
the process restoration. Figure 3 illustrates this process. The target
process is restored separately from where librave is invoked to
randomize its layout. The stack and code pages are served from the
lazy-pages co-process on demand through page faults. By the time
the restoree is ready to resume execution, the randomized code
pages and stack are ready to be delivered once accessed.

CRIU Process Dump

Lazy-Pages/rave CRIU Restore

Restoree
> librave Il
@ Code Stack Misc.
A
il B
userfaultfdl

Restoree Memory
f Randomized Pages D Dropped or Unloaded Pages
Faulting Pages

Figure 3: Overview of CRIU-rave Runtime. CRIU-rave runs
the restore process and the lazy-pages process in parallel.
Relevant pages are dropped or left unloaded by the restoree.
librave intercepts code and stack pages in the lazy-pages
process to serve them out via userfaultfd whenever the re-
storee triggers a page fault by touching an unmapped page.

To serve code and stack pages from the lazy-pages daemon, CRIU
uses Linux’s userfaultfd facility. This interface allows us to han-
dle page faults from user space. During CRIU’s restore process, we
can register memory regions in the restoree’s address space with a

RAVE: A Modular and Extensible Framework for
Program State Re-Randomization

userfaultfd file descriptor so that any page fault within the regis-
tered memory region will raise an event to that file descriptor. Note
that this interface only works on anonymous memory mappings.
Trying to register a file backed mapping, like the executable region
of the target binary, will fail. To work around this, we replace the
file-backed mapping of the executable segment with an anonymous
mapping (matching all original permissions of course). This is the
only artifact in the target application that might suggest our tool-
ing is active. Once this region is registered with userfaultfd, we
make a madvise() system call to with the DONT_NEED flag, effec-
tively telling the kernel that these pages can be dropped. Thus, the
next time these pages are accessed, it will trigger a page fault.

The stack region needs no special treatment as it is already
marked for lazy loading. Once both the code and the stack regions
are prepared in the restoree (and any other lazy-loadable pages),
CRIU-RAVE sends the userfaultfd file descriptor to the lazy-pages
process. Normally, under this facility, we could only serve pages
from within the same process. However, by using a Unix socket to
transfer the file descriptor to a listening process, we can continue
to serve page faults in user space from outside the target process.

CRIU-RAVE lazy-pages will initialize itself in preparation to re-
ceive the userfaultfd. It sets up a list of lazy-process structures
which carry any relevant information necessary to serve page faults,
including structures that are prepared to read memory from the
dumped process images. During this initialization, we can concur-
rently prowl the dumped images (on a per-process basis) to find
the on-disk location of the executable file via /proc/<pid>/exe,
as well as the virtual memory address of the executable segment.
At this time, we can also read the saved stack memory and CPU
register snapshot, which will be used to rewrite the stack.

The binary file is not saved in the dumped memory (it is re-
opened on CRIU restore). So, we end up passing the location of
this file to librave, triggering the analysis and transformation of
the code. Once the code is transformed, we can send it the stack
space we read from the dumped memory for rewriting. Once these
components are available, the co-process must wait for a page fault.
In unmodified CRIU, when a page fault occurs, it captures that event
and serves memory directly from the process images. However, in
CRIU-RAVE, we intercept this process and check whether the page
fault happened in a registered code or stack region. If this was the
case, librave exposes the modified code or stack to CRIU-RAVE
so that it can serve the page fault, thus injecting the randomized
memory into the target application.

4 EVALUATION

In this section, we evaluate both librave and CRIU-RAVE in terms
of security and performance. Specifically, we will quantify the level
of randomness introduced into the target application runtime. We
also evaluate the time it takes to perform code analysis and trans-
formations to understand what types of overheads are induced
through CRIU-RAVE’s code modifications.

