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Abstract—Network capacity is a critical feature of wireless
ad hoc and sensor networks. It is particularly challenging to
determine network capacity when combined with other perfor-
mance objectives such as timeliness. This paper investigates real-
time capacity for event-driven data-gathering sensor networks
with unbalanced many-to-one traffic patterns. First, we compute
the average allowable throughputs of nodes for a given event
distribution, based on which we then leverage results of queuing
theory to estimate the per-hop delays. We develop a new slack
time distribution scheme for unbalanced many-to-one traffic
patterns, and prove it as optimal in terms of the per-hop success
probability. Here the per-hop success probability is defined as the
probability for a packet to meet its sub-deadlines at each hop.
Finally, we define and analyze the network-wide real-time ca-
pacity, i.e., given a threshold for the per-hop success probability,
how much data (in bit per second) can be delivered to the sink
node meeting their deadlines. For all these research results, we
provide some application scenarios, including configuring packet
deadlines or verifying a specific configuration, setting a packet’s
priority for dynamic scheduling, and trading the reliability of
real-time data delivery for capacity efficiency etc. We also study
two special cases of WSNs, the chain model and the continuous
model. Our slack distribution scheme yields consistent or similar
results for these special cases as that of past works, but is more
adaptive by supporting more generic cases.

I. INTRODUCTION

Wireless sensor networks (or WSNs), which are composed
of a large number of multi-functional low-cost sensor nodes,
are increasingly being used for collecting data from a ge-
ographical region of interest and reporting them back to
sink nodes (or base stations). Typical applications of WSNs
include surveillance, environment monitoring, medical diag-
nostics, transportation management, and industrial control [1].
Nodes in sensor networks are typically capable of sensing,
processing, and communicating data. But at the same time,
their power supply, and computing and communicating ca-
pabilities are strictly constrained. This leads to one of the
most fundamental problems of WSNs, the capacity—i.e., how
much data a WSN can collect and report, when given specific
constraints on power, real-time, reliability etc. Knowledge of
the network capacity can help application designers design a
sensor network for the problems at hand.

Network capacity is important not just for sensor networks.
In [2], Li et. al. present evaluation results for wireless ad
hoc networks, showing that the actually available per-node

throughput is dozens of times smaller than the apparent
radio capacity. They also point out that, this is because the
interference among nodes may exceed the range at which they
can communicate successfully. Another cause is the overheads
of MAC protocols such as headers, RTS/CTS exchange, and
ACK packets. The capacity of wireless networks, in general,
has been well studied since the landmark work of Gupta
and Kumar [3]. Except for the interference and overheads
introduced in [2], network size, traffic patterns, and network
architecture are the most commonly studied factors that con-
strain the achievable capacity. (We discuss related work in
details in Section II.)

In this paper, we study the real-time capacity for event-
driven data-gathering sensor networks with the unbalanced
many-to-one traffic pattern:

1) We define real-time capacity as the network’s capability
to transmit time-sensitive data within the deadline. Deadlines
for data come from the specific configuration of the appli-
cations, e.g., for timely response of actors [4], or for timely
target tracking [5] etc.

2) We discuss event-driven WSNs, a major category of
sensor networks in terms of the data delivery mode, in which
sensor nodes collect and report data only if an event of
interest occurs. (Other categories include continuous, observer-
initiated, and hybrid [6].) Event-driven sensor networks are
typically used for intrusion detection or sensing/acting sys-
tems. Most of the previous research efforts on network ca-
pacity of WSNs have focused on the continuous mode, where
sensors periodically report thereby produce balanced traffic
loads. Compared with the continuous mode, the event-driven
mode introduces more uncertainties, produces unbalanced traf-
fic loads, and thereby is more complex to analyze.

3) We focus on the many-to-one traffic pattern, which is
caused by the data gathering structure of WSNs. Unlike ad hoc
networks, sensor networks collect data from a large number
of sensor nodes and report them to a much smaller number
of sink nodes. Usually nodes propagate their measurements to
the closest sink node. Without loss of generality, we consider a
many-to-one data gathering network with only one sink node.

We study the real-time capacity in a per-hop manner. This
is because with unbalanced traffic loads, describing network-
wide conditions from a macro view may not guarantee that



each packet can meet all of its sub-deadlines.
First, we compute the average allowable outgoing/incoming

throughputs of nodes based on a given event distribution. We
consider the waiting time that a packet may incur in the queues
as the major consumer for the slack time, thus leverage results
from queuing theory to estimate it. Simulating nodes that have
the same hop distance from the sink node as a queue, we
estimate the expected per-hop delays based on two queuing
models.

Secondly, we present a new slack time distribution to
estimate the probability of delivering a packet to the sink
within its deadline. By subtracting the necessary time from
the end-to-end deadline of a packet, we obtain the end-to-end
slack time for which the packet can be delayed at the most.
Previous work used either a uniform model or an exponential
model [7] for partitioning the end-to-end slack time among
multiple hops. However, both models are completely based on
mathematical models without considering much of the realistic
network requirements. We design a new slack distribution
scheme, which is closer to the realistic network than these
two models. Also we introduce the concept of per-hop success
probability, which is computed by multiplying the probabilities
of meeting the sub-deadlines at each hop. In terms of the per-
hop success probability, we verify that the new slack time
distribution scheme is optimal.

