SlimGuard: A Secure and Memory-Efficient Heap
Allocator

Beichen Liu
Virginia Tech
beichen.liu@vt.edu

Abstract

Attacks on the heap are an increasingly severe threat. State-
of-the-art secure dynamic memory allocators can offer pro-
tection, however their memory footprint is high, making
them suboptimal in many situations. We introduce Slim-
Guard, a secure allocator whose design is driven by memory
efficiency. Among other features, SlimGuard uses an efficient
fine-grain size classes indexing mechanism and implements
a novel dynamic canary scheme. It offers a low memory
overhead due its size classes optimized for canary usage,
its on-demand metadata allocation, and the combination
of randomized allocations and over-provisioning into a sin-
gle memory efficient security feature. SlimGuard protects
against widespread heap-related attacks such as overflows,
over-reads, double/invalid free, and use-after-free. Evalua-
tion over a wide range of applications shows that it offers
a significant reduction in memory consumption compared
to the state-of-the-art secure allocator (up to 2x in macro-
benchmarks), while offering similar or better security guar-
antees and good performance.

CCS Concepts » Security and privacy — Systems se-
curity; « Software and its engineering — Allocation /
deallocation strategies.

ACM Reference Format:

Beichen Liu, Pierre Olivier, and Binoy Ravindran. 2019. SlimGuard:
A Secure and Memory-Efficient Heap Allocator. In Middleware ’19:
Middleware ’19: 20th International Middleware Conference, December
8-13, 2019, Davis, CA, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3361525.3361532

1 Introduction

Attacks targeting the heap have become an increasingly
severe threat in the recent years. Heap-based vulnerabili-
ties including buffer over-reads and overwrites, invalid and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Middleware ’19, December 8—13, 2019, Davis, CA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7009-7/19/12...$15.00
https://doi.org/10.1145/3361525.3361532

Pierre Olivier
Virginia Tech
polivier@vt.edu

Binoy Ravindran
Virginia Tech
binoy@vt.edu

double free, or use-after-free, are regularly detected in appli-
cations written in memory-unsafe languages such as C and
C++, widely utilized in today’s computer systems. Attacks
exploiting these vulnerabilities can lead to sensitive data
leak [7] or corruption [17], control flow hijacking/arbitrary
code execution [9, 26, 33, 34], as well as denial of service.

An obvious line of defense to protect against heap vul-
nerabilities exploitation is to use a secure dynamic memory
allocator. Such allocators have been proposed in both the
industry and academic domains [1, 10, 25, 28, 31, 32]. Early
work suffered from performance [25, 28] and compatibil-
ity [10] issues, as well as low security guarantees [1, 25].
These drawbacks are all addressed in state-of-the-art secure
allocators [31, 32]. However, these allocators still have lim-
itations in terms of memory overhead: they assume that
memory is available in large quantities. We measured that in
some situations, the memory usage of such state-of-the-art
allocators is quite high. For example, Guarder [32] hasa 71.3%
memory overhead compared to the standard Glibc malloc
implementation for the PARSEC [5] canneal benchmark. In
the age of cloud computing with tenants renting and paying
computing resources (including memory) on-demand, this
is quite problematic. Moreover, nowadays security is crucial
in memory-constrained environments such as Edge and IoT.

State-of-the-art secure allocators’ memory footprint is due
to several factors, including reasons related to the various
security guarantees offered by the allocator. For example, the
addition of a one byte canary after a heap object to protect
against overflows may lead to the selection of a larger class
size and thus to memory waste. In this paper, we address the
following challenge: can we design a memory allocator that
is both secure and memory efficient, while still offering good
performance and compatibility?

In that context, we propose SlimGuard: a secure memory
allocator focusing on having a low memory overhead. It
aims to offer similar security guarantees compared to state-
of-the-art secure allocators, while having a memory over-
head similar to standard non-secure memory allocators (e.g.
Glibc’s). To that aim, we evaluate the impact on memory
consumption for various security features of state-of-the-art
secure allocators. We integrate these features in SlimGuard,
redesigning them to have a low memory overhead, and for
some of them to increase the security guarantees offered.
SlimGuard differs from existing secure allocators on several
points. It uses fine-grain size classes indexed by an efficient
mechanism, significantly reducing memory waste compared

https://doi.org/10.1145/3361525.3361532
https://doi.org/10.1145/3361525.3361532

Middleware *19, December 8—13, 2019, Davis, CA, USA

to the classic power-of-two size classes. It combines two
important security features, randomized mappings and over-
provisioning, into an a single memory efficient mechanism,
entropy-based over-provisioning. Heap objects metadata are
segregated from the corresponding data to protect against
metadata corruption attacks. Metadata is indexed by a com-
bination of bitmaps and free-lists for fast malloc and free
operations while keeping memory overhead low. An origi-
nal type of heap canary is provided in the form of dynamic
canaries, where canary values differ among objects, at no ad-
ditional memory overhead cost. Further memory savings are
obtained with on-demand metadata allocation. Additionally,
SlimGuard offers randomized memory allocations, double-
free checking mechanisms, and guard pages.

While keeping a controllable memory footprint and offer-
ing security guarantees, SlimGuard also offers performance
similar to Glibc’s malloc, and presents a high degree of com-
patibility as it does not require application recompilation.

We evaluate SlimGuard’s security mechanisms and show
that it protects against a wide range of existing exploits. We
also evaluate its memory overhead and performance over
micro-/macro-benchmarks including the PARSEC [5] and
MiBench [16] suites. SlimGuard outperforms the state-of-
the-art secure memory allocator by 2x in terms of memory
consumption for a number of macro-benchmarks, while of-
fering similar or better levels of security and performance.

The contributions presented in this paper are as follows:
(1) The design of SlimGuard, a secure memory allocator
whose security features integration is driven by memory
efficiency; (2) The implementation of SlimGuard; and (3)
Its evaluation, demonstrating its security guarantees, low
memory overhead, and good performance compared to state-
of-the-art memory allocators, both secure and non-secure.

The rest of the paper is organized as follows: in Section 2
we motivate securing the heap and discuss existing secure
allocators as well as related work. We describe SlimGuard’s
threat model in Section 3 and present its design and imple-
mentation in Section 4. We analyze and evaluate the security
features provided by SlimGuard in Section 5, then evaluate
its performance in Section 6. We conclude in Section 7.

2 Motivation and Related Works

In this section, we detail the most common heap-related
vulnerabilities, and show that nowadays they are an increas-
ingly severe threat. Next, we present existing secure memory
allocators and point out their limitations motivating the de-
sign of SlimGuard. Finally, we discuss related work.

2.1 Heap-Related Vulnerabilities

The occurrence of heap-related vulnerabilities discoveries

and related attacks is dramatically increasing in recent years [31,

32]. We used the National Vulnerability Database (NVD) [27]
to search for reported vulnerabilities on the heap since 2010,
and counted the number of heap-related Common Vulnera-
bilities and Exposures (CVE) entries per year. These numbers

Beichen Liu, Pierre Olivier, and Binoy Ravindran

)]
o
o

200

Number of CVEs
mentionning the heap
S
o
o

0
2010 2011 2012 2013 2014 2015 2016 2017 2018
Figure 1. Number of heap-related CVE entries since 2010.

are presented on Figure 1. As one can observe, the number
of CVE entries mentioning the heap has tripled after 2017, to
reach more than 600 occurrences in both 2017 and 2018. Al-
though there is a plethora of work targeting the ’static’ part
of the address space such as the code segment or static data,
a large part of this work is not applicable to the heap [35].

Vulnerabilities on the heap can fall into diverse categories.
A heap overflow happens when the program performs an
out-of-bound write operation past a heap object due to a bug
or a lack of proper bound checking. Less common, heap un-
derflows concern situations where a buggy access to a heap
buffer leads to memory being written before the buffer. Sim-
ilarly, heap objects over-read and under-read concern read
rather than write accesses. All these operations allow an at-
tacker to potentially write and read part of the address space
which can lead to information leaks (such as HeartBleed [7])
or data/metadata corruption [17], leading to control flow
hijacking or denial-of-service.