Experimental setup: RAVE was evaluated on an x86-64 ma-
chine with an Intel i7-6500U CPU clocked at 2.5 GHz. The CPU has
two physical cores, two threads per core (4 threads in total). This
machine has 16 GB of DDR4 RAM. For the OS, it is running Ubuntu
20.04 LTS (kernel version 5.8). To compile and link benchmarks

MTD ’22, November 7, 2022, Los Angeles, CA, USA

and other test programs, we used GCC version 10.3.0 and binutils
version 2.34.

RAVE was tested on several programs including: SPEC CPU 2017,
SNU C version of NAS Parallel Benchmarks (NPB), NGINX, Redis,
Lighttpd, and MySQL server. All programs were compiled with
flags -fno-omit-frame-pointer and -mno-red-zone. They are
also dynamically linked. Note that RAVE only randomizes the target
application code itself, the external libraries, such as glibc, are not
touched.

Figure 4 shows the total number of functions and the number
of randomizable functions in the benchmark binaries mentioned
above. Here the randomizable functions are those functions with
stack local variables inside (push/pop instructions of the function
prologue and epilogue in our case). The result was obtained from
librave’s analysis. Naturally, smaller applications have fewer (ran-
domizable) functions. Two extreme cases are NPB EP with zero
and IS with one randomizable function (because of the small code-
base). Therefore, they cannot gain security benefits through RAVE.
In contrast, larger applications like MySQL have a more exten-
sive codebase than others; thus, they have more (randomizable)
functions (i.e., more than 10x functions in MySQL than other ap-
plications). This is also reflected in the performance of function
analysis reported in Section 4.2.

10000
~
1000
10
) | 111
1
S
~<>

o

R AN BN O K + v
& @u\é&/@ IS IRANEN X 9 Ovég\ﬂ\ S &L %0—
NIV SR
St FON \
09(,;\/ Q;‘\ el
%0 i)

@ Number of Functions Number of Randomizable Functions

Figure 4: The number of (randomizable) functions for tested
binaries. EP had zero randomizable functions.

4.1 Security Analysis

Similar to existing re-randomization or diversification-based works [6,
8, 11, 33, 36], RAVE cannot guarantee any attacks will not succeed,
but it lowers the chance for an attacker to guess the location of
a shuffled stack slot or find the software/hardware stack details.
RAVE also shares the security benefits of moving target defense sys-
tems [8, 17, 18], and the security benefits depend on the physically
distributed environment of deployment. Therefore, we only analyze
the entropy incurred in each re-randomization epoch for stack slot
shuffling and report the additional time cost for code analysis and
transformation in this paper.

We quantify the quality of randomization by measuring the av-
erage entropy of the program stack states. We define the entropy

MTD ’22, November 7, 2022, Los Angeles, CA, USA

of the program stack as the number of stack slot locations a stack
variable can fill in. Therefore, randomizable functions will always
have an entropy of two or higher. In our current implementation,
we only permute the order of stack objects. Therefore, a function’s
entropy is equal to the number of permutable stack slots. For exam-
ple, if there are three stack slots, there are three possible locations
a particular slot could be in, thus that function has an entropy
of three. However, we anticipate that future implementation of
librave could further utilize the allocated but unused stack spaces
to increase the overall entropy.

S CE OPPL Ry q%oV
“o"‘*%wv
A

B Average Entropy [Average Entropy (Randomizable Functi...

Figure 5: Quality of randomization for various applications.

Figure 5 shows the average entropy for an application assuming
all functions are called with uniform probability. For particular
workflows or attacks, the true entropy may vary and can be calcu-
lated given function call frequency. However, we assume any code
in the application is equally vulnerable to, for example, code reuse
attacks. For most applications, the total average entropy is less than
two, which implies that an attacker can generally guess where stack
slots will be located regardless of randomization. The only applica-
tion here that has a high enough entropy to qualify in disrupting
memory corruption attacks is NGINX. This is because more than
half of the functions in NGINX are randomizable. With an average
entropy of 2.39, an attacker will have an average probability of
22% ~ 19.1% in guessing the location of a stack slot. Do note that
in some cases attackers will generally have to chain together multi-
ple stack slots to execute an attack. In the case where three stack
slots are required, there is an average probability of 19.2%°> ~ 0.7%
that the attacker will find all three slots. We also find the average
entropy of randomizable functions is much higher, reaching about
4 bits. This gives 1ibrave a more significant chance for relocating
the program state. In the future, we plan to break the stack slot
swapping constraint in librave and fully utilize the spare spaces
in each allocated stack frame to have even higher entropy.

