
An OpenMP Runtime for Transparent Work Sharing
Across Cache-Incoherent Heterogeneous Nodes

Robert Lyerly

Virginia Tech

rlyerly@vt.edu

Changwoo Min

Virginia Tech

changwoo@vt.edu

Christopher J. Rossbach

University of Texas at Austin and VMware Research

rossbach@cs.utexas.edu

Binoy Ravindran

Virginia Tech

binoy@vt.edu

Abstract
In this work we present libHetMP, an OpenMP runtime for

automatically and transparently distributing parallel compu-

tation across heterogeneous nodes. libHetMP targets plat-

forms comprising CPUs with different instruction set archi-

tectures (ISA) coupled by a high-speed memory interconnect,

where cross-ISA binary incompatibility and non-coherent

caches require application data be marshaled to be shared

across CPUs. Because of this, work distribution decisions

must take into account both relative compute performance of

asymmetric CPUs and communication overheads. libHetMP
drives workload distribution decisions without programmer

intervention by measuring performance characteristics dur-

ing cross-node execution. A novel HetProbe loop iteration

scheduler decides if cross-node execution is beneficial, and

either distributes work according to the relative performance

of CPUs when it is, or places all work on the set of homoge-

neous CPUs providing the best performance when it is not.

We evaluate libHetMP using compute kernels from several

OpenMP benchmark suites and show a geometric mean 41%

speedup in execution time across asymmetric CPUs.

CCSConcepts: •Computer systems organization→Mul-
ticore architectures; Heterogeneous (hybrid) systems; Mul-
ticore architectures;Heterogeneous (hybrid) systems; • Soft-
ware and its engineering→Distributedmemory;Distributed
memory.

Keywords: heterogeneous-ISA CPUs, OpenMP, work shar-

ing

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

Middleware ’20, December 7–11, 2020, Delft, Netherlands
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8153-6/20/12. . . $15.00

https://doi.org/10.1145/3423211.3425679

ACM Reference Format:
Robert Lyerly, Changwoo Min, Christopher J. Rossbach, and Bi-

noy Ravindran. 2020. An OpenMP Runtime for Transparent Work

Sharing Across Cache-Incoherent Heterogeneous Nodes. In 21st
International Middleware Conference (Middleware ’20), December
7–11, 2020, Delft, Netherlands. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3423211.3425679

1 Introduction
In recent years there has been a shift towards increasingly

heterogeneous platforms in order to cope with the slowdown

of Moore’s Law [53]. As chip designers have faced resistance

in scaling single-core [52] and multicore [20] performance

due to physical limitations, they have responded by incor-

porating more specialized processors into systems [45, 46].

These emerging heterogeneous systems are increasingly nec-

essary to deal with future challenges, e.g., Amazon has be-

gun offering cloud instances with different types of CPUs to

match analytics workloads [9] and the Summit supercom-

puter combines CPUs and GPUs for enhanced performance

and power efficiency [2]. The path forward for tackling these

challenges is through increasing architectural diversity.

Chip manufacturers have begun diversifying server-grade

CPU designs to strike different levels of single-threaded per-

formance, parallelism and energy efficiency. For example,

Intel Xeon [33] CPUs package tens of cores with high single-

threaded performance, whereas Cavium ThunderX2 [44]

CPUs instead package a large number of lower-performance

cores. At the same time, chip designers have begun tightly

coupling heterogeneous compute elements for power and

performance benefits – for example, Intel’s Agilex platform

combines Xeon CPUs with FPGAs and ARM processors into

a single physical processor package [5]. These trends sug-

gest future platformsmay provide greater architectural diver-

sity by integrating asymmetric general-purpose server-grade

CPUs into a single motherboard or package.

We envision a system with heterogeneous CPUs, each of

which has its own physical memory, connected by either a

point-to-point connection such as PCIe [1] or a fast memory

bus such as AMD’s Infinity Fabric [34]. These CPUs will also

likely use heterogeneous instruction set architectures (ISAs),

1

https://doi.org/10.1145/3423211.3425679
https://doi.org/10.1145/3423211.3425679

Middleware ’20, December 7–11, 2020, Delft, Netherlands Lyerly et al.

Figure 1. Execution time of OpenMP benchmarkswithwork-

sharing regions executed entirely on an x86 Intel Xeon, en-

tirely on an ARM Cavium ThunderX, and when leveraging

both with libHetMP. How can the runtime automatically de-
termine the best workload distribution configuration across
heterogeneous CPUs to optimize performance?

which have been shown to provide better performance and

energy efficiency than asymmetric single-ISA CPUs [19, 54].

For developers, the ability to optimize performance and en-

ergy efficiency of applications on such systems will be es-

sential, but leveraging diverse architectures together is a

daunting task. While cores within a homogeneous set of

CPUs, termed a node, provide cache coherence, there is no
coherence between heterogeneous CPUs. This necessitates

software memory consistency and data movement between

discrete memory regions. Additionally, because these CPUs

use different ISAs, data must be marshaled to be shared.

Data must either be laid out in a common format by the

compiler or dynamically transformed when transferred at

runtime. Traditional programming models like MPI [23] are

a poor fit for programming these tightly-coupled heteroge-

neous servers as they require developers tomanuallymanage

memory consistency and work distribution.

Recent works such as K2 [35] and Popcorn Linux [7, 8, 30]

instead use distributed shared memory (DSM) on tightly-

coupled heterogeneous CPU systems for better programma-

bility, transparency and flexibility. In addition to supporting

cross-ISA execution migration [7, 19, 54], these systems pro-

vide transparent and on-demand data marshaling between

nodes. Because of this transparency, multiple discrete mem-

ory regions appear as shared memory to applications. Dis-

tributing parallel computation across heterogeneous-ISA

CPUs becomes simpler as parallel runtimes can assign work

items to CPUs and let the DSM transparently marshal data.

On-demand marshaling is expensive, however, and can have

a significant performance impact in cross-node execution.

For tightly-coupled heterogeneous CPU platforms, the

challenge is how to optimally distribute parallel work to

balance per-CPU performance against DSM communication

overheads. For example, Figure 1 shows the execution time

of three OpenMP HPC benchmarks when run on an Intel

Xeon E5-2620v4, a Cavium ThunderX, and when utilizing

both simultaneously with the libHetMP runtime presented

in this work. Because of cross-node traffic, it is not always

beneficial for a parallel computation to utilize the process-

ing resources of both CPUs together – BT-C is fastest when

run entirely on the ThunderX’s large number of small cores

and streamcluster is instead fastest when run entirely on

the Xeon. For lavaMD, however, utilizing both processors

in tandem leads to the best performance as cross-node data

accesses (and thus DSM traffic) are limited. Because no work

distribution is best for all applications, how can parallel work-
loads automatically and transparently leverage heterogeneous
CPUs to maximize performance?

We present libHetMP, an OpenMP runtime for automati-

cally work sharing parallel computation in heterogeneous

CPU systems. Our target platform consists of architecturally-

diverse CPUs coupled via point-to-point connection or high

speed bus. Because no such platform is commercially avail-

able, we emulate such a system by connecting servers with

heterogeneous-ISA CPUs using Infiniband. libHetMP trans-

parently reorganizes OpenMP execution for multi-node sys-

tems, eliminating sources of DSM overheads and extending

existing OpenMP primitives to support heterogeneous CPUs.

For work distribution, libHetMP uses a measurement-based

approach to characterize an application’s performance and

automatically distribute work to nodes to achieve the best

performance. libHetMP allows developers to use OpenMP,

a well-known and mature parallel programming model, in

emerging heterogeneous-ISA CPU systems while also ab-

stracting away the underlying system architecture so de-

velopers do not have to reconfigure work distribution for

these emerging systems. Although the current implementa-

tion targets 2-node systems, it is straightforward to extend

libHetMP to systems with arbitrary numbers of nodes.

libHetMP includes a new HetProbe loop iteration sched-

uler that dynamically measures and distributes parallel work

to best utilize heterogeneous CPUs. The HetProbe sched-

uler targets regular work-shared loops, where each loop

iteration performs the same amount of computation using

similar memory access patterns. The HetProbe scheduler

analyzes the behavior of a small number of initial loop it-

erations and determines whether the remaining iterations

should be executed across multiple nodes. If cross-node exe-

cution is beneficial, the HetProbe scheduler distributes work

to threads based on the relative performance of each CPU.

If work sharing across nodes causes too much communica-

tion, the HetProbe scheduler executes all work on the set of

cache-coherent homogeneous CPUs best suited for a given

computation. The difficult process of where to distribute

work is transparently automated by libHetMP.
In this work we make the following contributions:

• The design and implementation of libHetMP, a newOpenMP

runtime that distributes threads and parallel work across

cache-incoherent heterogeneous CPU systems without pro-

grammer intervention;

• Extensions to shared memory OpenMP synchronization

primitives and loop iteration schedulers to adapt execution

to heterogeneous CPUs and minimize DSM overheads;

2

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes Middleware ’20, December 7–11, 2020, Delft, Netherlands

• Measurement tools built into the runtime that monitor met-

rics such as data transfer costs and hardware performance

counters to make workload distribution decisions;

• The HetProbe loop iteration scheduler, which uses these

metrics to automatically determine where to place compu-

tation in order to minimize DSM overheads and leverage

architectural diversity to achieve the best performance;

• An evaluation of libHetMP using 10 benchmarks from 3

benchmark suites that shows up to a 4.7x speedup when

work sharing across a Xeon and ThunderX versus homoge-

neous execution on the Xeon. We also show the HetProbe

scheduler is able to make the right workload distribution

choice in all benchmarks, including evaluating decisions

on two interconnects.