Other vulnerability classes include use-after-free (or dan-
gling pointers), in which memory is erroneously accessed
after having been freed. Consequences depend on the use of
the accessed memory. They include information leak [36] but
also to control flow hijacking [30], when the freed memory
is later reallocated for an object of type B and then accessed
as the initial object of type A [36]. An invalid free happens
when the application tries to free a value that is not point-
ing to an object created by the memory allocator. A double
free happens on a pointer that was already freed in the past.
Invalid and double-frees can be exploited for arbitrary code
execution, data corruption, and denial-of-service [31].

A past study [32] presents a breakdown by type of NVD’s
heap-related CVEs and note that the most common are, by far,
overflows, followed by use-after-free and over-reads. Invalid
and double-frees are less common.

2.2 Existing Secure Memory Allocators

An obvious level of protection against the exploitation of
these vulnerabilities is the dynamic memory allocator, i.e. the
implementation of malloc, managing heap objects. Here, we
present the existing memory allocators providing security
features [25, 28, 31, 32].

OpenBSD. The allocator of OpenBSD 6.0 [25] (referred to
as OpenBSD in the rest of this paper) is an evolution of PHK-
malloc [18] originally written for FreeBSD. OpenBSD adds
security features including (1) the segregation of data and

SlimGuard: A Secure and Memory-Efficient Heap Allocator

highy [Berf, Tmpact. FreeGuard
> -
S'.E O High/med. Guardsr
£ S ||OLow O DieHarder
o0
=8 . .
iow | O Glibc OBsD SlimGuardQ
" low/none medium highI

Security guarantees

Figure 2. SlimGuard in the secure allocators design space.

metadata in order to protect against metadata exploits based
on data buffer overflowed onto inline metadata and (2) ran-
domized allocations making it harder for an attacker to deter-
mine the layout of the heap. Due to its reliance on a bitmap
rather than a free-list to maintain the status (free/used) of
heap objects, OpenBSD has a low memory overhead. How-
ever it suffers from performance problems (up to a 4x slow-
down [31]) due in particular to frequent invocations of the
mmap system call. Limitations in terms of security guarantees
have also been identified, such as an unstable level of entropy
for the allocation of small objects (with size <2KB), or an
outright low entropy for large objects [32].
DieHarder. DieHarder [28] implements security features
such as randomized allocations. It also offers over-provisioning,
a technique in which some object slots are never allocated,
giving a probabilistic chance that an overflow hitting an unal-
located slot will have no impact (at the cost of memory over-
head). DieHarder has been identified to have a non-negligible
memory overhead, an unstable randomization entropy, and
a significant (up to 9x) performance impact [32].
FreeGuard and Guarder. FreeGuard [31] improved over
OpenBSD and DieHarder by combining all security features
from previous work with a negligible performance overhead.
In SlimGuard we provide similar security features, although
designed and implemented differently, so we will depict them
in details in the next section. Guarder [32] is an evolution
of FreeGuard, and can be considered as the state-of-the-art
secure memory allocator. Guarder improves upon FreeGuard
by providing a deterministic level of entropy that is tunable
and can be set higher than FreeGuard’s low entropy (2 bits).
Guarder also presents a negligible performance overhead.
Both FreeGuard and Guarder do not focus on memory over-
head and as a result these systems have a very large memory
footprint: more than 2x in multiple scenarios [31, 32].
Given that existing secure memory allocators have issues
either in terms of performance (OpenBSD/DieHarder), secu-
rity (OpenBSD/DieHarder/FreeGuard), or memory overhead
(DieHarder/FreeGuard/Guarder), we propose SlimGuard- a
memory allocator that offers a low memory footprint, good
performance, and good security guarantees. SlimGuard is
thus a novel point in the design space, as illustrated by Fig-
ure 2.

2.3 Other Related Works

Other secure allocators have been proposed in the past. In
general, each focuses on a particular security feature, such as

Middleware *19, December 8-13, 2019, Davis, CA, USA

providing a non-deterministic layout/location of the heap [4,
19, 29], or segregating data and metadata in the address
space [19, 37, 38]. These features are supported in SlimGuard.
Cling [1] protects against use-after-free vulnerabilities by
forcing address space to be reused only by objects of the same
type. SlimGuard also protects against such vulnerabilities
by a combination of segregation of metadata, randomized
allocations, and guard pages.

Other protection techniques focus on a particular type of
vulnerability on the heap. Multiple work have targeted use-
after-free and/or double-free vulnerabilities, either through
the use of a customized compiler for FreeSentry [36] and
DangNULL [21], or at runtime for Undangle [6]. Other work
targets buffer overflows either through the introduction of
additional metadata checked at runtime [2, 3] or with the
use of a customized compiler [10]. SlimGuard provides pro-
tection against many vulnerabilities. Moreover, we do not
require recompilation nor access to the sources, which is not
acceptable in some cases such as the use of proprietary code.

3 Threat Model and Assumptions

We assume a threat model similar to the one of state-of-the-
art secure allocators [31, 32]. It is well-known that security
by obscurity is not a good practice, so we assume that it is
possible for the attacker to access the sources of SlimGuard.

We trust the host operating system (OS), in particular the
fact that the mmap () system call can provide sufficiently ran-
domized virtual memory areas for SlimGuard to keep secret
the start addresses of data and metadata areas, as well as
the loading location of SlimGuard’s shared library code and
static data. We also assume that the system is correctly con-
figured so that the location of such areas is not accessible
through channels such as the /proc virtual filesystem [11].
We assume a 64 bit machine as the host, and we trust the ran-
dom number generator to be efficient and not to be tampered
with or subverted by the attacker.

4 SlimGuard: Design and Implementation

The security principles implemented within SlimGuard are
the following: Randomized memory allocations with a signif-
icant entropy remove the capacity by the attacker to create
a deterministic layout of objects on the heap [33]. Over-
provisioning protects in a probabilistic way against buffer
overflows. Segregating metadata from data allows to pro-
tect against metadata corruption-based attacks [17] that
are straightforward in systems storing metadata inline as
headers with dynamically allocated objects. These metadata
include in particular the state of each slot (free or used),
checked upon free to protect against double-free-based at-
tacks. Heap over- and under-flows are protected against with
the use of heap canaries. Unmapped guard pages prevent heap
buffer overflows and over-reads. Use-after-free attacks are
made harder by using delayed randomized memory reuse and
optionally destroying data on free.

Middleware *19, December 8—13, 2019, Davis, CA, USA

In the rest of this section, we first give an overview of Slim-
Guard’s working principles. Next, we describe each security
feature we provide and put the emphasis on how we opti-
mize its integration for low memory consumption. Next, we
discuss SlimGuard’ compatibility. It is important to note that,
although SlimGuard integrates similar features as existing
secure allocators, due to our focus on memory consump-
tion the design and implementation of such features differs
significantly from existing allocators.