Finally, we define the real-time capacity of the network
as the amount of real-time data that the network can deliver
within the deadline with a lower-bounded, per-hop success
probability. For both the slack time distribution and the
concept of real-time capacity, we provide some application
scenarios, including configuring packet deadlines or verifying
a given configuration, setting a packet’s priority for dynamic
scheduling, and trading the reliability of real-time data delivery
for capacity efficiency etc.

In addition, we study two special cases of network models,
i.e., the chain model and the continuous model. In the chain
model, there is only one source node as well as one sink
node, with a single routing path connecting them. On the
contrary, each node in the network periodically produces an
equal amount of traffic load for the continuous model. We
show that our slack distribution scheme yields consistent or
similar results for these two special cases as the past works,
but is more adaptive by supporting more generic cases.

The paper makes the following contributions:
1) We design a new slack time distribution scheme based on

results from queuing theory and the requirements of realistic
networks.

2) We introduce the concept of per-hop success probability,
in terms of which we show that our slack time distribution
scheme is optimal. And based on this probability, we define
real-time capacity.

3) We provide some potential applications of the research
results, including configuring packet deadlines or verifying a
given network-wide deadline configuration, setting a packet’s
priority for dynamic scheduling, and trading the reliability of
real-time data delivery for capacity efficiency etc.

The rest of this paper is organized as follows. In Section II,
we introduce the related work. In Section III, we describe
our assumptions, models and notations. In Section IV we
compute the allowable throughputs based on a given event
distribution, and leverage results of queuing theory to estimate
the expected per-hop delays. In Section V, we present the slack
time distribution scheme and the concept of per-hop success
probability, for which we provide two application examples of
the slack time distribution scheme on deadline configuration
and dynamic priority scheduling. In Section VI, we define
and analyze real-time capacity, and discuss some application
scenarios such as capacity efficiency etc. Section VII finally
concludes the paper and discusses our future work.

II. RELATED WORK

The capacity of wireless ad hoc networks has been well
studied in the past several years since the work of Gupta and
Kumar [3]. In [3], the authors estimate the achievable per-
node throughput for a static ad hoc network as Θ( 1√

n log n
),

and further show that the per-node throughput cannot exceed
Θ( 1√

n
) even if nodes are optimally deployed and the trans-

mission range is optimally chosen. Their work is based on a
one-to-one balanced traffic pattern, where each node generates
equal amount of traffic loads and destinations are randomly
chosen. Based on [3], many further results were developed.
In [8], Grossglauser et. al. show that the capacity can be further
increased if node mobility is introduced to reduce the path
length between the source node and the destination, but with
unbounded delay as a cost. In [9], Bansal et. al. improve the
work of [8] by providing low delay guarantee. Gastpar et. al.
study a one-to-one traffic pattern in [10], where there is only
one source-destination pair and all the other nodes work as
relays. Li et. al. present the capacity analysis for some typical
topologies in [2]. Beyond these typical but simple network
architectures, Liu et. al. describe the throughput capacity of
hybrid wireless networks with sparse base stations connected
via a high-bandwidth wired network in [11]. In [12], Jain et.
al. model the interference using a conflict graph and study the
maximum throughput with any given network and workload
specified as inputs. Most of these previous research efforts
on the capacity of wireless ad hoc networks only consider
continuous, balanced traffic loads.

Based on the research for wireless ad hoc networks, network
capacity has also been studied for wireless sensor networks. A
major difference of WSNs from ad hoc networks is that WSNs
emphasize the many-to-one traffic pattern [13], [14], as WSNs
are often used to collect and report data to a small number
of sink nodes. In addition, due to the resource constraints
of WSNs, their network capacity is often discussed together
with deployment [15], network architecture [16]–[18], data
aggregation or in-network computation [19], [20].

One of the earliest works to study real-time capacity for
sensor networks is [21]. Before that, delay is only considered
as a constraint for the capacity [9], [22], and they do not
address the question of how much real-time data a network can
transmit. In [21], Abdelzaher et. al. present real-time capacity



analysis for sensor networks with balanced loads and contin-
uous convergecast traffic. They leverage their preceding work
on real-time scheduling that specifies utilization bounds [23],
and assume time-independent, fixed-priority scheduling policy
for the analysis. However, [21] does not consider event-driven
sensor networks with unbalanced traffic loads, and it implic-
itly assumes that a packet’s status keeps unchanged during
the propagation. The definition of their synthetic utilization
depends only on the packet size and its end-to-end deadline,
while these two factors remain unchanged for a specific packet
during its entire lifetime. However, packets often experience
variable message velocities (i.e., the speed of propagation) at
multiple hops due to the congestion around sink nodes caused
by the convergecast traffic. The utilization that packets impose
on nodes therefore should be a function of their ever-changing
status, e.g., the distance from the sink, the remaining time to
the deadline etc.

In contrast with [21], our work focuses on the slack time
distribution scheme and real-time capacity of event-driven
sensor networks with completely unbalanced traffic pattern.
As far as the authors know, this has not been studied in the
past. We discuss the throughput, slack times, and the capacity
in a per-hop manner, which makes it possible to optimize the
probability of meeting a packet’s deadline based on its ever-
changing status.