2 Background
libHetMP is a multithreading runtime for OpenMP [42],

a directive-based parallel programming model for C, C++

and Fortran applications. OpenMP is widely used in high-

performance computing [24][18][48] because of its flexibil-

ity to express many different forms of parallel computation

such as data parallelism (including hardware-based single

instruction/multiple data computation), bag-of-tasks paral-

lelism, synchronization and reductions [42]. OpenMP targets

shared-memory systems (unlike programming models such

as MPI [23] which uses message passing or OpenCL [28] for

accelerators) but has continually evolved into new contexts,

such as providing offloading directives for GPUs [42].

OpenMP specifies a set of directives that developers add to

applications to parallelize execution. The compiler is respon-

sible for converting OpenMP directives into function calls

into the OpenMP runtime, which spawns teams of threads,

partitions parallel work between threads and provides syn-

chronization capabilities. For loop work sharing regions as

shown in Listing 1 (e.g., pragma omp for), parallel work is

distributed by assigning loop iterations to threads. The vector

sum in Listing 1 shows an example of a work sharing region

with regular loop iterations – each iteration performs the

same amount of work and iterations have the same memory

access patterns (affine accesses based on the loop iteration

variable). Regular work-shared loops are a common class of

data parallelism – with predictable compute and memory

access patterns, they are amenable to fine-grained analysis

and partitioning across multiple devices [36][49].

OpenMP assumes architectural uniformity and current

implementations do not target heterogeneous-ISA CPUs.

In order to support execution across such CPUs, the sys-

tem software (compiler, OS, runtime) must provide a shared-

memory abstraction. Even if this abstraction exists, opti-

mizing OpenMP for heterogeneous CPU systems requires

re-designing how parallel work is assigned to CPUs in con-

sideration of system and interconnect performance charac-

teristics. Before describing libHetMP, we first describe how
previous works enable execution across heterogeneous-ISA

1 in t vecsum (const int ∗ vec , s i z e _ t num) {

2 s i z e _ t i ;

3 in t sum = 0 ;

4 #pragma omp parallel for reduction(+:sum)
5 for (i = 0 ; i < num ; i ++) sum += vec [i] ;

6 return sum ;

7 }

Listing 1. OpenMP vector sum. OpenMP directives instruct

the runtime to spawn threads, distribute loop iterations to

threads and combine results from each thread.

CPUs. Throughout the work we refer to nodes as a set of

single-ISA cache-coherent processors, e.g., each of the Xeon

and ThunderX CPUs is considered a node.

Heterogeneous-ISA Execution. Unlike ARM’s big.LIT-

TLE architecture [21], which provides cache-coherence across

same-ISA heterogeneous cores, there exist no server-grade

cache-coherent heterogeneous CPUs. Past systems that cou-

ple together overlapping-ISA architectures (e.g., Xeon/Xeon

Phi) are defunct; system designers wishing to couple to-

gether asymmetric processors today must integrate CPUs of

different ISAs. Thus the system software (compiler, operating

system, runtime) must handle both ISA heterogeneity and

memory consistency. Previous works [7, 19, 54] describe sys-

tem software for migrating compiled shared-memory appli-

cations between heterogeneous-ISA CPUs at runtime. While

these works describe similar designs, we leverage Popcorn

Linux [7] due to its availability.

Multi-ISABinaries. Similarly to past works [19, 54], Pop-

corn Linux’s compiler builds multi-ISA binaries which are

capable of cross-ISA execution. Multi-ISA binaries consist of

one aligned data section and multiple per-ISA code sections,

one for each target ISA in the system. To enable cross-ISA

execution, the compiler arranges the application’s global

address space to be aligned across ISAs so that pointers

to globally-visible data and functions refer to the same ad-

dresses on all nodes. Additionally, the compiler generates

metadata describing function stack layouts at equivalence
points [55]. This metadata describes the locations and type

information (e.g., pointer-type) of live values so that stack

frames can be reconstructed for the destination ISA.

Thread Migration. Threads migrate between nodes at

migration points, a subset of equivalence points chosen by

the compiler or user. libHetMP adds migration points in-

side the OpenMP runtime to automate distributing thread

teams across nodes. To migrate between nodes, threads en-

ter a state transformation runtime that walks the thread’s

stack and transforms it to the destination ISA’s layout. After

transformation, threads pass a transformed register set to a

migration system call and are returned to normal execution

on the destination CPU with the registers (several works

implement this mechanism for homogeneous-ISA [35, 38]

or heterogeneous-ISA [7, 8, 30] systems). Unlike offloading

3

Middleware ’20, December 7–11, 2020, Delft, Netherlands Lyerly et al.

Figure 2. DSM protocol. Pages are migrated on-demand by

observing memory accesses through the page fault handler.

Pages read by threads on multiple nodes are replicated with

read-only protections while only one node may have exclu-
sive write permissions for a page.

where only a statically selected region of computation is ex-

ecuted on the target, transforming the stack allows threads

to stay on target nodes for arbitrary lengths of time.

Page-level Distributed Shared Memory. Once threads
have migrated to new nodes, they must be able to access ap-

plication data. OS-level DSMs such as those proposed by Ker-

righed [38], K2 [35] and Popcorn Linux observe remote mem-

ory accesses inside the page fault handler and migrate data

pages similarly to a cache coherence protocol. By carefully

manipulating page permissions, the OS forces the application

to fault when accessing remote data. When a fault occurs, the

kernel on the source (i.e., faulting) node requests the page

from the remote node that currently owns the page. The page

is transferred from the remote to the source and mapped

into the application’s address space. The memory access is

restarted and application threads are unaware that data was

fetched over the interconnect. In this way, data is marshaled

between nodes transparently and on demand. Note that soft-

ware memory consistency would be required even for het-

erogeneous CPUs with (cache-incoherent) shared memory

in order to prevent lost or reordered writes due to differing

memory consistency models.

Many DSM systems use a multiple-reader, single-writer
protocol as shown in Figure 2. In addition to data, nodes

request access rights based on the type of memory access. If

multiple nodes read data from the same page, the protocol

replicates the page with read-only permissions and all nodes

can read the data in parallel. If a thread writes to a page,

the node first invalidates all other copies of the page from

other nodes and then acquires exclusive write access. Any

subsequent attempts to read or write the page on other nodes

will cause a fault and access rights must be re-acquired.

Cross-node Execution Challenges. Unlike traditional
shared memory multiprocessor systems that share data at

a cache-line granularity, DSM systems share data at a page

granularity due to observingmemory accesses via page faults.

Additionally, the cost of bringing data over the interconnect

and managing access permissions is significantly higher than

a traditional memory access – rather than taking tens to hun-

dreds of nanoseconds, page migration takes tens of microsec-

onds (see Section 3). These two characteristics mean that in

order for a parallel computation to benefit from leveraging

multiple heterogeneous CPUs simultaneously, data accessed

by threads on different nodes must partition cleanly between

pages and there must be enough computation to amortize

DSM costs. Otherwise, the application should only execute

parallel work on a single node.

3 Design
libHetMP builds on Popcorn Linux’s ability to distribute

threads and transparentlymarshal data across heterogeneous-

ISA CPUs. libHetMP’s goal is to automatically determine
where to place parallel computation in heterogeneous CPU sys-
tems to maximize performance. libHetMP incorporates two
new components into the OpenMP runtime. First, it provides

the mechanisms necessary to execute OpenMP-parallelized

computation across heterogeneous-ISA CPUs, including mi-

grating threads to different nodes and distributing parallel

work from work sharing regions to those threads. Second,

libHetMP automates work distribution decisions by mea-

suring system performance metrics. In particular, libHetMP
analyzes DSM activity over the interconnect between CPUs

and performance counters. libHetMP implements a new loop

iteration scheduler, called the HetProbe scheduler, that uses
those metrics to make work distribution decisions. Using

these metrics, the HetProbe scheduler either utilizes cross-

node execution or selects a single node on which to execute.

libHetMP alleviates developers from having to manually

configure applications for each new hardware setup, e.g.,

new CPUs or different types of interconnects.

3.1 OpenMP Across Heterogeneous-ISA CPUs
In order to support existing OpenMP applications, libHetMP
must be compatible with existing semantics and therefore ab-

stract all mechanisms behind runtime entry points. libHetMP
inserts migration points when starting thread teams in order

to execute OpenMP parallel regions across nodes. After

thread migration, libHetMP internally separates runtime

chores (work distribution, synchronization, performance

monitoring) into per-node and global operations in order to

minimize DSM traffic generated by the runtime itself. The

runtime must 1) organize and place threads across nodes to

minimize cross-node communication and 2) distribute work,

including measuring application performance across and

within nodes to adjust distribution decisions.

Cross-Node Execution. When starting a parallel re-

gion, libHetMP organizes threads into a thread hierarchy to

break synchronization down into per-node and global opera-

tions, significantly reducing the amount of cross-node traffic

caused by synchronization. At application startup, libHetMP
queries the system to determine each node’s characteristics,

4

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes Middleware ’20, December 7–11, 2020, Delft, Netherlands

Figure 3. libHetMP’s thread hierarchy. In this setup,

libHetMP has placed 3 threads (numbered 1-12) on each

node. For synchronization, threads on a node elect a leader

(green) to represent the node at the global level. Non-leader

threads (red) wait for the leader using local synchronization

to avoid cross-node data accesses.

i.e., type and number of CPUs available, and uses this in-

formation to initialize the thread hierarchy. As threads are

spawned or re-initialized, libHetMP calls the OS’s thread

migration function to physically place threads according to

the hierarchy. The runtime migrates threads to nodes based

on how many threads are executing the parallel region and

howmany CPUs are available on each node – for example, in

a setup containing a 16-core Xeon and a 96-core ThunderX,

libHetMP spawns and places 16 and 96 threads, respectively,
for a total of 112 threads. Internally, libHetMP initializes

per-node data structures like loop iteration scheduler meta-

data, barriers and counters based on the hierarchy. libHetMP
also initializes global variants of these data structures for

cross-node synchronization (see below). libHetMP allows

re-configuring the thread hierarchy between parallel regions,

which is useful for dynamically adjusting parallel execution.