4.1 Overview
Small vs. Large Objects. A central feature of a dynamic
memory allocator concerns how to manage objects of dif-
ferent sizes. Generally, a distinction is made between small
and large objects [15, 20, 31, 32]. Small objects are man-
aged internally by the allocator, while for large objects the
allocator generally relies on the mmap and munmap system
calls. Large object management is thus relatively straightfor-
ward. It is also secure because of the high level of entropy of
Linux’s anonymous mappings (at least 28 bits and up to 33
for hardened kernel with PaX/grSecurity [24]) and the fact
that such mappings are generally surrounded by unmapped
pages makes them robust against overflows. Moreover, be-
cause such objects are freed with munmap, a use-after-free
would invariably trigger a page fault and crash the program.
The relatively high cost of invoking the mmap system call has
to be put into perspective with the relatively low frequency
of the allocation of such large objects. SlimGuard adopts
a similar management for large objects, the configurable
threshold being set by default at 128 KB. In the rest of this
section we focus on depicting small objects management.
Size-Classes Management and Indexing. Existing state-
of-the-art secure memory allocators [31, 32] use power-of-
two size classes to manage small objects. Indeed it is quite
likely for the programmer to request memory with a size
equal to a power-of-two. Although this is intuitive in non-
secure allocators, in state-of-the-art secure allocators this
ends up being the source of a very large memory overhead. In
effect such allocators place a heap canary right after allocated
objects in the address space. The canary is a small one-byte
value used to check for buffer overflows. It is placed with
the object within the allocation slot. It makes that with any
allocation of a power-of-two size 2", that object will need to
be allocated in the next size-class, i.e. 2**1, to be able to store
a small single-byte canary alongside the data. This effectively
wastes 2" —1 bytes of memory. Because of the high likelihood
of power-of-two allocations, this leads to a potentially huge
memory overhead for state-of-the-art secure allocators - for
example in PARSEC [5] canneal, 88.1% of the 20 million calls
to malloc fall into this category. As a result Guarder has a
70% memory overhead for this benchmark (see Section 6).
Supporting canaries in SlimGuard is crucial as buffer over-
flows are the most common vulnerability on the heap [32].
We decide not to rely on power-of-two size classes and rather
define finer-grain size classes. We have a total of 176 size

Beichen Liu, Pierre Olivier, and Binoy Ravindran

classes, divided into 11 subdivisions of 16 size classes each. It
is illustrated on Figure 3 @) and ®), where each slot of the
array (B corresponds to a size class. Slots representations on
the Figure contain the lowest and highest sizes managed by
that particular class. The managed sizes of classes within a
subdivision increase linearly by a factor determined by the
subdivision index. We choose to have 11 subdivision to ob-
tain a gradual size class increase up to 128 KB, the small/large
object boundary.

To index size classes we use a one-dimensional array ®
containing one element per size class, each being a pointer
to the beginning of an area containing the data (©. We name
it the data area. We align all heap objects within that area to
an 8-byte granularity for easy management purposes. When
it is needed to satisfy an allocation request of size size we
use the following formula to find the corresponding slot:
index = 16x(Ipsp—6)+bits[Iysp—1: IMSB—logg(16)—1]. In
this equation, 16 is the number of size classes per subdivision,
Ivsg is the index of size’s MSB, and 6 is a constant derived
from the number of subdivisions and a minimum alignment
of 8 bytes for size classes boundaries.

Because of this fine-grain size-classes division, memory
wastage is significantly reduced even in the presence of ca-
naries and power-of-two-sized allocations. Let us take the
example of a program calling malloc(32). After the extra
byte for canary, the allocation needs to be rounded up to
40 for SlimGuard instead of 64 for state-of-the-art secure
allocators such as FreeGuard or Guarder. In that case we
are effectively saving 40% memory. Our fine-grain size class
management scheme takes inspiration from Two-Levels Seg-
regated Fit [23]. In essence, we improve that scheme by merg-
ing its two levels of indexation into a unidimensional array,
optimizing both metadata memory footprint and indexing
computations over the original algorithm.

Managing the Data Area. The data area () on Figure 3)
is a large area (multiple GBs) of contiguous virtual memory
allocated through mmap the first time a size-class is used. It is
composed of a used (mapped) section containing fixed-size
free and used slots), and an unused (unmapped) section ®.
These sections are separated by the data area limit pointer ®,
which is dynamically incremented when the number of free
slots is low. The mapping of the data area to actual physical
memory happens implicitly as Linux performs on-demand
mapping for anonymous mappings requested without the
MAP_POPULATE flag such as our data area.

Indexing free slots can be made using a bitmap [25, 28]
which is memory-efficient but very slow to scan uponmalloc
calls to find a free slot to serve an upcoming allocation re-
quest. The other solution is to use a free-list (G which is
efficient in terms of performance, but consumes more mem-
ory because (1) pointers need to be stored and (2) we may
index in the free-list slots that will never be used which is
pure memory waste. In SlimGuard we use a free-list to index
free slots. Thus, allocation is made with an O(1) complexity.

SlimGuard: A Secure and Memory-Efficient Heap Allocator

Middleware *19, December 8-13, 2019, Davis, CA, USA

: . . Per-size-class slots
Size-class indexing metadata
Cmalloc path) A g status metadata (free/used) A
) Subdivision 1 . Subdivision 2 Subdivision 3 " o) A
Index: y1 2 3 16 17 32 33 48 49 176
121 | 129 249- [257~ ... [a97- [513- 124K+1 -
9 0-6 |9-16 17*24| 128 | 136 256 | 272 512 | 544 128K
a > L.
T s NN
O =T F 7UUTTTTR
1 1 1 1
1 1 1]
Per-size-class Frlite Uslgtd Guard page i i i '
data area s S I S S B :
Canary :

<— ysed section

4— Unu
Q GData area limit pointer 3 G

sed section —p»

Figure 3. Overview of SlimGuard’s design, including size-class indexing metadata (@ and B), each slot containing the range
of sizes it manages), free/used slots status metadata ((I)) and one of the per-size-class data area (bottom).

We minimize the memory impact of this list by having it
index only the free slots of the used (mapped) section ©).
Thus, in program making only a few memory allocations
the free-list memory usage is relatively low, whereas in ap-
plication making more allocations it is larger in absolute
but more acceptable in regard to the application consuming
more memory itself.

For each size class, the corresponding data area as well
as its management data structures (such as the free-list) are
created and allocated on-demand the first time an allocation
is made for this particular class size. It is crucial to do so
because the amount of size classes in SlimGuard is higher
than in other allocators using power-of-two size classes: in
order to manage small objects up to 128 KB, we use 176 size
classes whereas power-of-two allocators would only have
15 size classes. Such on-demand allocation helps to limit the
per-size-class overhead, in particular in programs doing just
a few memory allocations.

Processing malloc and free. In the general case, both
malloc and free are executed in constant time in SlimGuard.

When malloc is called, the relevant data area is identified
using the indexing array as described above (&), ® and ©
on Figure 3), according to the requested size. Next, a free
slot is picked from the free-list (G). These operations are thus
efficiently realized in constant time (the free-list is an array
that can be directly addressed). When the size of the free-list
falls under a certain threshold, we increment the data area
limit pointer by the size of a slot and add the new free slot
to the free-list.

When free is called @), a bitmap maintaining the free/used
status of slots (D on Figure 3) is first checked to protect
against double frees. As a bitmap it takes very little space in
memory. The slot is then marked as free in these metadata O

and added to the free-list G

We have a per-size-class bitmap and when free is called,
in order to access this bitmap we need to know the size-class
of the freed buffer. For security reasons the data areas are
located at random locations one from another, so it is not
possible to infer the size class of a pointer from its location in
constant time: we have to iterate and check for each allocated
data area if the pointer falls within its boundaries. In order
to speed-up that process, we always start to iterate with the
size-class of the latest previously freed pointer. This is quite
efficient as we noticed that a lot of programs free buffers of
the same size one after the other (a common example is a
multi-dimensional array allocated and freed within loops).
In the best case, which happens very often, free is achieved
in constant time.

SlimGuard maintains per-memory-page used object coun-
ters updated with allocations and deallocations. When a
counter reaches 0, the corresponding memory page is re-
leased to the OS through a madvise call with the parameter
MADV_DONTNEED. The counters themselves are allocated on-
demand and do not generate memory consumption for data
areas’ pages past the limit pointer.

In the next subsections we describe SlimGuard’s security
features. For each feature we detail the protection offered,
an analysis of its memory impact, and a description of its
implementation within SlimGuard.

4.2 Randomized Allocations and Over-Provisioning

Protection Offered. Non-secure dynamic heap allocators
do not randomize the addresses returned by malloc, lead-
ing to situations in which the attacker can deterministically
determine and control the heap layout. A concrete exam-
ple of attack is Heap Feng Shui [33], in which a carefully
crafted sequence of memory allocation requests is used to
generate a deterministic heap layout and ensure the success
of a subsequent heap spraying attack. The level of security
for randomized allocations is measured in number of bits

Middleware *19, December 8—13, 2019, Davis, CA, USA

of entropy, indicating how many different locations can be
returned by a call to malloc (n bits of entropy correspond
to 2" possibilities). That number should be high enough, for
example FreeGuard [31] only offers 2 bits of entropy which
corresponds only to 4 possible locations. That number should
also be stable [32], i.e. the system should give a guaranteed
minimal number of bits of entropy for each allocation. In
OpenBSD [25] and DieHarder [28], that entropy is unstable
and depends of the state of the allocator. Entropy can fall as
low as 3 bits for OpenBSD and 5 bits for DieHarder [32].