4.2 Performance Evaluation

We evaluated the performance overhead by measuring the time
librave takes to analyze and transform binaries. The primary fo-
cus for performance overhead lies in the time it takes to analyze
and transform binaries. For our current prototype, this overhead is

Christopher Blackburn, Xiaoguang Wang, and Binoy Ravindran

added before each process restoration phase. The runtime overhead
for CRIU-RAVE to migrate a live process is theoretically identical
to that of the vanilla CRIU. The only difference is that CRIU-RavE
loads randomized pages from the 1ibrave code cache, whereas the
vanilla CRIU load them from the dumped process images. There-
fore, the overall overhead for the current prototype of the Rave
framework is incurred only during process restoration (even that
is partially absorbed by network latency and file I/O). There is also
plenty of room for optimization in librave, namely, opportunities
in improving concurrent function analysis and transformation. Note
that this overhead does not affect the application’s runtime because
transformations happen out-of-band in the CRIU lazy-pages pro-
cess. Nevertheless, we measured the additional time cost incurred
by each re-randomization phase (analysis and transformation).

1820

1000
500

85 80
100 70 71

56 7.5
s =l

FEE OO ST &

[
o

ATy
3"_{_\3’) W

IR

SRAA
BN

Figure 6: Average time taken to analysis and transform var-
ious binaries (ms).

Figure 6 depicts the time cost associated with randomization
per program. Even for large applications, like MySQL (which had
42470 functions to analyze, 7049 to transform), it takes less than
two seconds from RAVE initialization of the unmodified binary to
the complete transformation of the target. This is an acceptable
performance hit since RAVE runs in a migration context where
there is already much variability in the checkpoint/restore process.
For smaller applications, such as NGINX, Redis and Lighttpd, the
introduced overheads are acceptable (less than 0.1 seconds). This
is likely due to the smaller number of (randomizable) functions
in these applications (Figure 4). The geometric standard devi-
ation for performance was about 7.74%. Upon closer inspection,
we see that this standard deviation number (a bit high) is skewed
by the performance times of smaller applications (including ones
like NPB’s EP, which has no randomizable functions). For these
smaller applications, standard deviation is very high because the
analysis and transformation runtimes are clouded by OS support
(e.g. I/O, memory allocation). For larger applications (like MySQL),
the standard deviation was only 1.05%, which equates to about 1.8
+ 0.02 seconds.

RAVE: A Modular and Extensible Framework for
Program State Re-Randomization

5 DISCUSSION AND FUTURE WORKS

We have demonstrated a use case of RAVE for diversifying the
program state and execution locations in a transparent and non-
intrusive way. RAVE can be used in a distributed environment or
locally on the same node. In either case, CRIU maintains the pro-
gram state, such as TCP connection and opened files, to be alive
after the process restoration [10]. We anticipate that RAVE can be
further developed as a general framework for live program trans-
formation to solve other system and security problems, such as
live code updates [26], software feature customization (debloat-
ing) [19, 27], etc. For example, we can extend librave to add a
policy for updating vulnerable code pages (a.k.a., live software
patching). It only requires the user to checkpoint the process and
restore (reload) the process with updated code pages if they were
to use CRIU-RAVE.

RaAVE also provides the capability to unwind the stack and check
if the vulnerable code is being used, which is critical for deciding
whether the code patching is safe. Similarly, we can also write a
librave policy to dynamically wipe out undesired code to reduce
the attack surface. Such undesired code can be initialization-related
code that is never used once the program is completed. We antici-
pate that this could further improve the state-of-the-art of existing
software debloating works [19, 27].