III. PRELIMINARIES

In this section, we introduce the assumptions, models (for
the network, events, the throughput, the deadline and the slack
time) and summarize all the notations used in the following
discussion.

A. Assumptions

We make the following assumptions.
• Network architecture. We assume a flat network architec-

ture consisting of a large number of homogeneous sensor
nodes and one sink node. These nodes are equipped with
omni-directional antennas, and are deployed randomly
and uniformly in a disk on the plane. In addition, we
assume that the only sink node is in the center of the disk
field. Except that, there is no other cluster headers or any
relay nodes that compose a hierarchical architecture.

• Transmission range. We assume that the transition power
of sensor nodes is fixed, and thereby the transmission
range, denoted as r, is also fixed.

• Connectivity. We do not make any assumptions on node
location, network topology, or link quality. But we as-
sume that the transmission range can provide connectiv-
ity.

• Communication model. We adopt the protocol model in-
troduced in [3], where both transmission and interference
depend only on the Euclidean distance between nodes.
And we assume that there is only one wireless channel.
For wireless communication, we assume that nodes com-
municate with each other through packets, and concurrent
transmissions around a receiver may collide. The protocol

model does not consider information theoretic techniques
such as network coding, interference cancelation, super-
position coding, and coherent combining [19]. Therefore,
we simplify the problem by avoiding the complexity of
information theory and the physical model.

• Traffic pattern. Our work mainly focuses on unbalanced
traffic pattern in a many-to-one convergecast sensor net-
work. In an event-driven sensor network, sensor nodes
report data towards the sink only when an event of
interest occurs. Since events of interest are assumed to
occur randomly, it is highly probable that some nodes
generate data while others do not, resulting in unbalanced
workloads.

• MAC protocol. We assume a MAC protocol with zero
overhead and perfect scheduling policy. With a zero-
overhead MAC protocol, the traffic transmitted by nodes
h + 1 hops away from the sink will be able to arrive at
nodes h hops away from the sink successfully without
being dropped, as long as the total transmission through-
put of hop h + 1 is less than or equal to the acceptable
receiving throughput of hop h.

B. Models

h=1

h=2

h=3

Sink

Node

Fig. 1. Network Architecture

1) Network: Based on the assumptions that we discussed,
Figure 1 shows the network architecture in a disk on the plane.
The square at the center stands for the sink node, small circles
represent nodes, and the large dotted circles show the distance
of the nodes from the sink. We count the hop number starting
from the sink node. In other words, we say that all the nodes
in the ring between (h−1)r and hr belong to hop layer h. We
let Hmax denote the maximum hop number, and Nh denote
the number of nodes that are located in hop layer h. In the
figure, the curved arrows signify the transmission direction of
the convergecast data flows.

In this layered architecture, nodes in hop layer h > 1 cannot
communicate with the sink directly. Instead, the packets that
they generate have to be relayed by nodes in the inner layers.



Furthermore, we assume that nodes do not communicate with
neighbors in the same hop layer. Instead they receive packets
only from neighbors in the outer layer and relay them only to
neighbors in the inner layer.

With the random and uniform deployment, such a layered
architecture for multi-hop transmission establishes a quantita-
tive relation among the node amounts of different layers. Many
previous works such as [21], [24] leverage this advantage to
simplify the analysis. Letting ρ denote the node density of the
sensor network, the number of nodes in hop layer h can be
computed as Nh = ρ(π(hr)2−π[(h−1)r]2) = ρπr2(2h−1).
In fact, the constant ρπr2 is just the number of nodes in
an area within a node’s transmission range, i.e., N1. Thus
Nh = N1(2h− 1). When h = 0, there is only one sink node,
thus N0 = 1.

2) Event: For event-driven sensor networks, we establish an
event distribution model, which describes how many events
may occur and how they occur. Let Eh denote the average
traffic (in bit per second) that each node in hop layer h may
produce after observing events. Eh is a function of hop layer
h, and represents a distribution of events in the network. For
example, a constant Eh for ∀ h signifies the continuous sensor
network model, where each node periodically produces an
equal amount of traffic load. For a border surveillance model,
where events only occur on the border of the network, Eh is
given by:

Eh =
{

constant , (h = Hmax)
0 , (h < Hmax)

In fact, Eh should be a random process Eh(t), as the oc-
currence of events changes with time. However, we assume
that the event distribution is static for simplification. We
let Ê = {E1, E2, · · · , EHmax} denote an arbitrary event
distribution model.

3) Throughput: For a node in hop layer h, we let Ch denote
its average allowable outgoing throughput, and C ′h denote
its average allowable incoming throughput. As the outgoing
throughput is composed of the traffic that a node produces
and that it relays, we have

Ch ≤ Eh + C ′h (1)

The inequality is strict when the total traffic of Eh + C ′h
exceeds the allowed outgoing capacity of nodes.

For all the nodes in hop layer h, the total outgoing through-
put is NhCh, and the total incoming throughput is NhC ′h.
Based on the assumption of a zero-overhead MAC protocol,
we have

Nh+1Ch+1 = NhC ′h (2)

i.e., the traffic transmitted by nodes in hop layer h + 1 can
arrive at nodes in hop layer h successfully without being
dropped. And it is obvious that

NiCi ≤ NjCj (for ∀ i > j) (3)

as the total schedulable traffic produced by nodes in the outer
layers cannot exceed the traffic that can be consumed by nodes

in the inner layers. Then combining Equation (2) and Equation
(3), we have Nh+1Ch+1 = NhC ′h ≤ NhCh, therefore C ′h ≤
Ch. Many factors may constrain this inequality as a strict one,
one typical example among which is that nodes in hop h may
produce traffic themselves, i.e., Eh > 0.