Over-provisioning [28, 31, 32] is a technique with which a
certain number of heap slots are never used by the allocator.
These slots are located randomly in between used slots. The
rationale is that a buffer overflow ending in such an unused
location will be tolerated and will have no impact.

Memory Overhead Considerations. The memory over-
head generated by randomized allocations is fully dependent
on the method for providing such allocations. However, to
provide a sufficient level of entropy, this overhead can be
quite large. Indeed, to avoid calling mmap to obtain memory
pages too often (something that OpenBSD does at the cost of
a non-negligible performance overhead), secure allocators
such as Guarder [32] maintain multiple per-size class pools
with multiple allocated pages from which requests for allo-
cations are served. In such cases the more entropy bits are
required the higher the memory overhead is.
Over-provisioning is a direct loss of memory, although it
can help to tolerate against overflows in a probabilistic way.
It is a good example of a direct trade-off between memory
consumption and probabilities of attack protection.

Integration in SlimGuard. In SlimGuard we combine ran-
domized allocations and a certain form of over-provisioning
(OP) within a single feature called entropy-based OP. In our
design, it corresponds to ensuring that the free-list size will
never fall under a certain threshold. This is simply made by
creating a new free slot through the increment of the data
area limit pointer (® on Figure 3). In effect, we increment
that pointer by the size of a slot when the allocation of an
object makes the free-list size fall below the threshold. Re-
member that each free slot of the mapped section of a data
area is indexed within a free-list. Upon malloc, a free slot
in that list is randomly chosen to serve that request. Thus,
by ensuring that the list size never falls under 2", we can
provide a stable n bits of entropy for randomized allocations.
By doing so, we also ensure in effect that 2" randomly dis-
tributed free slots will never be allocated, providing a form
of OP at no additional memory cost.

Because such OP is a side effect of randomized alloca-
tions, it is not as efficient as directly-managed OP tech-
niques [31, 32] that give the user a direct control about the
percentage of OP space. Moreover, with such techniques
free slots are spread evenly across the data area. In order
to thwart overflows an efficient OP scheme maximizes the
number of free slots that are contiguous to a used slot. In

Beichen Liu, Pierre Olivier, and Binoy Ravindran

SlimGuard, any type of control over the free-slots providing
entropy would go against the fact that their location should
be random. Thus, we also provide an option to place addi-
tional free slots evenly within the data area for situations
where memory consumption is less of a concern but the
amount of OP must be controllable.

4.3 Data and Metadata Segregation

Protection Offered. Multiple legacy heap allocators store
metadata (data free/used status, free-list pointers, etc.) inline
with the data. Because of the close and deterministic location
of such metadata related to the corresponding data, it is
relatively straightforward for an attacker to overwrite the
metadata, for example through a heap object over- or under-
flow. This is at the core of the unlink [17] attack where
Glibc’s DLmalloc implementation is tricked into overwriting
a function pointer target with the address of shellcode when
processing carefully corrupted heap metadata.

In secure allocators, metadata maintains the status of each
object (free or not). This status is checked when the object
is freed to protect against double or invalid free.

Memory Consumption Considerations. Moving the me-
tadata out-of-band indirectly increases memory consump-
tion: indeed, inline metadata can be quickly looked up given
an allocated object address, for example in the case of a call
to free. When metadata is segregated from allocated objects,
such a lookup requires an indexing mechanism that may it-
self consume memory. These indexing data structures may
also be used to find free memory blocks for upcoming alloca-
tion requests. Allocators offering slots of fixed size [1, 25, 28]
can have their metadata indexed with simple bitmaps that
are quite memory efficient, but slow to scan when searching
for free blocks [31, 32]. Similar to allocators with inline meta-
data, secure allocators using slots of non-fixed sizes [31, 32]
link these metadata with free-lists which management and
usage is less memory-efficient than bitmaps but offers in-
creased performance.

Integration in SlimGuard. In SlimGuard, data and meta-
data are segregated: the free/used status of each slot is in
a bitmap which is located at a random place in the virtual
address space (D on Figure 3), i.e. at a random offset from the
corresponding data slot. In SlimGuard, it is possible for us to
use a bitmap for such metadata because we have fixed-size
slots: upon free, we can then quickly lookup the right bit in
the bitmap in constant time based on the slot position within
the data area. However, as mentioned above, bitmaps are
slow on the malloc path as they need to be scanned. Thus,
we also use a free-list for which we try to keep the size as
small as possible, as explained above in the description of
the malloc operation: they only index free slots from the
mapped section of the data area.

4.4 Dynamic Canary

Protection Offered. Canaries are guard values with a size
of generally 1 byte, placed before or after allocated objects on

SlimGuard: A Secure and Memory-Efficient Heap Allocator

the heap to protect against overflows. An overflow on a given
object would overwrite and modify the value of the corre-
sponding canary, and a security flag is raised when detecting
a change in the canary value. Canaries are important as they
protect against overflow, by far the most widespread vulnera-
bility on the heap [31, 32]. However, their efficiency is limited
by the fact that canaries values can only be checked at free.
Existing allocators [31, 32] generally check a small set of
canaries during each malloc and free operation. Moreover,
it is possible to leak the value of a canary through a buffer
over-read, which is in the top-3 most common vulnerabilities
on the heap [32]. Unfortunately state-of-the-art secure allo-
cators use the same value for the canary among all allocated
objects. Thus, a leak breaks the entire canary system, i.e. it
becomes possible to successfully overflow buffers by setting
the canary to the particular leaked value.

Memory Consumption Considerations. The overhead
due to canaries is twofold. It is first comprised of the space
needed to store the canary itself, which is equal to the size
of the canary multiplied by the number of allocated objects.
Secondly, because of the size-class system used in state-of-
the-art secure allocators, the additional space required for the
canary may lead to the selection of an allocation slot of next
size class (by definition the canary needs to be stored inline
with the data). As previously described, because existing
secure allocators implementing canaries use power-of-two
size classes, this can have a significant impact on the memory
overhead [31, 32]. As a matter of fact canaries are generally
disabled in the evaluation of such systems because of this
large memory overhead [31, 32].

Integration in SlimGuard. Because of the fine-grain size
classes we use in SlimGuard, as previously mentioned the
memory impact of canaries triggering a jump to a superior
size class is significantly reduced.

In SlimGuard we also acknowledge the possibility of a
canary value leak. Such an event would break any secure al-
locator having a static canary (a single canary value), which
is the case for all state-of-the-art allocators s[31, 32]. We
propose a new method in which canaries values are different
among separate objects on the heap without impacting mem-
ory overhead: dynamic canaries. When an object is allocated,
we hash its address and use the hash value as a 1-byte canary,
placed at the end of the allocated slot as depicted on Figure 3.
The dynamic canary technique is more secure than the state-
of-the-art allocators, while staying memory efficient. Indeed,
because we use a hash value of the returned address, Slim-
Guard does not have to store this value for comparison later
when the time has come to check its consistency.

The hash function used to compute canary values is cre-
ated at load time, and will be different over multiple runs
of a program. It is composed of a random combination of
fast operations including multiple basic bits manipulations
such as shifts of different values, XORs, etc. and arithmetic
computations with random numbers such as additions and

Middleware *19, December 8-13, 2019, Davis, CA, USA

multiplications. As a result, it is very hard for an attacker
to find the hash function even in the presence of multiple
canary leaks.