Besides extending RAvE for different security purposes, there is
some design space to optimize RAVE’s performance. As shown in
Section 4.2, RAVE brings observable overhead for analyzing large
applications’ randomizable functions. We anticipate that RAVE can
utilize a separate thread parallel to the target program execution to
save this extra time. We leave this optimization as future works.

6 RELATED WORK

Parallel to moving target defense, runtime code and data space re-
randomization is another way for dynamic software diversification.
The basic idea is to play hide-and-seek with the attacker. By shuf-
fling locations of targets [18, 33], or by reducing the predictability
of vulnerable components in a program [6, 36], we can significantly
increase the difficulty of attack. Some of these works attempt to
disrupt code-reuse attacks specifically, while others fight memory
corruption directly. Shuffler [36] is a type of fine-grained runtime
re-randomization works where functions in the binary are con-
tinuously relocated. By continuously reorganizing code locations,
attackers will have a more difficult time trying to reuse gadget
strings. Shuffler dynamically generates new code (and unwinds the
stack) with a thread within the target address space and thus suffers
from potential attacks [36]. TASR [6] similarly re-randomizes the
code with components that reside in both kernel-space and user-
space. Unlike existing works, RAVE dynamically re-randomizes the
code and data using user-space page faults handling, thus the re-
randomization agent is separated from the target.

RAVE was also inspired by recent works on data-space random-
ization [2, 5, 24, 28]. Smokestack [2] is an interesting work where
stack frames are randomized as a part of the binary’s runtime.
Using a modified version of LLVM, Aga et al. instrument bina-
ries such that several permutations of functions’ stack allocations
are available at runtime. The randomization instrumentation ran-
domly chooses among these permutations when a function is called,

MTD ’22, November 7, 2022, Los Angeles, CA, USA

thus introducing a different stack layout each time a function is
called. The authors have shown that this method is effective in
defending against DOP attacks, but it incurs a non-trivial runtime
overhead in some cases [2]. CoDaRR [28] protects the data space
objects by encrypting the data objects with xor and continuously
re-randomizing the masks used in loads and stores to prevent sen-
sitive data from being leaked. On the contrary, RAVE is designed as
a framework for dynamic program state re-randomization. Thus
we believe RAVE can enhance the security of these systems with an
external randomization agent. Chameleon [24] is the most related
work to RAVE, it creates extra entropy with a customized compiler
and controls the target’s memory through a ptrace-based monitor.
However, it requires the application to be statically linked, with
self-compiled versions of libraries like libc. Thus applications, like
Redis or MySQL, do not run under Chameleon’s instrumentation
(partially because they requires access to the dynamic linker to call
dlopen()). Moreover, most existing works mentioned above focus
on a single node environment, whereas RAVE is naturally integrated
with CRIU for seamlessly program instance re-location.

7 CONCLUSION

We have presented the design and implementation of RAVE, a sys-
tem that dynamically updates the program’s state and location.
RAVE’s main innovation is a novel out-of-bound re-randomization
agent serving randomized code and data pages upon page faults.
RAVE can be seamlessly integrated into CRIU’s lazy migration (post-
copy memory migration) to enable dynamic process re-location.
We have built a prototype of RAVE and evaluated the prototype
using four server applications and 13 applications from the SPEC
CPU 2017 and the SNU C version of NAS Parallel Benchmarks
(NPB) benchmark suites. The evaluation results show that RAVE
increases the internal program state entropy with an additional
~200 ms migration time overhead on average.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments.
This work is supported in part by US NAVSEA/NSWC Dahlgren
under grant N00174-20-1-0009, US Office of Naval Research (ONR)
under grants N00014-18-1-2022 and N00014-19-1-2493, and US Na-
tional Science Foundation (NSF) under grant CNS 2127491. Any
opinions, findings, and conclusions expressed in this material are
those of the authors and do not necessarily reflect the views of
these agencies.