Synchronization. libHetMP uses the thread hierarchy

for many types of synchronization, including barriers, reduc-

tions and work distribution. libHetMP builds upon previous

work by Lyerly et al. [37], which refactors OpenMP execu-

tion for DSM on homogeneous clusters. Figure 3 illustrates

using the thread hierarchy for synchronization. When syn-

chronizing, threads on each node elect a node leader to act
on their behalf at the global level and the remaining non-

leader threads wait at per-node barriers. The node leaders act

as representatives for the node and communicate through

global data structures using DSM. The leader/non-leader

designation significantly reduces cross-node communication

as most threads do not touch global data (in the Xeon/Cav-

ium setup, only 2 threads touch global data instead 112).

For example, when executing parallel reductions the first

thread on a node to arrive is elected leader and waits for

all non-leader threads to make their local data available for

reduction. Once the leader has reduced data from all threads

on its node, it produces the node’s data for the final reduc-

tion at the global level. A global leader, elected in the same

fashion, is responsible for reducing data from all nodes.

Workload Distribution. OpenMP defines several loop
iteration schedulers that affect how iterations of a work-

shared parallel loop are mapped to threads. The default loop

iteration schedulers (static, dynamic) implement several

strategies with the goal of evenly partitioning work to avoid

overloaded straggler threads from harming performance.

libHetMP provides the ability to distribute iterations across

nodes by extending these schedulers to account for hetero-

geneity and to efficiently synchronize how threads grab it-

erations. Due to limitations in each (see below), libHetMP
introduces the HetProbe scheduler for automatic iteration

distribution in consideration of CPU and interconnect.

libHetMP assumes each node in the system contains a set

of homogeneous CPU cores with identical micro-architecture

and cache coherence. To quantify performance differences

between nodes, libHetMP defines a core speed ratio (CSR)

to rank the relative compute capabilities of individual CPU

cores on one node versus another. For example, a Xeon core

with a core speed ratio of 3:1 compared to a ThunderX core

means the Xeon core is considered 3x faster than a ThunderX

core and threads running on the Xeon will get 3x as many

loop iterations as threads on the ThunderX. Note that CSRs

are assigned to eachwork sharing region, as applicationsmay

have multiple work sharing regions that exhibit different

performance characteristics.

Cross-node static scheduler. OpenMP’s static sched-

uler evenly partitions loop iterations among threads, assign-

ing each thread the same number of iterations. The scheduler

implicitly assumes all CPUs are equal and all loop iterations

perform the same amount of work. Rather than considering

all threads equal, libHetMP allows developers to specify per-
node CSRs to skew work distribution for threads on different

nodes. The challenge, however, is that developers must man-

ually discover the ideal CSR for each work sharing region

and hardware configuration through extensive profiling.

Cross-node dynamic scheduler.With OpenMP’s dyna-
mic scheduler, threads continuously grab user-defined batches
of iterations from a global work pool using atomic opera-

tions on a global counter. This scheduler targets work shar-

ing regions where individual loop iterations perform vary-

ing amounts of work. libHetMP optimizes grabbing batches

using the thread hierarchy – threads first attempt to grab

iterations from a node-local work pool instantiated during

team setup. If the local pool is empty, the thread grabbing

iterations is elected leader and transfers iterations from the

global pool to the per-node pool. Because the leader repre-

sents the entire node, it grabs a batch of iterations for each

thread executing on the node. This reduces the number of

threads accessing the global pool and thus the amount of

global synchronization required for work distribution.

While not traditionally meant for load balancing on het-

erogeneous systems, the dynamic scheduler can load balance

work distribution based on the compute capacity of CPUs in

the system. However, continuous synchronization both at

5

Middleware ’20, December 7–11, 2020, Delft, Netherlands Lyerly et al.

the local and global level to grab batches of work can nega-

tively impact performance, especially with small batch sizes.

Users must again profile to determine the ideal per-region

and per-hardware batch size. Non-deterministic mapping of

loop iterations to threads can also cause “churn” in the DSM

layer for applications that execute the same work sharing

region multiple times. With deterministic mapping of itera-

tions to threads, data may settle after the first invocation as

nodes acquire the appropriate pages and permissions. The

dynamic scheduler prevents data from settling on nodes.

The main problemwith the default schedulers is that users

must extensively profile to find the best workload distribu-

tion configuration in a large state space, i.e., determine CSRs

or batch sizes for each individual work sharing region on ev-

ery new heterogeneous platform. Additionally, if cross-node

execution is not beneficial for a work sharing region due to

large DSM overheads, users must profile to determine the

best CPU for single-node execution and manually reconfig-

ure the thread team (including the thread hierarchy) to only

execute work-sharing regions on the selected CPU.

HetProbe scheduler. To avoid the tuning complexity of

the default schedulers, libHetMP introduces a new heteroge-
neous probing or HetProbe scheduler, for automatically con-

figuring execution of parallel computation. Developers only

need to specify the HetProbe scheduler like other OpenMP

schedulers, e.g., adding a schedule(hetprobe) clause to

a work sharing region, and libHetMP will transparently

handle distributing loop iterations to available CPUs. De-

velopers do not need to reason about DSM overheads or

performance characteristics of individual nodes. The Het-

Probe scheduler executes a small number of iterations across

both nodes, called the probing period, during which it mea-

sures per-core execution time, cross-node page faults and

performance counters to analyze a work sharing region’s

behavior. The HetProbe scheduler is designed to optimize

the performance of work sharing regions with regular loops,

where the behavior of one loop iteration is a good predictor

for the behavior of other iterations. The HetProbe scheduler

uses the performance analysis information gathered during

the probing period to distribute the remaining iterations as

described in Section 3.2.

The HetProbe scheduler must be precise when distribut-

ing iterations for the probing period in order to accurately

evaluate system performance. First, the scheduler issues a

constant number of loop iterations to each thread, regardless

of node, in order to compare the execution time of equal

amounts of work on each CPU. Second, the scheduler must

deterministically issue iterations, so that threads executing

a work sharing region multiple times receive the same batch

of iterations across invocations to account for the aforemen-

tioned data settling effect. If the HetProbe scheduler non-

deterministically distributes probe iterations, data might un-

intentionally churn and cause falsely higher DSM overheads.

libHetMP also implements a probe cache for applications
that execute a work sharing region multiple times. This has

two benefits – first, it allows the runtime to reuse previously

calculated statistics andworkload distribution decisions from

previous probing periods to avoid probing overheads. Sec-

ond, libHetMP uses multiple probing results to smooth out

measurement variation for shorter-running work sharing

regions. libHetMP uses an exponential weighted moving av-

erage for measurement statistics, which favors more recent

measurements and quickly converges on accurate values.

libHetMP uses this type of average because initial probing
values for regions may be inaccurate due to the DSM layer

initially replicating data across nodes whereas subsequent

executions may incur fewer DSM costs.

3.2 Workload Distribution Decisions
The HetProbe scheduler uses the execution time, page faults

and performance counters measured during the probing pe-

riod to determinewhere to execute parallel work. Specifically,

the HetProbe scheduler answers three questions:

1. Should the runtime leverage multiple nodes for
parallel execution?While coupling togethermultiple CPUs

provides more theoretical computational power, not all ap-

plications benefit from cross-node execution. As mentioned

in Section 2 there is a significant cost for on-demand data

marshaling and page coherency across nodes. To under-

stand DSM overheads, we ran a microbenchmark that varies

the number of compute operations executed per byte of

data transferred over the interconnect. Because there are no

server-grade heterogeneous-ISA CPUs integrated by point-

to-point interconnects, we approximate a system using the

experimental setup shown in Table 1 and evaluated the DSM

layer using two protocols, TCP/IP and RDMA.

The microbenchmark spawns one thread for every core

in every node in the system. It then runs a control loop that

stresses each node (i.e., each (𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑜𝑛𝑛𝑒𝑐𝑡)
pair) connected to the source node, i.e., the Xeon, because it
runs the single-threaded portion of applications. At the start

of the control loop, the source node threads initialize mem-

ory by touching all data pages to force the DSM protocol to

bring all pages back to the source node’s memory. The con-

trol loop then releases the other node’s threads (ThunderX)

to begin timed execution. Each ThunderX thread touches

non-overlapping sets of pages to force the DSM protocol to

transfer them to ThunderX memory. Finally, the ThunderX

threads perform varying amounts of compute operations

per page transferred. The microbenchmark calculates opera-

tions/second (incorporating the DSM costs) by timing how

long it takes to execute the loop to determine the break-even

point where cross-node execution is beneficial.

Figure 4a shows the compute throughput in millions of

floating point operations per second when varying the num-

ber of compute operations per byte of data transferred over

the interconnect. Figure 4b shows the average page fault

6

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes Middleware ’20, December 7–11, 2020, Delft, Netherlands

(a) Floating point operations per second

(b) Page fault period, i.e., microseconds between faults

Figure 4. Performance metrics observed when varying the

number of compute operations per byte of data transferred

over the interconnect. For example, a 16 on the x-axis means

16 math operations were executed per transferred byte or

65536 operations per page.