At free time, SlimGuard rehashes the deallocated pointer
and compares this value with the canary at the end of the
corresponding slot. If the values are different, the behavior
of SlimGuard is configurable: a security flag can be raised, or
the program can be killed. In both cases information about
the location of the potential buffer overflow can be printed.
When free is called, in order to locate the canary we need
to know the size class the object belongs to. We also need to
perform that same operation to access the bitmap containing
the free/used status for checking against double-free. Thus,
we only have to go through that process once for both canary
and double-free checking.

The canary is placed at the end of each slot rather than
right after the buffer. In that way, we can avoid storing the
size of the buffer in order to retrieve the canary value when
it needs to be checked. Note that any overflow ending up
between the buffer and its canary will have no effect. Cur-
rently the canary is only checked at free time but it is also
possible to check sets of canaries during malloc and free
as made by other secure allocators [31, 32].

4.5 Guard Pages

Protection Offered. Guard pages are unmapped virtual
memory pages placed close to allocated heap objects. In
terms of overflow detection, a guard page acts as a perfect
canary because any overflow hitting a guard page will in-
stantly trigger a page fault. Moreover, guard pages provide a
more comprehensive protection: on the contrary to canaries
they also protect against buffer over-reads. Such pages also
do not consume memory because they are not mapped. How-
ever their granularity of placement is obviously limited at
the page level so it is not possible to place a guard page after
each allocated object on the heap.

One issue with guard pages is the performance cost of
placing them. OpenBSD [25] implicitly places a guard page
between each data page by requesting each of these data
pages on-demand through mmap. Because it involves a system
call it is costly in terms of performance. In FreeGuard [31],
at load time a large virtual memory area is allocated for data
and guard pages are placed randomly within. By default, 10%
of this area becomes guard pages. It is done with mprotect,
considerably faster than mmap. However this involves a lot of
operations during the initialization process which may slow
down fast-executing programs making just a few memory
allocations. Guarder [32] has a similar initialization phase
and introduces additional guard pages at runtime.
Integration in SlimGuard. In SlimGuard, we propose fully-
on-demand guard pages. Each time the data area limit pointer
(®) in Figure 3) is incremented by one element to obtain a
new free slot, we check if we are at the frontier of a memory
page, i.e. if the newly created slot would span over the next
memory page. If it is the case, we have the opportunity to

Middleware *19, December 8—13, 2019, Davis, CA, USA

place a guard page there and create the new free slot on the
subsequent page. This opportunity occurs every other page
for class sizes of less than 4096 bytes (the size of one page).
Although it happens less frequently considering larger class
sizes, because of their size it actually leads to one opportunity
to place a guard page between every object.

In SlimGuard, we place on-demand guard pages by calling
mprotect. Although it is about 20x faster than mmap, it is still
a system call and therefore has a non-negligible performance
overhead. SlimGuard can be configured to place a guard page
once every n opportunities (per size class).

In the case of fast-executing programs making just a few
memory allocations, the fact that SlimGuard places guard
pages in an on-demand fashion makes that its performance
overhead is negligible compared to the tens or hundreds of
thousands of mprotect calls made by state-of-the-art allo-
cators such as Guarder or FreeGuard during initialization.

4.6 Other Security Features

Delayed Memory Reuse. Delayed memory reuse [25, 31]
consists in delaying the reuse of freed memory objects in
order to make use-after-free attacks more difficult: if the
buffer is not reused, such attacks have good chances to fail.
This is generally implemented through the use of a delay
buffer that holds freed memory slots for a given number of
allocations after which they can be reused.

In SlimGuard, the free-list for each data area acts as a
random delay buffer. The next allocated element from a par-
ticular size class will be picked randomly within the free-list
which is guaranteed to be at least of size 2", n being the level
of entropy selected. If this entropy is large enough, when an
element is sent back to the free-list it has very low chances
to be picked up as one of the next allocations.
Destroy-on-Free. Destroy-on-free [28] is a technique which
consists in zeroing out every freed object or filling it with
random data. This helps in preventing uninitialized reads
and use-after-free, however the performance impact can be
significant due to the memory write overhead. In SlimGuard
it is left to the user discretion to activate destroy-on-free,
which is implemented as a simple call to memset. Similarly to
other allocators [32], destroy-on-free is disabled by default
due to its impact on performance.

4.7 Multithreading and Compatibility

Highly scalable allocators use distributed, per-thread data
structures [12] to concurrently serve allocation requests and
offer high performance with large number of threads. This
has the drawback of presenting a memory overhead that
increases with the number of threads. It is the case for state-
of-the-art secure allocators. Because we focus on memory
efficiency, in SlimGuard we choose to have a memory over-
head independent of the number of threads, without com-
promising too much on performance scalability. SlimGuard
supports multithreading through the use of fine-grained
locking. In effect we serialize each access to a size-class data

Beichen Liu, Pierre Olivier, and Binoy Ravindran

Table 1. Security features comparison.

GLib-| Open- | Die- Free- | Guar- |_,.
[Feature C BSD | Harder | Guard | der ShniEhed
v’ | = Stati - -
Canary Static| o v
Static | (weak) Static | Static | Dynamic
[Rand. alloc. X - - = Low ‘/Stable ‘/Stable
entropy Unstable [Unstable| (2 bits) | high high
Over-prov. | X 4 v’ b 4 v’ v’
- On- v | v on
Guard X b Ond - - Stati b Ond
ages eman . tatic+ eman
Ppag (slow) Weak | Static oD (fast)
Segregated X v v v v e
imetadata
E)ouble &
invalid free | v |- (Weak)| ¥ v v v
detection
Delayed |y | W | | v v |

mem. reuse

structures with pthread mutexes, as represented by the locks
illustrated on Figure 3. Thus, two threads can concurrently
allocate or free memory of different size classes.

This allows SlimGuard’s performance to scale to a medium
number of threads, however it is unlikely to scale to large
number of threads (e.g. hundreds). We believe it is acceptable
for two reasons. First, applications with very high number of
threads are not the norm: a recent study over the entire Mi-
crosoft Azure’s VM workload [8] shows that more than 95%
of the VMs have less than 10 VCPUs. Second, in applications
with high numbers of threads it is unlikely that memory foot-
print represents a critical concern. Thus one would choose
over SlimGuard a secure allocator such as Guarder, focusing
on performance rather than memory usage.

SlimGuard is implemented in C for efficiency. As most
other custom dynamic allocators, SlimGuard is a binary-
compatible shared library and the user can use LD_PRELOAD
to substitute SlimGuard to the default allocator without re-
compilation for dynamically compiled binaries.

5 Security Analysis and Evaluation

In this section we compare SlimGuard’s security features
with existing secure allocators and describe how it protects
against common heap vulnerabilities. Next, we present Slim-
Guard’s efficiency on some real-world bugs.

5.1 Security Features Comparison

We compare in Table 1 the security features implemented in
SlimGuard and the existing secure allocators OpenBSD [25],
DieHarder [28], FreeGuard [31] and the state-of-the-art Guar-
der [32]. We also include Glibc’s allocator [15, 20] for ref-
erence. Even if it includes a few features such as optional
canaries and double/invalid free detection, it is not designed
to be secure so most of the features are absent.

Only SlimGuard proposes dynamic canaries, an additional
defense in the case of a canary leak. Similarly to Guarder,
SlimGuard guarantees a fixed level of entropy which can be

SlimGuard: A Secure and Memory-Efficient Heap Allocator

set very high, on the contrary to allocators offering unstable
(OpenBSD, DieHarder) or low (FreeGuard) entropy settings.
SlimGuard supports over-provisioning and separates data
and metadata. It provides on-demand guard pages efficiently,
i.e. through calls to mprotect rather than obtaining implicit
guard pages through frequent slow calls to mmap as done
by OpenBSD. Its design can detect double and invalid frees,
and it also provides randomized delayed memory reuse. In
conclusion, SlimGuard provides security guarantees that are
as good and sometimes better than state-of-the-art secure
allocators.