REFERENCES

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009. Control-Flow
Integrity Principles, Implementations, and Applications. ACM Transactions on
Information and System Security (TISSEC) 13, 1 (2009), 4.

Misiker Tadesse Aga and Todd M. Austin. 2019. Smokestack: Thwarting DOP
Attacks with Runtime Stack Layout Randomization. In IEEE/ACM International
Symposium on Code Generation and Optimization, CGO 2019, Washington, DC,
USA, February 16-20, 2019, Mahmut Taylan Kandemir, Alexandra Jimborean, and
Tipp Moseley (Eds.). IEEE, 26-36. https://doi.org/10.1109/CGO.2019.8661202
Kapil Arya, Gene Cooperman, Rohan Garg, Jiajun Cao, and Artem Polyakov. 2022.
DMTCP: Distributed MultiThreaded CheckPointing. https://dmtcp.sourceforge.
io/.

Michael Backes and Stefan Niirnberger. 2014. Oxymoron: Making Fine-grained
Memory Randomization Practical by Allowing Code Sharing. Proc. 23rd Usenix
Security Sym (2014), 433-447.

[2

B3

=

https://doi.org/10.1109/CGO.2019.8661202
https://dmtcp.sourceforge.io/
https://dmtcp.sourceforge.io/

=

MTD ’22, November 7, 2022, Los Angeles, CA, USA

[5] Sandeep Bhatkar and R. Sekar. 2008. Data Space Randomization. In Detection of

Intrusions and Malware, and Vulnerability Assessment, 5th International Conference,
DIMVA 2008, Paris, France,]uly 10-11, 2008. Proceedings (Lecture Notes in Computer
Science, Vol. 5137), Diego Zamboni (Ed.). Springer, 1-22. https://doi.org/10.1007/
978-3-540-70542-0_1

David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed
Okhravi. 2015. Timely rerandomization for mitigating memory disclosures. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 268-279.

Nathan Burow, Xinping Zhang, and Mathias Payer. 2019. SoK: Shining Light on
Shadow Stacks. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San
Francisco, CA, USA, May 19-23, 2019. IEEE, 985-999. https://doi.org/10.1109/SP.
2019.00076

Jin-Hee Cho, Dilli P. Sharma, Hooman Alavizadeh, Seunghyun Yoon, Noam Ben-
Asher, Terrence J. Moore, Dong Seong Kim, Hyuk Lim, and Frederica Free-Nelson.
2020. Toward Proactive, Adaptive Defense: A Survey on Moving Target Defense.
IEEE Commun. Surv. Tutorials 22, 1 (2020), 709-745. https://doi.org/10.1109/
COMST.2019.2963791

Christopher Blackburn, Xiaoguang Wang, and Binoy Ravindran

Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo
Kim. 2019. Finding semantic bugs in file systems with an extensible fuzzing
framework. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019, Tim Brecht and
Carey Williamson (Eds.). ACM, 147-161. https://doi.org/10.1145/3341301.3359662
Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: Formal
Verification of an OS Kernel. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles (Big Sky, MT, USA).

Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. 2014. SoK:
Automated Software Diversity. In Proceedings of the 2014 IEEE Symposium on
Security and Privacy (SP ’14).

Robert Lyerly, Xiaoguang Wang, and Binoy Ravindran. 2020. Dynamic and Secure
Memory Transformation in Userspace. In Computer Security - ESORICS 2020 - 25th
European Symposium on Research in Computer Security, ESORICS 2020, Guildford,
UK, September 14-18, 2020, Proceedings, Part I (Lecture Notes in Computer Science,

Vol. 12308). Springer, 237-256. https://doi.org/10.1007/978-3-030-58951-6_12
Alex Ionescu Mark Russinovich, David Solomon. 2012. Windows Internals, 6th

[9] Eager Consulting. 2021. The DWARF Debugging Standard. https://dwarfstd.org/.
[10] CRIU. 2022. Checkpoint Restore in Userspace. https://criu.org/Main_Page.
[11] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z Snow, and [26

Edition. Microsoft Press.
Tulian Neamtiu, Michael W. Hicks, Gareth Paul Stoyle, and Manuel Oriol. 2006.