Let W denote the fixed transmission capacity of the wireless
channel, i.e., each node can transmit or receive data at W bit/s
at the most. We have N1C1 ≤ W , i.e., the receiving capacity
of the sink cannot exceed the receiving capacity of its wireless
channel. Based on the assumption of a zero-overhead MAC
protocol, we tighten this inequality as N1C1 = W .

4) Deadline and Slack Time: The slack time of a time-
constrained activity denotes the redundant time that is avail-
able for the completion of that activity before the expiration of
the time constraint. For real-time data delivery in WSNs, the
end-to-end slack time is the redundant time after subtracting
the time necessary, e.g., for transmission and propagation,
from the deadline. In fact, the necessary time here is just the
optimal delay of the multi-hop propagation when everything is
in a perfect condition. For example, if a packet has a deadline
of 2000 ms, but the end-to-end necessary time is 1500 ms
which is impossible to avoid or reduce, then the slack time
is 2000− 1500 = 500 ms. Nodes along the propagation path
may safely utilize this slack time for queuing, routing, and
other operations on the packet without jeopardizing the packet
deadline.

Let De2e,H denote the end-to-end deadline of a packet
generated in hop layer H , and τ denote the average per-hop
necessary time. Then Le2e,H = De2e,H − Hτ is the end-to-
end slack time, and Lh,H is the slack time spared for a node
in hop layer h.

C. Notations

For the convenience of discussion, we summarize all the
notations in Table I.

Among the notations in the table, α, Th,H , Pe2e and
RTC(β) will be defined in the following sections.

IV. PER-HOP DELAY ESTIMATION

First we compute the average allowable outgoing/incoming
throughputs of nodes (Ch and C ′h) based on a given event
distribution (Ê). Then we simulate nodes in hop layer h as
a queue. Based on results of queuing theory and the average
allowable throughputs of nodes, we estimate the per-hop delay
by which a packet consumes its end-to-end slack time.

Lemma 1 (Throughputs): The average allowable outgoing
throughput of a node in hop layer h is:

Ch =
1

Nh
(W − α

h−1∑

i=1

NiEi) (4)

The average allowable incoming throughput of a node in
hop layer h is:

C ′h =
1

Nh
(W − α

h∑

i=1

NiEi) (5)



TABLE I
NOTATIONS

Parameter Definition
r Transmission range of nodes
Hmax Maximum hop number
h Index of hop layers (h ∈ [1, Hmax])
Nh Number of nodes in hop layer h
ρ Node density
Eh Average traffic in bit/s that each node in hop layer h

may produce after observing events
Ê An arbitrary event distribution
Ch Average allowable outgoing throughput of a node in hop

layer h
C′h Average allowable incoming throughput of a node in

hop layer h
W Fixed transmission capacity of the wireless channel
α Rate control factor
Th,H Expected waiting time of a packet in the queue of hop

layer h
De2e,H End-to-end deadline for a packet generated in hop layer

H
τ Average per-hop time that is necessary for propagation
Le2e,H End-to-end slack time for a packet generated in hop

layer H
Lh,H Slack time spared for a node in hop layer h
Pe2e Per-hop success probability
RTC(β) Real-time capacity

where α = W∑Hmax

i=1
NiEi

.

Proof:
The total traffic that nodes produce after observing events,

i.e.,
∑Hmax

i=1 NiEi, may exceed the receiving capacity of the
sink node W . Therefore, we need to control the sending rate of
source nodes. For the fairness of rate control, a good approach
is to cut by their weights. Then the upper bound of the traffic
load that a node in hop layer h may generate is:

W∑Hmax

i=1 NiEi

· Eh

where W∑Hmax

i=1
NiEi

is a rate control factor, which we define
as α.

After controlling the sending rate of nodes, the total traffic
load in the network is less than the capacity of the wireless
channel. Nodes will not drop the packets due to lacking of
enough outgoing capacity. Thus Equation (1) can be rewritten
as Ch = αEh + C ′h = αEh + Nh+1

Nh
Ch+1. Through iteration,

we have:

C1 =
α

N1

h−1∑

i=1

NiEi +
Nh

N1
Ch

Since N1C1 = W , Ch can be computed as:

Ch =
1

Nh
(W − α

h−1∑

i=1

NiEi)

Substituting this result into Equation (2), we have:

C ′h =
1

Nh
(W − α

h∑

i=1

NiEi)

Based on the results of Lemma 1, we then analyze the
expected per-hop delay by establishing queue models. We
suppose that in the network layer of a node, packets that come
up from the MAC layer (to be relayed) and those that are
passed down from the application (to be sent) are served on a
first-come, first-served basis.