5.2 Security Analysis

Multiple features allow SlimGuard to protect against buffer
overflows/over-reads. Overflows targeting inline metadata
will fail because of the segregation of data and metadata.
Randomized memory allocations remove from the attacker
the knowledge of the heap layout and make it very difficult
for him to set a particular target for an overflows/over-read.
Even if the attacker has access to the application/SlimGuard
source code, or even if he can launch dry runs and explore
the heap layout with GDB, it is still very hard to determine
that layout because it is different for each run. Canaries will
detect overflows overwriting them, and an overflow within
over-provisioned space will have no impact. Finally, guard
pages will protect against both overflows and over-reads.

Concerning use-after-free, SlimGuard offers significant
protections in cases where an object A is freed, the mem-
ory containing it is reallocated to an object B, and then the
program accesses such memory as object A [36]. Because in
SlimGuard the memory will be (1) reused with a probabilistic
delay and (2) reallocated in a random fashion, it is very hard
for the attacker to obtain a meaningful sequence of steps.
Moreover, the presence of guard pages can protect against
brute-force attempts, but it depends on the sizes of objects A
and B. Finally, when activated the destroy-on-write feature
can prevent any use-after-free.

SlimGuard protects against any double free as it uses a
separate metadata area containing the used/free status of
each slot. SlimGuard can also thwart invalid frees, because
it checks that a freed pointer falls within a data area (needed
for accessing the used/free status metadata).

5.3 Security Evaluation

In this subsections we present SlimGuard’s efficiency at pro-
tecting against real-world bugs. Note that we mostly use the
same examples as Guarder [32] and FreeGuard [31].

Buffer Overflows: gzip-1.2.4 and ncompress-4.2.4. Gzip
and ncompress are compression programs which, in these
particular versions (obtained through BugBench [22]), con-
tain buffer overflows due to a call to strcpy without proper
bounds checking. Same as Guarder [32], we moved the target
buffers from the stack to the heap for testing purposes. Both
bugs are detected by SlimGuard at free time through the
check of the overwritten canary, which allows to notify the

Middleware *19, December 8-13, 2019, Davis, CA, USA

user that an overflow happened, print the related location,
and halt execution. Finally, in the case that buffer is protected
by a guard page, the programs would be halted immediately.
Buffer Over-reads: HeartBleed. The well-known Heart-
Bleed [7] bug within the cryptographic library OpenSSL 1.0.1
allows an attacker to supply a malicious payload smaller than
its advertised size, which results in a buffer over-read through
a memcpy operation. With guard pages SlimGuard can pro-
tect against HeartBleed in a probabilistic way, depending on
the amount of guard pages the system is configured to place
which is a parameter defined by the user.

Invalid and Double free: ed-1.14.1 and ImageMagick
7.0.4-1. ed is a text editor from GNU. This version contains
a programming mistake leading to free being called on a
pointer that was never allocated with malloc. SlimGuard
detects that the pointer does not fall within one of the data
areas and is not a large object either, and halts execution after
having printed information about the bug. ImageMagick is a
command line image manipulation tool and the concerned
version contains a double free vulnerability. Because Slim-
Guard maintains the used/free status of slots, it is able to
detect the bug.

6 Performance Evaluation

After showing in the previous section that SlimGuard pro-
vides good or sometimes better security guarantees com-
pared to other secure allocators, with this performance eval-
uation we show that compared to a state-of-the-art secure al-
locator (Guarder [32]) SlimGuard offers a significantly lower
memory overhead. We also show that SlimGuard performs
similarly or better. We define Guarder as the state-of-the-
art because (1) FreeGuard [31] and Guarder [32] represent
the most recent literature for secure heap allocators and (2)
Guarder is an evolution of FreeGuard.

We investigate the following questions: (1) What are the
memory overhead and performance of SlimGuard, and how
are they influenced by its security features? (2) How does the
memory and performance overhead of SlimGuard compare
to the state-of-the-art secure allocator Guarder?

We compare SlimGuard to Guarder in micro-/macro-ben-
chmarks, and to OpenBSD (macro-benchmarks) that has
security/performance issues, but is also memory-efficient.
We also include Glibc in macro-benchmarks because it is
the default allocator of many popular distributions. We use
a 4 cores (8 hyper-threads) Xeon E5-2637 clocked at 3GHz,
with 64GB of RAM. It runs an Ubuntu 16.04 distribution with
Linux v4.4. We use the latest version of Guarder [14] and
a port of OpenBSD’s allocator to Linux [13]. For Glibc we
use the distribution’s version, 2.24-11. Glibc’s code being
compiled with -O2 level of optimizations, we use that same
level to compile the other allocators and the benchmarks.
These allocators are compiled as shared libraries and hooked
using LD_PRELOAD. We use GCC v5.4.0.

Middleware *19, December 8—13, 2019, Davis, CA, USA

Guarder
[SlimGuard

HHHH L1

8102 4 6 8 10 4 6 810
1288 1KB 64KB

Entropy bits and allocation size

N
o
o

sumption (MB)

Memory con-
=
o
o o
[SS SN SN
) —
—
| —
N N NN NN

Figure 4. Entropy and allocation size impact on memory
usage.

We use a set of micro- and macro-benchmarks. The micro-
benchmarks include an analysis of the impact on perfor-
mance and memory overhead for allocation size, entropy for
randomized mappings, and amount of guard pages, as well
as a study of the initialization time and over-provisioning
efficiency. Concerning the macro-benchmarks, we use the
PARSEC [5] suite, representative of data-intensive applica-
tions (a large fraction of the software running in today’s
datacenter) and making an intensive use of the heap. We
use the native dataset size and run both serial and multi-
threaded versions. As the focus of SlimGuard is security
with a low memory overhead, we also run benchmarks from
the embedded suite MiBench [16], still widely used today.
Embedded systems are memory-constrained, and integrated
in security-critical domains such as edge/IoT.

If not otherwise stated, the entropy level is 8 bits, canaries
are enabled, destroy-on-free is disabled, and guard pages are
set to a value of 10% (1 guard page every 10 data pages).

6.1 Micro-benchmarks

Memory Usage, Randomization Entropy Level. To eval-
uate the memory savings brought by SlimGuard over Guarder
and measure the impact of the entropy level (customizable
in both allocators), we ran a micro-benchmark we devel-
oped. In this benchmark n buffers of size s are allocated with
malloc in a loop (n iterations). Next the buffers are filled
with memset in another loop, then freed in a third loop. We
measured the peak memory consumption (resident set size)
as well as the execution time of the malloc and free loops.
To investigate allocations of different sizes, we varied s to be
128 B, 1 KB, and 64 KB. We fixed n for each value of s so that
n * s is always equal to 100 MB, which gives us a sufficient
number of iteration for all cases, and allows us to understand
if the performance/memory consumption depends on the
allocation size. We also varied the entropy (2 to 10 bits).
Results are presented on Figure 4. With allocation of 128 B
and 1 KB, SlimGuard consumes about 2x less memory than
Guarder. These memory allocations having a size equals to
a power-of-two leads to a jump to the next size class in both
systems. Because Guarder uses power-of-two size classes this
doubles the memory consumption. In SlimGuard, because
of the fine-grained size classes, the memory waste is far
inferior. Indeed, the total memory consumption is very close
to 100MB so in that case SlimGuard’s memory overhead is

Beichen Liu, Pierre Olivier, and Binoy Ravindran

small compared to the user memory (100MB). Concerning
the 64 KB size, one can see that it is close to 100 MB for both
SlimGuard and Guarder. The explanation is as follows: 64 KB
is a power-of-two so Guarder will also allocate a larger slot
for each object (128 KB). However, only the object itself is
accessed by our benchmark, which corresponds to the first
64 KB. The last 64 KB starting on a page frontier are not
accessed and will not cause any on-demand paging by Linux:
this will not generate memory waste. This remark can be
generalized to any allocation size above the page size, i.e.
4KB. The number of entropy bits does not seem to generally
impact the memory consumption, although one can observe
a 10-15% increase with Guarder when going from 2 to 4 bits
(only in the 128 B and 1 KB cases).