Fabian Monrose. 2015. Isomeron: Code Randomization Resilient to (just-in-
time) Return-oriented Programming. Proc. 22nd Network and Distributed Systems
Security Sym.(NDSS) (2015).

[12] Jake Edge. 2013. Linux Kernel Address Space Layout Randomization. http:

//lwn.net/Articles/569635/.

Enes Goktas, Benjamin Kollenda, Philipp Koppe, Erik Bosman, Georgios Por-
tokalidis, Thorsten Holz, Herbert Bos, and Cristiano Giuffrida. 2018. Position-
independent code reuse: On the effectiveness of aslr in the absence of information
disclosure. In 2018 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 227-242.

heapspray Accessed: 2019-02-14. Heap spraying. https://en.wikipedia.org/wiki/
Heap_spraying.

Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. 2016. Data-oriented programming: On the expressiveness of
non-control data attacks. In 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 969-986.

Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. 2018.
Block Oriented Programming: Automating Data-Only Attacks. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15-19, 2018, David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang (Eds.). ACM, 1868-1882. https://doi.org/10.
1145/3243734.3243739

[17] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. 2012. Openflow random host

mutation: transparent moving target defense using software defined networking.
In Proceedings of the first workshop on Hot topics in software defined networks.
ACM, 127-132.

[18] Jajodia, Sushil and Ghosh, Anup K and Swarup, Vipin and Wang, Cliff and Wang,

X Sean. 2011. Moving Target Defense: Creating Asymmetric Uncertainty for Cyber
Threats. Vol. 54. Springer Science & Business Media.

Yufei Jiang, Can Zhang, Dinghao Wu, and Peng Liu. 2016. Feature-Based Software
Customization: Preliminary Analysis, Formalization, and Methods. In 17th IEEE
International Symposium on High Assurance Systems Engineering, HASE 2016,
Orlando, FL, USA, January 7-9, 2016, Radu F. Babiceanu, Héléne Waeselynck,
Raymond A. Paul, Bojan Cukic, and Jie Xu (Eds.). [EEE Computer Society, 122—
131. https://doi.org/10.1109/HASE.2016.27

Chongkyung Kil, Jinsuk Jim, Christopher Bookholt, Jun Xu, and Peng Ning. 2006.
Address Space Layout Permutation (ASLP): Towards Fine-grained Randomization
of Commodity Software. In Computer Security Applications Conference, 2006.
ACSAC’06. 22nd Annual. IEEE, 339-348.

Practical dynamic software updating for C. In Proceedings of the ACM SIGPLAN
2006 Conference on Programming Language Design and Implementation, Ottawa,
Ontario, Canada, June 11-14, 2006, Michael I. Schwartzbach and Thomas Ball
(Eds.). ACM, 72-83. https://doi.org/10.1145/1133981.1133991

Chenxiong Qian, Hong Hu, Mansour Alharthi, Simon Pak Ho Chung, Taesoo
Kim, and Wenke Lee. 2019. RAZOR: A Framework for Post-deployment Soft-
ware Debloating. In 28th USENIX Security Symposium, USENIX Security 2019,
Santa Clara, CA, USA, August 14-16, 2019, Nadia Heninger and Patrick Traynor
(Eds.). USENIX Association, 1733-1750. https://www.usenix.org/conference/
usenixsecurity19/presentation/qian

Prabhu Rajasekaran, Stephen Crane, David Gens, Yeoul Na, Stijn Volckaert, and
Michael Franz. 2020. CoDaRR: Continuous Data Space Randomization against
Data-Only Attacks. In ASIA CCS "20: The 15th ACM Asia Conference on Computer
and Communications Security, Taipei, Taiwan, October 5-9, 2020, Hung-Min Sun,
Shiuh-Pyng Shieh, Guofei Gu, and Giuseppe Ateniese (Eds.). ACM, 494-505.
https://doi.org/10.1145/3320269.3384757

Mike Rapoport. 2021. userfaultfd(2) — Linux manual page . https://man7.org/
linux/man-pages/man2/userfaultfd.2.html.