H h-1 01hh+1

source sink

h

h h
N C

h h
N C

Fig. 2. Propagation Path and Virtual Queue

Figure 2 shows the propagation path of a packet from the
source that is H hops away from the sink. Numbers above the
node circles represent the hop numbers. We consider all the
nodes in hop layer h as a queue, so that results of queuing
theory could be leveraged for the analysis. Then the whole
network can be considered as a chain of queues, each for a hop
layer. For the queue representing all the nodes in hop layer h,
the mean arrival rate λ is the total incoming throughput NhC ′h,
and the mean service rate µ is the total outgoing throughput
NhCh, as shown in Figure 2.

We utilize two queue models for delay estimation, regarding
to whether or not nodes produce their own traffic: 1) when
nodes in hop layer h produce their own traffic (i.e., Ch > C ′h),
we approximate them with a M/M/1 queue; and 2) when
nodes in hop layer h do not produce their own traffic (i.e.,
Ch = C ′h), we approximate them with a D/D/1 queue1.

Both M/M/1 queue and D/D/1 queue are simple queue
models. Usually M/M/1 queue is closer to the actual net-
work environment than the D/D/1 queue [26]. However, a
constraint of M/M/1 queue is that it is stable only if the
service rate µ is greater than the arrival rate λ (i.e., Ch > C ′h).
Queuing theory shows that only with this constraint, the queue
will not keep growing forever, and the expected waiting time
will not approach infinity. For the Ch = C ′h case, the expected
waiting time of M/M/1 queue will approach infinity and
therefore is useless for delay analysis. Thus, we adopt the
feasible D/D/1 queue model for this case, which is not as
accurate as M/M/1 queue though.

From queuing theory, the waiting time of a packet in a
queue is deterministic for D/D/1 queue and exponentially
distributed for M/M/1 queue [25]. Then the expected waiting
time of a packet in hop layer h (i.e., the deterministic delay
of D/D/1 queue or the mean of the exponentially distributed

1Based on the Kendall notation, M/M/1 is a queue with Poisson arrival
process, exponential service time, one server, and infinite buffer. D/D/1 is a
queue with deterministic arrival rate and service time, one server, and infinite
buffer [25].



delay of M/M/1 queue) is:

Th,H =

{
1

µ−λ = 1
NhCh−NhC′

h
, (Ch > C ′h)

1
µ = 1

NhCh
, (Ch = C ′h)

where H is the hop layer in which the packet is generated.
Substituting Equations (4) and (5) into it, the expected per-

hop waiting time can be expressed as:

Th,H =

{
1

αNhEh
, (Ch > C ′h)

1

α
∑Hmax

i=h
NiEi

, (Ch = C ′h) (6)

Then the expected end-to-end waiting time is:

Te2e,H =
H∑

h=1

Th,H (7)

Equations (6) and (7) show the distribution of the expected
delays that a packet is likely to experience, which serves as a
foundation for distributing the end-to-end slack time to multi-
hops as needed.

V. SLACK TIME DISTRIBUTION

How the end-to-end slack time is distributed to multi-
hops embodies how a system considers network congestion
and message velocity. The slack distribution scheme may be
different in different network environments.

The chain model and the continuous model are two typical
special cases of event-driven sensor networks with the many-
to-one traffic pattern. First, a many-to-one sensor network will
degenerate to a chain architecture when only one source node
generates traffic and propagates it via a single route. Along
the chain path, there is no congestion and the packet velocity
does not need to change, since no other traffic will interfere its
transmission. Secondly, recall that each node in a continuous
WSN produces an equal amount of original traffic. Thus a
continuous sensor network is a special case of event-driven
sensor networks with extremely average traffic loads.

As previously mentioned, most existing works adopt either
a uniform distribution or an exponential distribution for par-
titioning the end-to-end slack time, which works well for the
chain model and the continuous model respectively. Uniform
distribution allocates the total end-to-end slack time evenly to
all the hops from the source to the sink, implicitly assuming
that a packet suffers the same delay at each intermediate node
along the path. In [7], Liu et. al. present an exponential model,
where the per-hop slack time is computed as Lh = Le2e

2h ,
where L is the slack time and h is the number of hops
from the sink node. Obviously, uniform distribution is exactly
suitable for the chain model, while exponential distribution
signifies the strictly monotonous increase of traffic loads in
the continuous network model, as the hop number decreases.
However, both of them are completely based on mathematical
models without considering much of the realistic network
requirements. Moreover, neither of them is suitable for generic
event-driven sensor networks with unbalanced traffic patterns.

In a generic sensor network with unbalanced many-to-one
traffic pattern, the traffic load of nodes gets more and more as

the hop distance from the sink decreases [27]. Consequently,
the message velocity will decrease as a packet approaches
the sink. Such an ever-changing message velocity requires
variable slack times at each hop, i.e., nodes that are closer
to the sink deserve more slack time as packets suffer more
delay. At the same time, the increase of traffic loads may
not be strictly monotonous, as it is possible that some relay
nodes do not produce traffic with a given event distribution.
Therefore, a generic slack distribution should hold a similar
trend of monotonous increase as the exponential model, but it
may not be strict.

A. Distribution Model

We design a new model to distribute the end-to-end slack
time to multi-hops as needed, based on a specific event
distribution and the corresponding estimated delays given in
Section IV. It can meet the requirements of realistic networks
instead of simply establishing a mathematical model.