The execution time of the malloc and free loops for these
benchmarks are presented on Figure 5. SlimGuard is gen-
erally better than Guarder, due to its optimized allocation
and deallocation paths. malloc latency is about 10% faster
in SlimGuard for a size of 128 B, and close to 2x faster for
8 KB. free latency is also faster for SlimGuard in the 8 KB
case. However, it is important to note that because in these
tests we always free elements of the same size, free in Slim-
Guard can happen in constant time while it would not be the
case with variable sizes (see Section 4.1). Remember that we
perform less iterations when the allocation size increases so
it is normal that the execution time of both loops decreases
with larger allocation sizes. We also observe that the latency
of malloc is generally longer than the latency of free, as
malloc includes more operations such as index computation
and random number generation. We also determined that the
cost of computing the canary represents 5 to 10% of malloc’s
latency in SlimGuard.

Guard Pages Amount. Guard pages are provided by both
SlimGuard and Guarder, and are an efficient way to protect
against multiple types of attacks. However, their introduc-
tion has a cost because it involves a system call: mprotect.
We used the same benchmark from the previous experiment
and fixed the allocation size to 4095 and the number of itera-
tions to 10 000. We varied the amount of guard pages from 0
(disabled) to 50% (one guard page between every data page)
and measured the execution time of our micro-benchmark.

Results are presented on Figure 6. The performance de-
crease with the amount of guard pages, which is to be ex-
pected as both SlimGuard and Guarder offer on-demand
guard pages. However SlimGuard manages these pages in a
better way as the performance impact is lower, for example
it is about 15% faster than Guarder for a ratio of 50%.

Initialization Time. The initialization time is a very impor-
tant metric in fast-running and latency sensitive programs. In
some scenarios (e.g. FaaS), user computations are fast and sys-
tems software initialization becomes a bottleneck. Because
Guarder allocates a large amount of guard pages at initializa-
tion time, we varied the guard page ratio in the same way as
the previous experiment to observe its impact. We evaluated

SlimGuard: A Secure and Memory-Efficient Heap Allocator

Middleware *19, December 8-13, 2019, Davis, CA, USA

T g Guarder-malloc

£¥ 150000 ¢ == Guarder-free

5o d r [T SlimGuard-malloc

@ 2 100000 i

l-%& 50000 1 4 & i [SlimGuard-free

0 LT B e R A B BT B A - o o a o
2- 4 6 8 10- 2-1K 41K 6-1K 81K 10-1K 2-64K 4-64K 6-64K 8-64K 10-64K
1288 128B 128B 128B 128B
<entropy bits>-<allocation size>
Figure 5. Performance of malloc and free with different allocation sizes and entropy.
(] 4 —— . ~
g 40000 Guarder [SlimGuard Table 2. OP percentage according to the number of alloca
=4 ﬂ tion and entropy.
c U
S5 500001 B P @W |
é z L & Entropy bits 8 9 10
e v Allocations | 1K | 10K | 100K | 1K | 10K | 100K | 1K | 10K | 100K
18]
0 T T T T T o,
0 10 20 33 50 OP % 12.2|1.34|0.13 |25.3|2.67(0.25 |51.8]4.950.51

Guard pages ratio (%)

Figure 6. Performance impact of the amount of guard pages.

° 6000
€ [Guarder [SlimGuard
'4: % 4000 - |
SZ
S 2000
2| N Mo M R Npi
0 ! } ! ! !
0 10 20 33 50

Guard pages ratio (%)

Figure 7. Initialization time for SlimGuard and Guarder.

the initialization time of SlimGuard and Guarder by running
a simple program which main function just allocates one
byte through malloc, frees it and exits. We measured the to-
tal execution time through a wrapper using gettimeofday.
While this time encompasses more than the allocator initial-
ization time, it allows us to capture any overhead happening
on-demand. For each run we fix all parameters apart from
the allocators so results are comparable.

Results are presented on Figure 7. We noticed a high varia-
tion in the results for each run because the programs execute
very quickly. Thus each bar is the average value of 50 runs
with the standard deviation as error bar. One can observe
that SlimGuard’s initialization time is about 2x faster than
Guarder’s. This is due to the fact that most of SlimGuard’s
data structures are allocated on-demand. Moreover, contrary
to Guarder in SlimGuard this latency does not increase with
the amount of guard page because they are set on-demand.

Entropy-Based Over-Provisioning As mentioned earlier,
such OP is an interesting side effect of our entropy manage-
ment strategy but it is not as efficient as directly-controlled
OP schemes. In order to assess the percentage of entropy-
based OP in various situations, we fixed the allocation size to
1KB and measured the percentage of OP obtained while vary-
ing the parameters impacting this percentage in SlimGuard:
the number of allocations is varied from 1000 to 100000 and

the entropy from 8 to 10 bits. To measure this percentage,
we observe the data area after the allocations and count the
percentage of free slots that are contiguous to a used slot, i.e.
the ones that would protect against over/underflows.
Results are presented in Table 2. As one can observe, when
the number of allocations is small (1K) , the OP obtained is
relatively high: from 12% with 8 bits of entropy to 51.8%
with 10 bits. However when the number of allocations is low
the OP percentage falls (less than 1% for 100K allocations).
In these situations it is possible either to increase the level
of entropy (up to 15 bits, giving about 30% of OP for this
experiment) or to request additional free slots to complement
the ones obtained through entropy-based OP.
6.2 Macro-benchmarks
We measured memory overhead and execution times for the
serial versions PARSEC and MiBench suites. For MiBench
we only include numbers for the programs that use the heap,
namely jpeg-6a/6b, mad, typeset, dijkstraandpatricia.
MiBench runs quickly and its execution times are slightly
unstable, so we present the average values of 50 runs.
Memory consumption numbers are presented on the top
of Figure 8. SlimGuard’s memory footprint is always better
than Guarder, whose high memory consumption is partially
due to the large number of power-of-two-sized allocations
made by some benchmarks such as canneal (1.7x memory
overhead) and several of the MiBench programs. With its
fine-grained size classes, SlimGuard has less or no overhead
in these cases. The overhead due to power-of-two size classes
in allocators such as Guarder can only lead to a maximum
of 2x memory consumption (see Section 4.1), but in some
benchmarks that overhead is superior: 3x for dijkstra and
12x for swaptions. These programs have a very dynamic
memory usage, i.e. calls to malloc and free are interlaced
as opposed to other benchmarks using only malloc at the
beginning and free at the end of the program. We found out
that contrary to SlimGuard, Guarder does not reuse memory
thus in such cases (dynamic memory usage), its memory
consumption is very high.

Middleware *19, December 8—13, 2019, Davis, CA, USA

Beichen Liu, Pierre Olivier, and Binoy Ravindran

scholes neal animate mine trace cluster ptions 6a

Su

235.0

23 23] == openBSD

as%-gj E77 Guarder

& 254 =1 Slimguard

SR2g P :
6210 e - - M e
1 1IN | I [DA LA 1 -) {1 04

zC

o220

ED 15| == OpenBSD Guarder [SlimGuard

.5510 £ - - gl elln Qell Bip maEm

s YOI R R R =0
gB051 HH EHH H

Ll>j§ H F H H H = = H H 5 H 5 H
0.0l —1l = 2yl & £ : BAN AgN & : : :]

p-biack p-can p-fluid p-f;'eq p-r'ayp-str'eamp-swa p-vips m-jbeg m-jpeg m-mad m-t'ype m-dij m-pat

6b set kstra ricia

Figure 8. Memory footprint (top) and execution time (bottom) of SlimGuard, OpenBSD and Guarder for PARSEC (p-*) and
MiBench (m-*) macro-benchmarks. All values are normalized to Glibc’s memory footprint and execution time.

SlimGuard’s overhead is slightly higher than Glibc’s for
some of the MiBench benchmarks. This is due to a slightly
higher per object cost and base memory footprint, combined
with the very small memory usage of these applications
(1.5 MB for jpeg-6a). However that overhead is still low
compared to Guarder’s. OpenBSD has low memory over-
head, similar to Glibc’s numbers in most cases. Although
SlimGuard’s memory overhead is similar to Glibc’s in most
cases, it is not as memory efficient as OpenBSD. However,
OpenBSD’s memory efficiency comes at the price of less se-
curity guarantees, as well as some performance overhead (for
example in canneal). Performance numbers are presented
on Figure 8. SlimGuard’s performance is mostly similar to
Glibc, while we can observe some punctual performance
drops for Guarder (jpeg-6b) and OpenBSD (canneal).