Table 1. Experimental setup

Description Xeon 2620v4 ThunderX

Vendor Intel Cavium

Cores 8 (16 HT) 96 (2 x 48)

Clock (GHz) 2.1 (3.0 boost) 2.0

LLC Cache L3 - 16MB L2 - 32MB

RAM (Channels) 32 GB (2) 128 GB (4)

Interconnect Mellanox ConnectX-4 56Gbps

period, i.e., elapsed time between subsequent page faults.

Intuitively, as threads perform more computation per byte

transferred, the computation is able to amortize the DSM

costs and reach peak throughput. As shown in Figure 4b,

there are significant latency differences between RDMA and

TCP/IP. Page faults using RDMA cost around 30 microsec-

onds, whereas they cost 90 and 120 microseconds for the

Xeon and Cavium servers, respectively, with TCP/IP. Thus,

the amount of computation needed to amortize DSM costs

when using TCP/IP is significantly higher than RDMA.

To determine if cross-node execution is beneficial, the

HetProbe scheduler calculates the page fault period by mea-

suring execution times and number of faults. The break-even

point when cross-node execution becomes beneficial can be

seen in Figure 4a when the microbenchmark is close to max-

imum throughput: above 512 operations/byte for RDMA,

32768 operations/byte for TCP/IP. Correlating these values

to Figure 4b, the runtime uses a threshold of 100 𝜇s/fault for

RDMA and 7600 𝜇s/fault for TCP/IP to determine whether

there is enough computation to amortize DSM costs and

benefit from executing across multiple CPUs. As faulting

latency drops (e.g., if CPUs share physical memory), fewer

compute operations are needed to amortize cross-node mem-

ory access latencies. When the interconnect between CPUs

changes, this microbenchmark can be re-used as a tool to

automatically determine the threshold value of when cross-

node execution becomes beneficial.

2. If utilizing cross-node execution, howmuchwork
should be distributed to each node? As mentioned pre-

viously, during the probe period the runtime measures the

execution time of a constant number of iterations on each

core in the system. The HetProbe scheduler uses this infor-

mation to directly calculate the core speed ratios of each node

and skew the distribution of the remaining loop iterations.

3. If not utilizing cross-node execution, on which
node should the work be run? Determining on which

node an application executes best involves understanding

how the application stresses the architectural properties of

each CPU. Performance counters provide insights into how

applications execute and what parts of the architecture bot-

tleneck performance. For our setup, the ThunderX has a

much higher degree of parallelism versus the Xeon, meaning

it has a much higher theoretical throughput for parallel com-

putation. However, the biggest challenge in utilizing all 96

cores is being able to supply data from the memory hierar-

chy. Although the ThunderX uses quad-channel RAM (with

twice the bandwidth of the Xeon), it only has a simple two

level cache hierarchy versus the Xeon’s muchmore advanced

(and larger per-core) three level hierarchy. If an application

exhibits many cache misses, it is unlikely to fully utilize the

96 available cores and would be better run on the Xeon. The

HetProbe scheduler measures cache misses per thousand

instructions during the probing period to determine how

much the work-sharing region stresses the cache hierarchy

(users can specify any performance counters prudent for

their hardware). We experimentally determined a thresh-

old value of three cache misses per thousand instructions

– below the threshold and the application can take advan-

tage of the ThunderX’s parallelism, but above the threshold

the ThunderX’s CPUs will continuously stall waiting on the

cache hierarchy. Note that the HetProbe scheduler must use

performance counters and cannot simply use execution times

from the probing period to decide on a node; the probing

period measures execution times with DSM overheads that

are not present when executing only on a single node.

Once a node has been chosen, the HetProbe scheduler falls

back to existing OpenMP schedulers for single-node work

distribution. Currently it defaults to the static scheduler, but

this is configurable by the user. Additionally, libHetMP joins
threads on the unused node to avoid unnecessary cross-node

synchronization overheads. For example, if not using the

7

Middleware ’20, December 7–11, 2020, Delft, Netherlands Lyerly et al.

Figure 5. HetProbe scheduler. A small number of probe iter-

ations are distributed at the beginning of the work-sharing

region to determine core speed ratios of nodes in the system.

Using the results, the runtime decides either to run all iter-

ations on one of the nodes or distribute work across nodes

according to the calculated core speed ratio (shown here).

ThunderX there is no reason to keep 96 threads alive simply

to join at end-of-region barriers.

Figure 5 shows an example of a work sharing region with

20000 loop iterations executing using the HetProbe sched-

uler. The first 2000 iterations are used for the probing period

and each of the 20 cores across both nodes is given an equal

share of 100 iterations. Importantly, the probing period is

performing useful work, albeit in a potentially unbalanced

way. After the probing period, libHetMPmeasures that Node

A’s cores executed 100 iterations in 500𝜇s whereas Node B’s

cores executed 100 iterations in 1500𝜇s. The HetProbe sched-

uler determines that Node A’s cores are 3x faster than Node

B’s cores for this work sharing region, meaning threads on

Node A should get 3x more iterations than threads on Node

B to evenly distribute work (the CSR is set to 3:1 for Nodes A

and B, respectively). In this example, the HetProbe scheduler

determined that cross-node execution was beneficial (see

Section 3.2). For the remaining 18000 iterations, each thread

on Node A receives 1929 iterations and each thread on Node

B receives 643. Thus the HetProbe scheduler automatically

determines the relative performance of heterogeneous CPUs

through online profiling and distributes the remaining work

accordingly. Note that if cross-node communication was

deemed too costly, the remaining 18000 iterations would all

be distributed to either Node A or Node B.

4 Implementation
libHetMP is built on top of GNU libgomp, the OpenMP

runtime used by gcc. It adds 5,145 lines of code, primar-

ily to implement the thread hierarchy (and all associated

machinery), runtime measurement and dynamic work distri-

bution. Because Popcorn Linux’s compiler is built on clang
which emits API calls the libiomp runtime, libHetMP in-

cludes a small shim layer to forward libiomp function calls

to libgomp. However, none of the ideas presented are spe-

cific to either OpenMP implementation. Because page faults

are transparent to the application, libHetMP reads page fault

counters from a proc file exposed by Popcorn Linux. Cur-

rently Popcorn Linux does not support runtime performance

counter collection; to work around this, we collected per

work sharing region performance counter data offline and

fed it to libHetMP via environment variables to make node

selection decisions. For applications with multiple work-

sharing regions, the user currently manually specifies which

region should be probed to decide whether cross-node ex-

ecution is beneficial. This is an optimization to avoid un-

necessary probing, as our current benchmarks did not have

different individual regions that benefited from different

work distribution decisions. We instrumented libHetMP to
record the time spent in each work sharing region and se-

lected the longest running region as the probing region. The

user instructed libHetMP to use this region as the probing

region by passing a compiler-constructed region identifier

(constructed from the filename, containing function and line

number of the work sharing directive) via environment vari-

ables. This could be automated by libHetMP by running the

application for a small period of time and querying the probe

cache to select the longest running region. We leave these

engineering tasks as future work.

5 Evaluation
When evaluating libHetMPwe askedwhether 1) is libHetMP
able to efficiently leverage the compute capabilities of asym-

metric server-grade heterogeneous CPUs? 2) is libHetMP’s
HetProbe scheduler able to accurately measure runtime be-

havior and make sound workload distribution decisions?

Specifically, can the HetProbe scheduler accurately deter-

mine if cross-node execution is beneficial, distribute appro-

priate amounts of work to each node, and select the best

CPU for single-node execution? and 3) which schedulers are

best suited for which types of runtime behaviors?

Experimental Setup. We evaluated libHetMP using the

experimental setup in Table 1, which approximates our envi-

sioned tightly-coupled platform. Because no existing systems

integrate heterogeneous-ISA CPUs via point-to-point con-

nections, we approximate one by connecting two servers

with high-speed networking. Our setup includes an Intel

Xeon server with a modest number of high-powered cores

and a Cavium ThunderX server with a large number of lower-

performance cores. The machines are connected via 56Gbps

InfiniBand, which provide low latency and high through-

put. We use the RDMA protocol for all experiments ex-

cept where mentioned due to its significantly lower latency.

Both machines run the latest version of Popcorn Linux; the

Xeon server uses Debian 8.9 while the ThunderX server

uses Ubuntu 16.04. Popcorn Linux’s compiler is built on

clang/LLVM 3.7.1, and libHetMP is built on libgomp 7.2.0.

Benchmarks. We selected 10 benchmarks from three

popular benchmarking suites – The Seoul National Univer-

sity [50] C/OpenMP versions of the NAS Parallel Bench-

marks [6], PARSEC [10] and Rodinia [14]. These benchmarks

8

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes Middleware ’20, December 7–11, 2020, Delft, Netherlands

represent HPC and data mining use cases and exhibit a

wide variety of computational patterns on which to eval-

uate libHetMP. All benchmark results are the average of 3

runs (execution times were stable across runs). All bench-

marks were compiled with -O2 except CG and cfd, which

crashed Popcorn’s compiler unless compiled with -O0. We

also used -fopenmp-use-tls to enable Linux-native TLS.

Work Distribution Configurations.We evaluated run-

ning benchmarks using several workload configurations.

Xeon represents running the benchmark entirely on the Xeon

– serial phases run on a single Xeon core andwork-sharing re-

gions use the Xeon’s 16 threads. ThunderX is similar – serial

phases run on a single ThunderX core and work-sharing re-

gions use the ThunderX’s 96 cores. Ideal CSR executes across

both CPUs – serial phases run on a Xeon core and work-

sharing regions always split loop iterations across the Xeon

and ThunderX (112 total threads) using the static scheduler.

The scheduler skews distribution using the CSRs in Table 2.