In details, we distribute the end-to-end slack time Le2e,H

in a proportional manner to the expected delay determined by
Equation (6). Such a distributed per-hop slack can be actually
considered as a sub-deadline for that hop.

Definition 1 (Per-hop Slack): If the throughputs of all the
hops along a packet’s routing path are known, the per-hop
slack time for hop h is given as:

Lh,H =
Th,H

Te2e,H
· Le2e,H

Next we define a probability of meeting each of the sub-
deadlines to verify the advantage of this slack time distribution
scheme. The probability that a packet experiences less time
than the distributed per-hop slack Lh,H can be expressed as:

P [t ≤ Lh,H ] = 1− e
−Lh,H

Th,H = 1− e
−Le2e,H

Te2e,H (8)

From Equation (8), we observe that by the definition of this
slack distribution scheme, the probability that a packet meets
the per-hop deadline is independent of the hop number h.

Definition 2 (Per-hop Success Probability): Given
the deadline De2e,H and a slack time distribution
{Lh,H |1 ≤ h ≤ H} for a packet generated in hop
layer H , the per-hop success probability is defined as the
probability that all the sub-deadlines at H hops are satisfied:

Pe2e(De2e,H ,H)
= P [t1 ≤ L1,H , · · · , th ≤ Lh,H , · · · , tH ≤ LH,H ]
= P [t1 ≤ L1,H ] · · ·P [th ≤ Lh,H ] · · ·P [tH ≤ LH,H ]

= (1− e
−Le2e,H

Te2e,H )H = (1− e
− Le2e,H∑H

h=1
Th,H )H

(9)

where th is the time actually spent on a node in hop layer h.
Pe2e(De2e,H , H) is a function of a packet’s route length and

its deadline in a given network environment with a specific
event distribution.

Theorem 1 (Optimal Slack Distribution Theorem): Based
on the relation between the event distribution and the
expected delays, the slack distribution scheme determined



by Definition 1 is optimal in terms of achieving the highest
per-hop success probability.

Proof: Without loss of generality, we consider the case
of two hops. Thus

P [t1 ≤ L1,H , t2 ≤ L2,H ] = (1− e
−Le2e,H

Te2e,H )2

Now, suppose that a different slack distribution scheme
distributes the end-to-end slack time to these two hops with
L1,H + δ and L2,H − δ (∀ δ > 0), instead of L1,H and L2,H .
Then the per-hop success probability will become:

P [t1 ≤ L1,H + δ, t2 ≤ L2,H − δ]

= (1− e
−Le2e,H

Te2e,H · e−
δ

T1,H ) · (1− e
−Le2e,H

Te2e,H · e
δ

T2,H )
(10)

We substitute the complicated expressions in Equation (10)

with constants for simplification. Let Y = e
−Le2e,H

Te2e,H , A =
e
− δ

T1,H , and B = e
δ

T2,H . Then we can tell 0 < Y < 1 and
0 < A < 1 < B. Now, what we need to prove is simply
(1−AY )(1−BY ) < (1− Y )2 ⇔ (AB− 1)Y < A + B− 2.
This inequality can be proved as,

Left = (AB − 1)Y < AB − 1
= (A− 1)(B − 1) + A + B − 2
< A + B − 2 = Right

As δ is arbitrary, the slack distribution scheme in Defini-
tion 1 is guaranteed to be optimal in terms of the per-hop
success probability.

Finally we provide the computational complexity for dis-
tributing the slack time and computing the per-hop success
probability. Given an event distribution Ê and a network size
Hmax, the complexity for computing Te2e,H with Equation (7)
is O(H2

max). Thus, the complexity for computing a new per-
hop slack time Lh,H with Definition 1, and the complexity for
computing the per-hop success probability Pe2e(De2e,H ,H)
with Equation (9) are also O(H2

max).

B. Application Examples

As long as the event distribution is given, the new slack
time distribution scheme can be generally applied to all the
cases of event-driven sensor networks with the many-to-one
traffic pattern, including those special cases where uniform
distribution and exponential distribution used to work well.
Now we first study the chain model and the continuous model,
and show how the new slack time distribution can be applied.
From the study, we will find that the new slack distribution
scheme yields consistent or similar results as that of the past
works. In addition, our results for event-driven sensor networks
are more generic by taking the event distribution into account.
Then we present two examples on applying the slack time
distribution to configuring the end-to-end deadline of a packet,
and adjusting the priority of packets for dynamic priority
scheduling.

1) Chain Model: When only one node in the network
produces traffic, the many-to-one convergecast architecture
will degenerate to a chain model, in which a single path
connects and relays traffic loads from the source node to the
sink node. Assume that the source node is located in hop layer
H . For each hop layer h ∈ [1,H−1]∪[H+1,Hmax], nodes do
not produce their own traffic, i.e., Eh = 0 and Ch = C ′h. The
only traffic source is shown as EH > 0. Thus, the expected
delay for ∀ h ∈ [1,H − 1] is:

Th,H =
1

α
∑Hmax

i=h NiEi

=
∑Hmax

i=1 NiEi

W
∑Hmax

i=h NiEi

=
NHEH

WNHEH
=

1
W

For the hop layer H , the source node produces its own
traffic. Thus:

TH,H =
1

αNHEH
=

∑Hmax

i=1 NiEi

WNHEH
=

NHEH

WNHEH
=

1
W

Therefore:

Te2e,H =
H∑

h=1

Th,H =
H∑

h=1

1
W

=
H

W

So based on Definition 1, the per-hop slack time can be
distributed as Lh,H = Le2e,H

H , which is independent of the
hop number. This is consistent with the result that a uniform
distribution will yield.