Ravi S Sandhu and Pierangela Samarati. 1994. Access control: principle and
practice. IEEE communications magazine 32, 9 (1994), 40-48.

Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-in-time Code Reuse: On the
Effectiveness of Fine-grained Address Space Layout Randomization. In Security
and Privacy (SP), 2013 IEEE Symposium on. IEEE, 574-588.

Virtuozzo. 2022. Open source container-based virtualization for Linux. https:
//openvz.org/.

Xiaoguang Wang, SengMing Yeoh, Robert Lyerly, Pierre Olivier, Sang-Hoon
Kim, and Binoy Ravindran. 2020. A Framework for Software Diversification
with ISA Heterogeneity. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses, RAID 2020, San Sebastian, Spain, October 14-15, 2020,
Manuel Egele and Leyla Bilge (Eds.). USENIX Association, 427-442. https:
//www.usenix.org/conference/raid2020/presentation/wang-xiaoguang

Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhigiang Lin. 2012. Bi-
nary Stirring: Self-randomizing Instruction Addresses of Legacy x86 Binary Code.
In Proceedings of the 2012 ACM Conference on Computer and Communications
Security (CCS ’12).

Wikipedia. 2021. Ptrace. http://en.wikipedia.org/wiki/Ptrace.

David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake,
Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis, Junfeng Yang,
and William Aiello. 2016. Shuffler: Fast and Deployable Continuous Code Re-
Randomization.. In OSDI. 367-382.

https://doi.org/10.1007/978-3-540-70542-0_1
https://doi.org/10.1007/978-3-540-70542-0_1
https://doi.org/10.1109/SP.2019.00076
https://doi.org/10.1109/SP.2019.00076
https://doi.org/10.1109/COMST.2019.2963791
https://doi.org/10.1109/COMST.2019.2963791
https://criu.org/Main_Page
http://lwn.net/Articles/569635/
http://lwn.net/Articles/569635/
https://en.wikipedia.org/wiki/Heap_spraying
https://en.wikipedia.org/wiki/Heap_spraying
https://doi.org/10.1145/3243734.3243739
https://doi.org/10.1145/3243734.3243739
https://doi.org/10.1109/HASE.2016.27
https://doi.org/10.1145/3341301.3359662
https://doi.org/10.1007/978-3-030-58951-6_12
https://doi.org/10.1145/1133981.1133991
https://www.usenix.org/conference/usenixsecurity19/presentation/qian
https://www.usenix.org/conference/usenixsecurity19/presentation/qian
https://doi.org/10.1145/3320269.3384757
https://man7.org/linux/man-pages/man2/userfaultfd.2.html
https://man7.org/linux/man-pages/man2/userfaultfd.2.html
https://openvz.org/
https://openvz.org/
https://www.usenix.org/conference/raid2020/presentation/wang-xiaoguang
https://www.usenix.org/conference/raid2020/presentation/wang-xiaoguang
http://en.wikipedia.org/wiki/Ptrace

	Abstract
	1 Introduction
	2 Background
	2.1 Dynamic software diversification
	2.2 Live process migration and CRIU
	2.3 Threat Model

	3 Design and Implementation
	3.1 Overview
	3.2 librave
	3.3 CRIU-Rave

	4 Evaluation
	4.1 Security Analysis
	4.2 Performance Evaluation

	5 Discussion and Future Works
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