The CSRs were gathered from runs with the HetProbe sched-

uler and manually supplied via environment variables. Cross-
Node Dynamic is identical except it uses the hierarchy-based
dynamic scheduler described in Section 3.1. We experimen-

tally determined the best chunk size for each benchmark;

most benchmarks performed better with smaller sizes, i.e.,

finer-grained load balancing. HetProbe is again identical ex-

cept it uses the HetProbe scheduler. HetProbe uses both

CPUs during the probing period and then decides whether

cross-node execution is beneficial. If so, it uses measured exe-

cution time to calculate CSRs (Table 2) to skew loop iteration

distribution for the remaining iterations. If not, it selects the

best CPU and falls back to OpenMP’s original static scheduler

on a single node; threads on the not-selected node are joined

to avoid unnecessary synchronization. The probe period was

configured to use 10% of available loop iterations. For bench-

marks where cross-node execution was beneficial, probing

overhead was determined by comparing the difference in

performance between Ideal CSR and HetProbe. For bench-

marks where it was not beneficial, probing overhead was

determined by comparing the delta between the best single-

node performance (either Xeon or ThunderX) and HetProbe.

The HetProbe scheduler probed for up to 10 invocations of a

given work-sharing region (using an exponential weighted

moving average to smooth out measurements), after which

it re-used existing measurements from the probe cache. For

several benchmarks, the HetProbe scheduler chose single-

node execution on the ThunderX. As a comparison point,

“HetProbe (force Xeon)” shows the same results except forc-

ing the HetProbe scheduler to use single-node execution on

the Xeon; these results are explained below.

Results. Table 3 shows the total benchmark execution

times, including both serial and parallel phases, on the Xeon.

Figure 6 shows the speedup normalized to homogeneous

Xeon execution for each of the aforementioned configura-

tions. The benchmarks can broadly be classified into two

Table 2. Core speed ratios calculated by HetProbe scheduler.
Used by Ideal CSR and HetProbe configurations. Without

the HetProbe scheduler, developers would have to manually

determine these values via extensive profiling.

Benchmark Core speed ratio – Xeon : ThunderX

blackscholes 3 : 1

EP-C 2.5 : 1

kmeans 1 : 1

lavaMD 3.666 : 1

Table 3. Baseline execution times in seconds when run on

Xeon with 16 threads using the static scheduler

Benchmark Time Benchmark Time

blackscholes 85.76 kmeans 989.77

BT-C 310.08 lavaMD 104.52

cfd 76.47 lud 258.75

CG-C 71.36 SP-C 210.57

EP-C 32.00 streamcluster 67.86

categories: those that benefit from cross-node execution and

those that do not. blackscholes, EP-C, kmeans and lavaMD

fall into the former category whereas the others fall into

the latter. Across benchmarks that benefit from multi-node

execution, all but blackscholes achieve the highest speedup

under Cross-Node Dynamic. This is because with a granular

chunk size, work is distributed across nodes in an almost

perfect balance. Additionally, due to the thread hierarchy

there is significantly reduced global synchronization and

threads grab work from a local work pool the majority of

the time. Across these four benchmarks, Cross-Node Dy-

namic yields a geometric mean speedup of 2.68x. Ideal CSR

is 12.5% faster for blackscholes and close behind Cross-Node

Dynamic for the other three, achieving a geometric mean

speedup of 2.55x. Finally, HetProbe is slightly slower than

the other two cross-node configurations, achieving a geomet-

ric mean speedup of 2.4x. This is because the probe period

runs a constant number of iterations for all cores leading to

an initial workload imbalance. Additionally, measurement

machinery (timestamps, parsing the proc file for DSM coun-

ters) and probe cache synchronization add extra overheads.

For these four benchmarks, probing overhead is equal to the

difference between Ideal CSR and HetProbe, as they are func-

tionally equivalent after probing. HetProbe adds 5.2%, 5.3%,

11.5% and 2.8% overhead for blackscholes, EP-C, kmeans and

lavaMD, respectively, for a geometric mean overhead of 5.5%.

This demonstrates the HetProbe scheduler provides compet-

itive performance with minimal overheads for benchmarks

that benefit from cross-node execution.

For benchmarks that do no scale across nodes, however,

the Ideal CSR and Cross-Node Dynamic configurations sig-

nificantly degrade performance with geometric mean slow-

downs of 3.63x and 5.89x, respectively. This is due to DSM –

threads spend significant time waiting for pages from other

nodes, which also forces application threads on other nodes

to be time-multiplexed with DSM workers. There is not

enough computation to amortize DSM page fault costs over

9

Middleware ’20, December 7–11, 2020, Delft, Netherlands Lyerly et al.

Figure 6. Speedup of benchmarks versus running homogeneously on Xeon (values less than one indicate slowdowns). Asterisks

mark the best workload distribution configuration for each benchmark. “Cross-Node Dynamic” provides the best performance

across applications that benefit from leveraging both CPUs (blackscholes, EP-C, kmeans, lavaMD), but causes significant

slowdowns for those that do not. “HetProbe” achieves similar performance to Ideal CSR and Cross-Node Dynamic for these four

applications but falls back to a single CPU for applications with significant DSM communication and hence worse cross-node

performance. For geometric mean, “Oracle” is the average of the configurations marked by asterisks, i.e., what a developer

who had explored all such possible workload distribution configurations through extensive profiling would choose.

Figure 7. Page fault periods determining

whether cross-node execution is benefi-

cial. Red bars (cross-node not profitable)

are below the RDMA threshold indicated

in Section 3, blue are above.

Figure 8. Cache misses for applications

not executed across nodes. Green bars

(including lud) indicate the application

was run on the ThunderX, blue were run

on the Xeon.

Figure 9. Execution time (lines, left axis)

and page fault period (bars, right axis) for

blackscholes. “Homogeneous” refers to

Xeon configuration, “TCP/IP” refers to

using HetProbe over TCP/IP.

the network. The Cross-Node Dynamic scheduler is exclu-

sively worse than the Ideal CSR scheduler due to additional

work distribution synchronization caused by threads repeat-

edly grabbing batches of iterations. The HetProbe scheduler,

however, successfully avoids cross-node execution for these

benchmarks by measuring the page fault period and deter-

mining cross-node execution to not be beneficial (geomet-

ric mean slowdown of 39%, or 2.4% without cfd). Figure 7

shows measured page fault periods for each application; ap-

plications with a period below 100𝜇s were considered not

profitable for cross-node execution.

For applications deemed not beneficial to execute across

nodes due to high DSM overheads, the HetProbe scheduler

utilized cache misses per 1000 instructions to determine

whether to execute work-sharing regions on the Xeon or

ThunderX. As shown in Figure 8, there is a clear separation

between applications that benefit from the ThunderX’s high

parallelism (BT-C, cfd, lud) and those that are bottlenecked

by memory accesses (CG-C, SP-C, streamcluster). When se-

lecting a node, the HetProbe scheduler used a threshold value

of three misses per thousand instructions, placing BT-C, cfd

and lud on the ThunderX and the others on Xeon (cfd has spe-

cial behavior, see below). For the three benchmarks placed

on Xeon, probing overhead is equivalent to the difference

between Xeon and HetProbe since HetProbe degrades to

Xeon after probing. The probing period adds 4.8%, 6.6% and

7.1% for CG-C, SP-C and streamcluster, respectively, for a

geometric mean overhead of 6.1%. This shows performance

close to single-node execution on the Xeon, meaning the

probing period has minimal impact on performance.

Looking closer at cfd and CG-C, these applications have

roughly the same performance on Xeon and ThunderX but

are vastly different in cache miss behavior. Even more inter-

estingly, the HetProbe scheduler places cfd on the ThunderX

although the optimal choice would be on the Xeon. This is

due to the fact that although cfd’s parallel region runs faster

on the ThunderX (74.58 seconds on Xeon, 66.79 seconds on

10

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes Middleware ’20, December 7–11, 2020, Delft, Netherlands

ThunderX), it has a long serial file I/O phase that runs signif-

icantly faster on Xeon (1.83 seconds on Xeon, 13.72 seconds

on the ThunderX), leading the benchmark’s overall execu-

tion time to be faster on the Xeon. This file I/O phase also

explains the disparity in cache misses between benchmarks

– cfd’s parallel region has a low number of cache misses, but

the benchmark’s execution time is heavily impacted by file

operations whereas CG-C does not perform file I/O and has

a large number of cache misses.

Interestingly for BT-C, cfd and lud, executing parallel re-

gions on the ThunderX achieved worse than expected perfor-

mance due OS limitations. Popcorn Linux’s kernel currently

only supports spawning threads on the node on which the

application started, meaning one thread must remain on

the Xeon even when work-sharing regions execute on the

ThunderX. Each of these benchmarks executes hundreds

to thousands of work-sharing regions (and their associated

implicit barriers), causing significant cross-node synchro-

nization. As a comparison point for BT-C and cfd, we ran

an additional experiment to force the HetProbe scheduler to

select the Xeon for single-node execution; it added 3.2% and

4.2% probing overhead, respectively. lud is an interesting case

– the HetProbe scheduler decides cross-node execution is not

profitable and runs work sharing regions on the ThunderX.

The aforementioned OS limitation impacts HetProbe’s per-

formance enough that Ideal CSR actually achieves 20% better

performance than HetProbe (although still worse than run-

ning solely on the ThunderX). We expect that when Popcorn

Linux allows spawning threads on remote nodes, libHetMP
will be able to more efficiently leverage both machines.