The per-hop success probability then is:

Pe2e(De2e,H ,H) = (1− e
−Le2e,H

Te2e,H )H = (1− e−
W Le2e,H

H )H

2) Continuous Model: In a continuous sensor network, all
the nodes produce the same traffic load. Therefore for ∀ h, we
have Ch > C ′h and Eh = E (a constant). Assume that packets
produced by a node located in hop layer H are configured with
an end-to-end deadline De2e,H . Then, the expected delay for
∀ h ∈ [1, H] is:

Th,H =
1

αNhEh
=

∑Hmax

i=1 NiEi

WNhEh
=

∑Hmax

i=1 Ni

WNh

The end-to-end expected delay is:

Te2e,H =
H∑

h=1

Th,H =
∑Hmax

i=1 Ni

W

H∑

h=1

1
Nh

Thus, the per-hop slack time is:

Lh,H =
1

Nh∑H
h=1

1
Nh

Le2e,H

We may observe that the closer a hop layer is to the sink,
the smaller Nh is, and the larger their Lh,H will be. This
is consistent with the actual requirement that nodes closer to
the sink deserve more slack time in many-to-one sensor net-
works. Furthermore, when nodes are deployed randomly and
uniformly, this result yields strictly monotonously increasing
slack times as the hop number decreases, just as what the
exponential distribution looks like. But compared with the
exponential distribution scheme, the new slack distribution
scheme is optimal in terms of the per-hop success probability,
thereby more accurate for actual network requirements.



3) Deadline Configuration: An important application of the
new slack time distribution and the per-hop success probability
concept is to configure the end-to-end deadline for a packet.
In the past, most of research efforts simply assume a given
deadline for packets without discussing how this deadline
is computed or configured. In contrast, here, we provide an
approach for configuring the packet deadline based on the
requirement for the delivery probability.

For a packet generated in hop layer H , we can compute the
lower bound of its deadline, so that the per-hop success prob-
ability can be achieved to be greater than a given requirement
threshold β. Formally, this is computed as:

Pe2e(De2e,H ,H) = (1− e
−Le2e,H

Te2e,H )H ≥ β

⇐⇒ e
−Le2e,H

Te2e,H ≤ 1− β
1
H

⇐⇒ Le2e,H = De2e,H −Hτ ≥ −Te2e,H ln (1− β
1
H )

⇐⇒ De2e,H ≥ Hτ − Te2e,H ln (1− β
1
H )

4) Dynamic Priority Scheduling: This slack distribution
scheme can also be used for setting a packet’s priority based
on the computed per-hop sub-deadline.

Each time a packet produced in hop layer H proceeds for
a hop, e.g. from hop layer H to hop layer H − 1, it may be
considered as a different packet, which is initially produced
in hop layer H − 1 instead of hop layer H . And the end-
to-end deadline De2e,H−1 is just the remaining time to the
original deadline De2e,H . Notice that here we are using the
second subscript to differentiate parameters for the original
packet from those for the virtual one, e.g., De2e,H−1 means
the end-to-end deadline of the virtual packet that we suppose
is produced in hop layer H−1. If at hop H it consumes more
or less slack time than the expected LH,H , its remaining end-
to-end slack time Le2e,H−1 as well as the distribution has to
be recalculated, according to the original end-to-end deadline
and the time that actually elapses.

For example, we suppose that at hop H the packet consumes
a fixed necessary time τ and δ more slack time than the
distributed LH,H , then the remaining end-to-end slack time
Le2e,H−1 = Le2e,H − LH,H − δ. We recalculate the slack
time distributed to hop layer H − 1 as:

LH−1,H−1 =
TH−1,H−1

Te2e,H−1
· Le2e,H−1

=
TH−1,H

Te2e,H − TH,H
· (Le2e,H − LH,H − δ

)

=
LH−1,H

Le2e,H − LH,H
· (Le2e,H − LH,H − δ

)

= LH−1,H · (1− δ

Le2e,H − LH,H

)

(11)

Based on the actual slack time that elapses in the pre-
vious hop, Equation (11) shows by how much percentage
the distributed slack time should change for the current hop.
Accordingly, the priority of the packet may need to be changed

to guarantee to meet this new sub-deadline. This builds a
foundation for dynamic priority scheduling.

VI. REAL-TIME CAPACITY

We now define the concept of real-time capacity. Also we
study some examples for potential applications of this real-
time capacity.

A. Definition
In the previous research efforts, the capacity of wireless ad

hoc and sensor networks is usually defined as a function of
the network size. The upper or lower bounds of the network
capacity are often the research focus [3], [13]. Delay has been
studied usually as a constraint for the capacity [9]. In [21], the
real-time capacity is defined as the upper bound of the sum
of all the in-transit packets’ ratio of the packet size divided
by their respective deadlines, i.e., CRT = W

∑ Ci

Di
, where Ci

and Di are the transmission time and the deadline of packet
i, respectively. However, [21] has used this definition as a
network-wide term without considering per-hop details.