It is important to note that none of Xeon, ThunderX, Ideal

CSR or Cross-Node Dynamic perform best in all situations,

clearly illustrating the need for HetProbe. As shown in Fig-

ure 6, HetProbe provides the best performance out of all eval-

uated configurations across all benchmarks with a geometric

mean performance improvement of 41% (ThunderX provides

an 11% improvement). In contrast, Ideal CSR causes a slow-

down of 49% and Cross-Node Dynamic causes a 96% slow-

down, highlighting the importance of communication traffic

when distributing computation. As a comparison point, “Or-

acle” shows that developers could obtain a geometric mean

speedup of 60% if they had extensively profiled all configura-

tions and selected the best for all benchmarks. As Popcorn

Linux matures, HetProbe will be able to more closely match

the Oracle, as the aforementioned limitation has a significant

impact on HetProbe’s performance.

What types of applications benefit from cross-node
execution? The four applications that benefit from cross-

node execution have a high enough compute to cross-node

communication ratio to leverage the compute resources of

multiple CPUs. blackscholes has an initial data transfer pe-

riod but repeats computation on the same data, allowing it

to settle on nodes (blackscholes also has a lengthy file I/O

phase that benefits from the Xeon’s strong single-threaded

performance). EP-C performs completely local computation

(including heavy use of thread-local storage) with a single

final reduction stage. lavaMD computes particle potentials

through interactions of neighbors within a radius, mean-

ing multiple threads re-use the same data brought across

the interconnect. Similarly, kmeans alternatively updates

cluster centers and cluster members – all threads on a node

alternate between scanning the cluster member and cluster

center arrays, re-using pages brought over the interconnect.

Benchmarks that do not benefit cannot amortize data

transfer costs. For example, BT-C and SP-C access multi-

dimensional arrays along different dimensions in consecu-

tive work sharing regions, causing the DSM to shuffle large

amounts of data between nodes. Other benchmarks have

little data locality – CG-C and streamcluster calculate a set

of results and then access them in irregular patterns using an

indirection array. This behavior causes extensive latencies

for local cache hierarchies, let alone DSM. lud’s work-sharing

region sequentially accesses an array, but does not perform

enough computation per byte to amortize DSM costs. Ad-

ditionally, there is a large amount of “false sharing” where

threads on different nodes write to independent parts of

the same page. False sharing can be avoided by the use of a

multiple-writer protocol such as lazy-release consistency [4].

An interesting observation that arises from measuring

the page fault period is that while the metric provides a

sound threshold for determining whether cross-node execu-

tion will be beneficial, it is not a good indicator of overall

performance gains. For example, while kmeans’ page fault pe-

riod is slightly over the threshold (130 𝜇s period), it benefits

the most from cross-node execution out of all benchmarks.

This is because it has a high level of inter-thread data reuse.
As mentioned previously, all threads scan the same array

in a superstep of the algorithm, meaning all threads reuse

data brought over from a page fault (in addition to being ex-

tremely efficient on the cache-starved ThunderX). This is in

contrast to lavaMD where only a subset of threads working

on adjacent regions reuse migrated pages. libHetMP only

observes DSM traffic for the entire application and does not

measure the level of data reuse for migrated pages. This leads

us to believe that the current thresholding mechanism will

degrade when threads executing a work sharing region have

skewed page fault behavior, e.g., a few threads cause the

majority of page faults, biasing the work sharing region’s

average page fault period. In such a case libHetMP may de-

termine there is too much communication for cross-node

execution, even though it may still be beneficial. However,

because we focus on applications with regular work sharing

regions, we did not observe this skewed page fault behavior.

This also highlights the importance of directly measuring

the relative performance of the CPUs to make workload

distribution decisions for cross-node execution.

What applications benefit from Ideal CSR versus Cr-
oss-Node Dynamic? Three of the four benchmarks that

11

Middleware ’20, December 7–11, 2020, Delft, Netherlands Lyerly et al.

benefit from cross-node execution achieve the best perfor-

mance with Cross-Node Dynamic due to fine-grained load

balancing. For blackscholes, however, Ideal CSR achieves bet-

ter performance. This is due to pages settling into a steady

state after an initial page shuffle. Threads receiving the same

loop iterations across multiple invocations of the work shar-

ing region access the same data, thus all data pages required

by threads are already mapped to the appropriate node. With

Cross-Node Dynamic, however, threads receive different

loop iterations across separate executions, meaning pages

containing results must be continually shuffled across nodes.

This settling behavior is why the HetProbe scheduler deter-

ministically distributes iterations for the probing period.

Case Study: TCP/IP. In order to evaluate the effective-

ness of the HetProbe scheduler for different types of intercon-

nects, we ran blackscholes with varying number of iterations

(more iterations means more compute operations per byte

since blackscholes’ data settles after the first iteration) using

the TCP/IP protocol described in Section 3.2. Figure 9 shows

the execution time when running homogeneously on the

Xeon versus cross-node execution (lines) and the page fault

period of each cross-node run (bars). We use a page fault

period of 7600𝜇s to determine whether cross-node execu-

tion will be beneficial when using TCP/IP. The results are

somewhat noisy (TCP/IP tends to have more variable laten-

cies) but consistent with expectations – only after the page

fault period climbs above 8000𝜇s does cross-node execution

pay off. Thus we conclude using page fault periods as the

determining factor for cross-node execution is applicable for

different types of interconnects.

Limitations.There are number ofways inwhich libHetMP
can be extended. First, the HetProbe scheduler is designed

for work sharing regions with loops where each loop iter-

ation performs a constant and equal amount of work. This

assumption allows the HetProbe scheduler to make work-

load distribution decisions by monitoring the behavior of

a small number of probe iterations. For irregular applica-

tions such as graph traversal algorithms [32], however, pre-

dicting cross-node DSM traffic becomes significantly more

difficult and potentially requires co-designing DSM and par-

allel programming runtimes to minimize communication.

One approach to dealing with these types of regions would

be to logically break a work sharing region into multiple

smaller work-sharing regions, each with their own prob-

ing and workload distribution decisions. Another possibility

would be to continuously monitor page faults during the

work sharing region and fall back to single node execution

if the number of page faults begins to rise. Conversely, if the

number of page faults begins to drop, the HetProbe sched-

uler could dynamically bring extra threads on another node

online. In general, libHetMP and the HetProbe scheduler

could be extended to provide a more dynamic distribution

of parallel work.

libHetMP also currently focuses on achieving maximum

performance but not energy efficiency. The first-generation

ThunderX CPUs consume large amounts of power, meaning

that even though cross-node execution may provide the best

performance oftentimes the heterogeneous setup consumes

more energy than running solely on one node. Optimizing

OpenMP execution for different efficiency metrics may yield

different workload distributions, especially as the system

architecture (CPUs, interconnect) changes.

libHetMP could be extended to handle systems with three

or more nodes. The microbenchmark described in Section 3.2

can be used to determine when cross-node execution be-

comes profitable for each (𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑜𝑛𝑛𝑒𝑐𝑡) pair
attached to the system (i.e., each node). This break-even point
is different for every node and decisions about which nodes

to use can be made independently from one another. For

example, consider a system with nodes A and B with break-

even points of 100 us/fault and 200 us/fault, respectively. If

libHetMP measured a page fault period of 150us/fault for

a given work-sharing region, then the HetProbe scheduler

could choose to distribute work to node A but not use node

B. In this way, the HetProbe scheduler can choose whether

to utilize each individual node and distribute iterations to

the enabled nodes according to their relative performance

in the probing region.

6 Related Work
Parallel ProgrammingModels and Frameworks. Shared-
memory parallel programmingmodels like OpenMP [42] and

Cilk [11] provide source code annotations to automate paral-

lel computation, but do not support execution across cache-

incoherent, heterogeneous-ISA CPUs. MPI [23] gives devel-

opers low-level primitives to distribute execution, manage

separate physical memories and marshal memory between

heterogeneous-ISA CPUs. However for asymmetric CPUs,

developers must manually assign parallel work and transfer

required data to maximize performance, leading to complex

and verbose applications with static, non-portable workload

distribution decisions. Cluster OpenMP [25] is a now-defunct

commercial product attempting to replace hierarchical MPI +

OpenMP parallelism by providing shared memory semantics

using DSM on networked homogeneous machines. PGAS

frameworks like UPC [15], X10 [13] and Grappa [39] sup-

port cross-node execution and memory accesses, but do not

support sharing data across ISAs and changing workload

distribution decisions in light of system characteristics is

cumbersome (data is not migrated between nodes for local-

ity). Charm++ [27] is an object-oriented approach to sharing

data between (potentially distributed) processes, but does

not support load balancing across heterogeneous-ISA CPUs.

Cluster frameworks like SnuCL-D [29] and OmpSs [12] pro-

vide coarse-grained work distribution by assigning multiple

12

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes Middleware ’20, December 7–11, 2020, Delft, Netherlands

independent parallel computations to individual heteroge-

neous processors. They do not consider fine-grained work-

sharing of a single parallel computation and require devel-

opers to specify data movement. libHetMP automatically

distributes work in consideration of platform characteristics

and leverages transparent and on-demand DSM to manage

memory consistency for flexibility and programmability.

CPU/GPU Work Partitioning. Several works explore
work distribution in CPU/GPU systems. Qilin [36] is a com-

piler and runtime that enables CPU/GPU workload partition-

ing but requires developers to rewrite computation using a

new API. Unlike libHetMP, Qilin does not make distribution

decisions online but must profile multiple full executions

before determining the optimal workload split. Kofler et

al. [31] present a machine learning approach to determin-

ing workload distribution, but require sophisticated analyses

with a custom compiler and the machine learning model

must be retrained for each new hardware configuration. Sim-

ilarly, Grewe and O’Boyle [22] present a machine learning

approach that requires per-system retraining. Scogland et

al. [49] present CPU/GPU workload distribution approaches

for accelerated OpenMP. However their approach onlyworks

for dense array-based computations and developers must

manually specify data movement between devices. All of

these approaches are limited by the visible split in CPU

and GPU memory and require developer to marshal data.