Sometimes network-wide conditions cannot provide suffi-
cient guarantees especially for event-driven sensor networks
with unbalanced traffic pattern. For example, two nodes each
with 100 bit/s capacity cannot simultaneously guarantee the
timely delivery of a data flow requiring 20 bit/s capacity and
another requiring 150 bit/s capacity.

In this paper, we define real-time capacity based on the
per-hop success probability given by Definition 2, i.e., the
probability that a packet meets the per-hop deadline of all
its hops. Let β denote a threshold for the per-hop success
probability that must be satisfied. We define real-time capacity
as follows.

Definition 3 (Real-time Capacity): The real-time capacity
of an event-driven data-gathering sensor network is defined
as the sum of traffic loads, the per-hop success probability of
which is higher than a given requirement threshold β i.e.,

RTC(β) = α ·
1≤i≤Hmax∑

Pe2e(De2e,i,i)≥β

NiEi (12)

As in Lemma 1, α = W∑Hmax

i=1
NiEi

is the rate control factor.

This real-time capacity defines how much real-time data (in
bit per second) the network can deliver before their deadlines
with a per-hop success probability that is greater than the
given threshold β, for an arbitrary event distribution Ê. Based
on the computational complexity for calculating the per-hop
success probability, the complexity for computing the real-time
capacity RTC(β) is O(H3

max).

B. Application Examples
As in Section V, we also provide some examples for

the potential application of the real-time capacity concept.
In fact, the computation of real-time capacity itself is an
important application, which can be utilized as the foundation
for network configuration and rate control. Besides this, we
introduce two more applications based on the result of real-
time capacity.



1) Capacity Efficiency: The efficiency of the network ca-
pacity is an important metric for estimating the performance
of network optimization [28]. It is defined as the percentage
of the utilized capacity in the total network capacity. Based
on Definition 3, the efficiency of real-time capacity, denoted
as CE(β), can be expressed as:

CE(β) =
RTC(β)

W
=

∑1≤i≤Hmax

Pe2e(De2e,i,i)≥β NiEi
∑Hmax

i=1 NiEi

CE(β) is a function of the requirement threshold β. As
β increases but the event distribution and the deadline con-
figuration keep unchanged, the traffic load that can meet the
required timely delivery probability will decrease, accordingly
CE(β) will decrease. With the distribution of CE(β) over β,
we would be able to either find out the tradeoff point, where
both the capacity efficiency and the reliability of real-time data
delivery can satisfy their respective constraints, or otherwise
draw a negative conclusion.

2) Deadline Configuration Verification: In Section V, we
provided an application example of the slack time dis-
tribution to configure the deadline for a specific packet
stream generated in a specific hop layer H . Now we
could utilize the concept of real-time capacity to verify
whether or not a network-wide deadline configuration, D̂ =
{De2e,1, De2e,2, · · · , De2e,Hmax}, can meet the requirement of
the timely delivery probability.

In Definition 3, real-time capacity is a function of both
β and a network-wide deadline configuration D̂ (implicitly).
Consequently, β is a function of both real-time capacity RTC
and D̂, i.e.,

β = F
(
RTC, D̂

)

For a given network-wide deadline configuration D̂ as well
as a real-time capacity distribution over β, we can find out
whether or not the required threshold β can be satisfied, i.e.,
whether or not real-time data delivery can be probabilistically
guaranteed.

This provides another approach for checking the configu-
ration of the packet deadlines of a specific application, other
than the one discussed in Section V.

VII. CONCLUSIONS & FUTURE WORK

This paper investigates the real-time capacity of event-
driven data-gathering sensor networks with the unbalanced
many-to-one traffic pattern. We establish the relation between
the event distribution and the average allowable throughputs
of nodes. Then we leverage M/M/1 and D/D/1 models of
queuing theory to estimate the expected per-hop delays, so as
to distribute the end-to-end slack time proportionally to these
expected delays. We introduce the concept of per-hop success
probability to estimate the probability that a packet can reach
the sink node meeting all of its sub-deadlines. In terms of the
per-hop success probability, we verify that the new slack time
distribution scheme is optimal. Finally, we define the real-
time capacity of the network. Some examples are given for
the potential application of the research results of this paper.

In addition, we study two special cases of network models,
the chain model and the continuous model. Compared with
past works, our slack distribution scheme yields consistent or
similar results for these two special cases as that of past works,
but is more adaptive by supporting more generic cases.

The future work includes but not limited to:
• Dynamic event distribution. Instead of considering static

event distribution only, the slack time distribution would
be more accurate and more adaptive if dynamic event
distribution is considered with random processes. A typ-
ical example that requires the support for dynamic event
distribution is mobile target tracking and predicting.

• Further applications. In this paper, we discuss several ap-
plication examples of the slack time distribution scheme
and real-time capacity. Many more potential applications
can be explored, e.g., for rate control. Based on real-time
capacity, the transmission rate of source nodes can be
monitored to make the best use of network resources,
but avoid any unnecessary congestions and delays at the
same time.

• Multiple sink nodes. In realistic sensor networks, design-
ers usually deploy multiple sinks to improve the network
performance such as the end-to-end delay. The real-time
capacity of sensor networks with multiple sink nodes
needs to be revised based on the results of this paper.
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