Additionally, none of these approaches provide optimized

cross-node synchronization primitives and none consider

situations where cross-node execution may not be beneficial.

Single-ISA Scheduling. There are a number of sched-

ulers designed to improve task-parallel workloads (as op-

posed to data-parallel workloads targeted by libHetMP) on
single-ISA heterogeneous systems, e.g., ARMbig.LITTLE [21].

The Lucky scheduler [43] measures the energy efficiency of

multiprogrammed workloads via performance counters and

uses lottery scheduling to time multiplex applications across

big and little cores. The WASH AMP scheduler [26] classifies

threads in applications written in managed languages (e.g.,

Java) using performance counters and schedules threads to

remove bottlenecks (e.g., critical sections). Other works like

meeting point thread characterization [47] and X10Ergy [51]

propose other means for characterizing and accelerating in-

dividual threads on single-ISA heterogeneous platforms. All

of these works focus on determining the “critical” task in

task-parallel workloads and placing it on the most perfor-

mant core. Additionally, none deal with cache-incoherent

heterogeneous-ISA CPUs, meaning they do not consider data

marshaling and cross-node memory access costs.

7 Conclusion
In this workwe presented libHetMP, a newOpenMP runtime

for efficiently leveraging non-cache-coherent heterogeneous-

ISA CPU systems. libHetMP provides the infrastructure nec-
essary for cross-node execution and efficiently distributing

parallel computation. libHetMP uses runtime performance

measurements as inputs to the novel HetProbe scheduler to

automatically make workload distribution decisions, includ-

ingwhether to execute across nodes or only on one node. The

HetProbe scheduler, was shown to make sound workload

distribution decisions for ten benchmarks and two intercon-

nects. Using the scheduler, libHetMP was able to achieve up

to a geometric mean speedup of 41% versus execution solely

on Xeon, the best out of the evaluated configurations.

libHetMP shows that it is possible for OpenMP users

to take advantage of heterogeneous-ISA CPUs for perfor-

mance gains. Currently, the interconnect between nodes

is the biggest factor determining whether applications can

utilize multiple nodes for parallel computation. With cache-

coherent interconnects becoming increasingly ubiquitous

(e.g., NVLink [40], CXL [17], CCIX [16], Infinity Fabric [3],

OpenCAPI [41]), communication will become less of a bot-

tleneck when running across multiple nodes simultaneously.

However, even applications that cannot utilizemultiple nodes

together can select and execute on the node best suited

to their application’s characteristics. Popcorn Linux and

libHetMP together provide a level of execution flexibility

not available in other execution contexts (e.g., CPU/GPU

systems); there are plenty of avenues for future work in

optimizing more irregular applications.

As heterogeneous-ISA architectures become more ubiqui-

tous, it is important that new system software like libHetMP
be able to analyze the architecture and automatically adapt

application execution to fit. libHetMP provides developers
the ability to efficiently leverage emerging heterogeneous

CPU systems without extensive manual configuration and

deep architectural knowledge.

Our complete implementation is available as open-source

as part of the Popcorn Linux project at http://popcornlinux.org/.

Acknowledgement
This work is supported by the US Office of Naval Research

(ONR) under grants N00014-16-1-2711, N00014-16-1-2104,

and N00014-18-1-2022, and by NAVSEA/NEEC under grant

N00174-16-C-0018.

References
[1] PCI Express Base Specification Revision 4.0, Version 1.0, October 2017.

https://pcisig.com/specifications/pciexpress/.
[2] Summit: A Supercomputer Suited for AI, June 2018. https://www.olcf.

ornl.gov/wp-content/uploads/2018/06/NODE_infographic_FIN.pdf.
[3] AMD. AMD Infinity Architecture Technology, September 2020. https:

//www.amd.com/en/technologies/infinity-architecture.
[4] Amza, C., Cox, A. L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony,

13

https://pcisig.com/specifications/pciexpress/
https://www.olcf.ornl.gov/wp-content/uploads/2018/06/NODE_infographic_FIN.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2018/06/NODE_infographic_FIN.pdf
https://www.amd.com/en/technologies/infinity-architecture
https://www.amd.com/en/technologies/infinity-architecture

Middleware ’20, December 7–11, 2020, Delft, Netherlands Lyerly et al.

R., Yu, W., and Zwaenepoel, W. Treadmarks: shared memory com-

puting on networks of workstations. Computer 29, 2 (Feb 1996), 18–28.
[5] Anandtech. Intel Agilex: 10nm FPGAs with PCIe 5.0, DDR5, and CXL,

April 2019. https://www.anandtech.com/show/14149/intel-agilex-
10nm-fpgas-with-pcie-50-ddr5-and-cxl.

[6] Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter,

R. L., Dagum, L., Fatoohi, R. A., Frederickson, P. O., Lasinski, T. A.,

Schreiber, R. S., et al. The NAS parallel benchmarks. The Interna-
tional Journal of Supercomputing Applications 5, 3 (1991), 63–73.

[7] Barbalace, A., Lyerly, R., Jelesnianski, C., Carno, A., Chuang,

H.-R., Legout, V., and Ravindran, B. Breaking the Boundaries in

Heterogeneous-ISA Datacenters. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems (New York, NY, USA, 2017), ASPLOS

’17, ACM, pp. 645–659.

[8] Barbalace, A., Sadini, M., Ansary, S., Jelesnianski, C., Ravichan-

dran, A., Kendir, C., Murray, A., and Ravindran, B. Popcorn:

Bridging the Programmability Gap in heterogeneous-ISA Platforms.

In Proceedings of the Tenth European Conference on Computer Systems
(New York, NY, USA, 2015), EuroSys ’15, ACM, pp. 29:1–29:16.

[9] Barr, J. New – EC2 Instances (A1) Powered by Arm-

Based AWS Graviton Processors, November 2018. https:
//aws.amazon.com/blogs/aws/new-ec2-instances-a1-powered-
by-arm-based-aws-graviton-processors/.

[10] Bienia, C. Benchmarking Modern Multiprocessors. PhD thesis, Prince-

ton University, January 2011.

[11] Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Ran-

dall, K. H., and Zhou, Y. Cilk: An efficient multithreaded runtime

system. In Proceedings of the Fifth ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (New York, NY, USA, 1995),

PPOPP ’95, ACM, pp. 207–216.

[12] Bueno, J., Planas, J., Duran, A., Badia, R. M., Martorell, X.,

Ayguadé, E., and Labarta, J. Productive Programming of GPU

Clusters with OmpSs. In 2012 IEEE 26th International Parallel and
Distributed Processing Symposium (May 2012), pp. 557–568.

[13] Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A.,

Ebcioglu, K., von Praun, C., and Sarkar, V. X10: An object-oriented

approach to non-uniform cluster computing. In Proceedings of the
20th Annual ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications (New York, NY, USA, 2005),

OOPSLA ’05, ACM, pp. 519–538.

[14] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S. H.,

and Skadron, K. Rodinia: A benchmark suite for heterogeneous

computing. In 2009 IEEE International Symposium on Workload Char-
acterization (IISWC) (Oct 2009).

[15] Coarfa, C., Dotsenko, Y., Mellor-Crummey, J., Cantonnet, F., El-

Ghazawi, T., Mohanti, A., Yao, Y., and Chavarría-Miranda, D.

An evaluation of global address space languages: Co-array Fortran

and Unified Parallel C. In Proceedings of the Tenth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (New

York, NY, USA, 2005), PPoPP ’05, ACM, pp. 36–47.

[16] Consortium, C., et al. Cache coherent interconnect for accelerators

(ccix). Online]. http://www. ccixconsortium. com (2017).

[17] CXL Consortium. Compute Express Link, September 2020. https:
//www.computeexpresslink.org/.

[18] Daberdaku, S. Parallel computation of voxelised protein surfaces

with openmp. In Proceedings of the 6th International Workshop on
Parallelism in Bioinformatics (New York, NY, USA, 2018), PBio 2018,

Association for Computing Machinery, p. 19–29.

[19] DeVuyst, M., Venkat, A., and Tullsen, D. M. Execution Migra-

tion in a heterogeneous-ISA Chip Multiprocessor. In Proceedings of
the Seventeenth International Conference on Architectural Support for
Programming Languages and Operating Systems (New York, NY, USA,

2012), ASPLOS XVII, ACM, pp. 261–272.

[20] Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., and

Burger, D. Dark silicon and the end ofmulticore scaling. In Proceedings
of the 38th Annual International Symposium on Computer Architecture
(New York, NY, USA, 2011), ISCA ’11, ACM, pp. 365–376.

[21] Greenhalgh, P. big.LITTLE Processing with ARM Cortex-A15 &

Cortex-A7. ARM White paper 17 (2011).

[22] Grewe, D., and O’Boyle, M. F. P. A static task partitioning approach

for heterogeneous systems using OpenCL. In Compiler Construction
(Berlin, Heidelberg, 2011), J. Knoop, Ed., Springer Berlin Heidelberg,

pp. 286–305.

[23] Gropp, W., Lusk, E., and Skjellum, A. Using MPI: portable parallel
programming with the message-passing interface, vol. 1. MIT press,

1999.

[24] Gu, Y., and Mellor-Crummey, J. Dynamic data race detection for

openmp programs. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis (2018),
SC ’18, IEEE Press.

[25] Hoeflinger, J. P. Extending OpenMP to clusters. White Paper, Intel
Corporation (2006).

[26] Jibaja, I., Cao, T., Blackburn, S. M., and McKinley, K. S. Portable

performance on asymmetric multicore processors. In Proceedings of
the 2016 International Symposium on Code Generation and Optimization
(New York, NY, USA, 2016), CGO ’16, ACM, pp. 24–35.

[27] Kale, L. V., and Krishnan, S. CHARM++: a portable concurrent object
oriented system based on C++, vol. 28. Citeseer, 1993.

[28] Khronos OpenCL Working Group. The OpenCL Specification. Tech.

rep., May 2018. https://www.khronos.org/registry/OpenCL/specs/2.2/
pdf/OpenCL_API.pdf.

[29] Kim, J., Jo, G., Jung, J., Kim, J., and Lee, J. A Distributed OpenCL

Framework Using Redundant Computation and Data Replication. In

Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (New York, NY, USA, 2016), PLDI

’16, ACM, pp. 553–569.

[30] Kim, S.-H., Lyerly, R., and Olivier, P. Popcorn Linux: Compiler, Oper-

ating System and Virtualization Support for Application/ThreadMigra-

tion in Heterogeneous ISA Environments. Presented at the 2017 Linux

Plumbers Conference, September 2017. http://www.linuxplumbersconf.
org/2017/ocw/proposals/4719.html.

[31] Kofler, K., Grasso, I., Cosenza, B., and Fahringer, T. An auto-

matic input-sensitive approach for heterogeneous task partitioning. In

Proceedings of the 27th International ACM Conference on International
Conference on Supercomputing (New York, NY, USA, 2013), ICS ’13,

ACM, pp. 149–160.

[32] Kulkarni, M., Burtscher, M., Casçaval, C., and Pingali, K. Lones-

tar: A suite of parallel irregular programs. In ISPASS ’09: IEEE Inter-
national Symposium on Performance Analysis of Systems and Software
(2009).

[33] Kumar, A. The New Intel Xeon Processor Scalable Family (Formerly

Skylake-SP), August 2017. https://www.hotchips.org/wp-content/
uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-
Server-Pub/HC29.22.930-Xeon-Skylake-sp-Kumar-Intel.pdf.

[34] Lepak, K., Talbot, G., White, S., Beck, N., Naffziger, S., FELLOW,

S., et al. The next generation AMD enterprise server product archi-

tecture. IEEE Hot Chips 29 (2017).
[35] Lin, F. X., Wang, Z., and Zhong, L. K2: A mobile operating system

for heterogeneous coherence domains. In Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems (New York, NY, USA, 2014), ASPLOS

’14, ACM, pp. 285–300.

[36] Luk, C.-K., Hong, S., and Kim, H. Qilin: Exploiting parallelism on

heterogeneous multiprocessors with adaptive mapping. In Proceedings
of the 42Nd Annual IEEE/ACM International Symposium on Microarchi-
tecture (New York, NY, USA, 2009), MICRO 42, ACM, pp. 45–55.

[37] Lyerly, R., Kim, S.-H., and Ravindran, B. libMPNode: An OpenMP

14

https://www.anandtech.com/show/14149/intel-agilex-10nm-fpgas-with-pcie-50-ddr5-and-cxl
https://www.anandtech.com/show/14149/intel-agilex-10nm-fpgas-with-pcie-50-ddr5-and-cxl
https://aws.amazon.com/blogs/aws/new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors/
https://aws.amazon.com/blogs/aws/new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors/
https://aws.amazon.com/blogs/aws/new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors/
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf
https://www.khronos.org/registry/OpenCL/specs/2.2/pdf/OpenCL_API.pdf
http://www.linuxplumbersconf.org/2017/ocw/proposals/4719.html
http://www.linuxplumbersconf.org/2017/ocw/proposals/4719.html
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.930-Xeon-Skylake-sp-Kumar-Intel.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.930-Xeon-Skylake-sp-Kumar-Intel.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.930-Xeon-Skylake-sp-Kumar-Intel.pdf

An OpenMP Runtime for Cache-Incoherent Heterogeneous Nodes Middleware ’20, December 7–11, 2020, Delft, Netherlands

Runtime For Parallel Processing Across Incoherent Domains. In The
10th International Workshop on Programming Modesl and Applications
for Multicores and Manycores (February 2019), PMAM ’19.

[38] Morin, C., Lottiaux, R., Vallee, G., Gallard, P., Margery, D.,

Berthou, J. ., and Scherson, I. D. Kerrighed and data parallelism: clus-

ter computing on single system image operating systems. In 2004 IEEE
International Conference on Cluster Computing (IEEE Cat. No.04EX935)
(Sept 2004), pp. 277–286.

[39] Nelson, J., Holt, B., Myers, B., Briggs, P., Ceze, L., Kahan, S., and

Oskin, M. Latency-tolerant software distributed shared memory. In

2015 USENIX Annual Technical Conference (USENIX ATC 15) (Santa
Clara, CA, 2015), USENIX Association, pp. 291–305.

[40] NVidia. NVLink, September 2020. https://www.nvidia.com/en-us/
data-center/nvlink/.

[41] OpenCAPI Consortium. OpenCAPI Consortium, September 2020.

https://opencapi.org/.
[42] OpenMP Architecture Review Board. OpenMP Application

Program Interface v5.0. Tech. rep., OpenMP Architecture Re-

view Board, November 2018. https://www.openmp.org/wp-content/
uploads/OpenMP-API-Specification-5.0.pdf.

[43] Petrucci, V., Loqes, O., and Mossé, D. Lucky scheduling for energy-

efficient heterogeneous multi-core systems. In Proceedings of the 2012
USENIX Conference on Power-Aware Computing and Systems (Berkeley,
CA, USA, 2012), HotPower’12, USENIX Association, pp. 7–7.

[44] Platform, T. N. Next-Generation ThunderX2 ARM Targets Sky-

lake Xeons, 2018. https://www.nextplatform.com/2016/06/03/next-
generation-thunderx2-arm-targets-skylake-xeons/.

[45] Putnam, A., Caulfield, A. M., Chung, E. S., Chiou, D., Constan-

tinides, K., Demme, J., Esmaeilzadeh, H., Fowers, J., Gopal, G. P.,

Gray, J., Haselman, M., Hauck, S., Heil, S., Hormati, A., Kim, J.-Y.,

Lanka, S., Larus, J., Peterson, E., Pope, S., Smith, A., Thong, J.,

Xiao, P. Y., and Burger, D. A reconfigurable fabric for accelerating

large-scale datacenter services. Commun. ACM 59, 11 (Oct. 2016),

114–122.

[46] Qualcomm. Qualcomm snapdragon 855 mobile platform, 2019.

https://www.qualcomm.com/media/documents/files/snapdragon-
855-mobile-platform-product-brief.pdf.

[47] Rakvic, R., Cai, Q., González, J., Magklis, G., Chaparro, P., and

González, A. Thread-management techniques to maximize efficiency

in multicore and simultaneous multithreaded microprocessors. ACM
Trans. Archit. Code Optim. 7, 2 (Oct. 2010), 9:1–9:25.

[48] Ratna, A. A. P., Ibrahim, I., and Purnamasari, P. D. Parallel pro-

cessing design of latent semantic analysis based essay grading system

with openmp. In Proceedings of the 2017 International Conference on
Computer Science and Artificial Intelligence (New York, NY, USA, 2017),

CSAI 2017, Association for Computing Machinery, p. 119–124.

[49] Scogland, T. R. W., Feng, W., Rountree, B., and de Supinski, B. R.

CoreTSAR: Core Task-Size Adapting Runtime. IEEE Transactions on
Parallel and Distributed Systems 26, 11 (Nov 2015), 2970–2983.

[50] Seo, S., Jo, G., and Lee, J. Performance characterization of the NAS

Parallel Benchmarks in OpenCL. In 2011 IEEE International Symposium
on Workload Characterization (IISWC) (Nov 2011), pp. 137–148.

[51] Shrivastava, R., and Nandivada, V. K. Energy-efficient compilation

of irregular task-parallel loops. ACM Trans. Archit. Code Optim. 14, 4
(Nov. 2017), 35:1–35:29.

[52] Sutter, H. The free lunch is over: A fundamental turn toward con-

currency in software. Dr. Dobb’s journal 30, 3 (2005), 202–210.
[53] Sutter, H. Welcome to the jungle, August 2012. https://herbsutter.

com/welcome-to-the-jungle/.
[54] Venkat, A., and Tullsen, D. M. Harnessing ISA Diversity: Design of

a heterogeneous-ISA Chip Multiprocessor. In Proceeding of the 41st An-
nual International Symposium on Computer Architecuture (Piscataway,
NJ, USA, 2014), ISCA ’14, IEEE Press, pp. 121–132.

[55] von Bank, D. G., Shub, C. M., and Sebesta, R. W. A unified model

of pointwise equivalence of procedural computations. ACM Trans.
Program. Lang. Syst. 16, 6 (Nov. 1994), 1842–1874.

15

https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://opencapi.org/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.nextplatform.com/2016/06/03/next-generation-thunderx2-arm-targets-skylake-xeons/
https://www.nextplatform.com/2016/06/03/next-generation-thunderx2-arm-targets-skylake-xeons/
https://www.qualcomm.com/media/documents/files/snapdragon-855-mobile-platform-product-brief.pdf
https://www.qualcomm.com/media/documents/files/snapdragon-855-mobile-platform-product-brief.pdf
https://herbsutter.com/welcome-to-the-jungle/
https://herbsutter.com/welcome-to-the-jungle/

	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 OpenMP Across Heterogeneous-ISA CPUs
	3.2 Workload Distribution Decisions

	4 Implementation
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