We relaunched these macro-benchmarks disabling the
memory release feature of SlimGuard and witnessed in most
cases a slight performance and memory consumption im-
provement (less than 5%) due to less madvise calls and to
the lack of per-page object counters. We also measured that
the performance impact of destroy-on-free in these macro-
benchmarks for SlimGuard is below 10%. This is because
most of the execution is spent doing computations rather
than executing free.

We present on Figure 9 results for PARSEC running with
multiple threads (1 to 8). For space reasons we only present
a subset of the benchmarks representative of the general
trends. We also do not include results for OpenBSD whose im-
plementation proved to be unstable on these multithreaded
programs. Concerning memory consumption, the trends ob-
served on the single threaded version of PARSEC are con-
firmed. Moreover, for some benchmarks such as vips we
note that the number of allocations increases with the num-
ber of threads. In that case a large amount of these allocations’
sizes are powers of two so the overhead of Guarder jumps

w

N
L

=

Memory usage
normalized to GLibC

0 B e L
c bl b2b4b8clc2cdc8vliv2vav8rl r2 rd4 r8
o
B 500l A == Glibc = slimGuard
o =
‘>’<’E £ Guarder
39 2001
QE] %}
35 100 % %
(o]
I LT IETY PP 11T

bl b2 b4 b8clc2c4dc8viv2vavB8rlr2 r4 r8
Bench-thread# (b=Blackscholes, c=Canneal, v=Vips, r=Raytrace)
Figure 9. Multithreading memory overhead (top) and per-
formance (bottom) results.

from 2x to more than 3x when going from 1 to 8 threads.
SlimGuard’s fine-grained size classes management reduces
the memory wastage and its overhead compared to Glibc’s is
constant and negligible. Similar to Guarder SlimGuard per-
forms as well as Glibc. The programs scale and the execution
time reduces as more threads are used.

7 Conclusion

Existing secure dynamic memory allocators suffer from ei-
ther a significant memory overhead, or performance/security
concerns. We present SlimGuard, a secure allocator focusing
on a low memory footprint while providing a high degree of
security and performance. Evaluation shows that its memory
overhead is more than 2x smaller than that of the state-of-
the-art allocator in a number of macro-benchmarks.

SlimGuard is available at https://ssrg-vt.github.io/SlimGuard/.

Acknowledgments
This work is supported in part by ONR under grants N00014-
16-1-2104 and N00014-18-1-2022.

https://ssrg-vt.github.io/SlimGuard/

SlimGuard: A Secure and Memory-Efficient Heap Allocator

References

(1]
(2]

[10

—

(11]
(12]
(13]
(14]

[15
[16

—_

(17]

(18]

Periklis Akritidis. 2010. Cling: A Memory Allocator to Mitigate Dan-
gling Pointers.. In USENIX Security Symposium. 177-192.

Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and
Miguel Castro. 2008. Preventing memory error exploits with WIT. In
2008 IEEE Symposium on Security and Privacy (sp 2008). IEEE, 263-277.
Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009.
Baggy Bounds Checking: An Efficient and Backwards-Compatible
Defense against Out-of-Bounds Errors.. In USENIX Security Symposium.
51-66.

Sandeep Bhatkar, Daniel C DuVarney, and Ron Sekar. 2003. Address
Obfuscation: An Efficient Approach to Combat a Broad Range of Mem-
ory Error Exploits.. In USENIX Security Symposium, Vol. 12. 291-301.
Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC benchmark suite: Characterization and architectural
implications. In Proceedings of the 17th international conference on
Parallel architectures and compilation techniques. ACM, 72-81.

Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa.
2012. Undangle: early detection of dangling pointers in use-after-free
and double-free vulnerabilities. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis. ACM, 133-143.

Marco Carvalho, Jared DeMott, Richard Ford, and David A Wheeler.
2014. Heartbleed 101. IEEE security & privacy 12, 4 (2014), 63-67.

Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. 2017. Resource central: Understand-
ing and predicting workloads for improved resource management
in large cloud platforms. In Proceedings of the 26th Symposium on
Operating Systems Principles. ACM, 153-167.

Yu Ding, Tao Wei, Tielei Wang, Zhenkai Liang, and Wei Zou. 2010.
Heap Taichi: exploiting memory allocation granularity in heap-
spraying attacks. In ACSAC.

Gregory J. Duck and Roland H. C. Yap. 2016. Heap Bounds Protection
with Low Fat Pointers. In Proceedings of the 25th International Confer-
ence on Compiler Construction (CC 2016). ACM, New York, NY, USA,
132-142. https://doi.org/10.1145/2892208.2892212

Jake Edge. 2009. Linux ASLR Vulnerabilities.
https://lwn.net/Articles/330866/.
Jason Evans. 2006. A scalable concurrent malloc (3) implementation

for FreeBSD. In Proc. of the bsdcan conference, ottawa, canada.
GitHub. 2012. Malloc Implementations.
https://github.com/emeryberger/Malloc-Implementations.

GitHub. 2018. Guarder Sources Repository. https://github.com/
UTSASRG/Guarder.

Wolfram Gloger. 2006. Ptmalloc. http://www.malloc.de/en/.
Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin,
Trevor Mudge, and Richard B Brown. 2001. MiBench: A free, commer-
cially representative embedded benchmark suite. In Proceedings of the
fourth annual IEEE international workshop on workload characterization.
WWC-4 (Cat. No. 01EX538). IEEE, 3-14.

Michel Kaempf. 2001. Vudo-an object superstitiously believed to
embody magical powers.

Poul-Henning Kamp. 1998. Malloc (3) revisited.. In USENIX Annual
Technical Conference. 45.

Mazen Kharbutli, Xiaowei Jiang, Yan Solihin, Guru Venkataramani,
and Milos Prvulovic. 2006. Comprehensively and efficiently protecting
the heap. ACM SIGOPS Operating Systems Review 40, 5 (2006), 207-218.
Doug Lea. 1996. A Memory Allocator. (1996). http://g.oswego.edu/dl/
html/malloc.html.

Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo
Kim, Long Lu, and Wenke Lee. 2015. Preventing Use-after-free with
Dangling Pointers Nullification.. In NDSS.

Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan
Zhou. 2005. Bugbench: Benchmarks for evaluating bug detection tools.
In Workshop on the evaluation of software defect detection tools, Vol. 5.

[23]

[24]
[25]
[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Middleware *19, December 8-13, 2019, Davis, CA, USA

M. Masmano, L. Ripoll, A. Crespo, and J. Real. 2004. TLSF: A New
Dynamic Memory Allocator for Real-Time Systems. In Proceedings of
the 16th Euromicro Conference on Real-Time Systems (ECRTS "04). IEEE
Computer Society, Washington, DC, USA, 79-86. https://doi.org/10.
1109/ECRTS.2004.35

Daniel Micay. 2018. Linux ASLR comparison. https://gist.github.com/
thestinger/b43b460cfccfade51b5a2220a0550¢35.

Otto Moerbeek. 2009. A new malloc (3) for OpenBSD. In Proceedings
of the 2009 European BSD Conference, EuroBSDCon, Vol. 9.

National Vulnerability Database. 2017. CVE-2017-0144. https://nvd.
nist.gov/vuln/detail/CVE-2017-0144.

NIST. 2019. National Vulnerability Database. https://nvd.nist.gov/.
Gene Novark and Emery D. Berger. 2010. DieHarder: Securing the
Heap. In Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS ’10). ACM, New York, NY, USA, 573—
584. https://doi.org/10.1145/1866307.1866371

PaX Team. 2003. Address Space Layout Randomization.
//pax.grsecurity.net/docs/aslr.txt.

Pawel Sarbinowski, Vasileios P Kemerlis, Cristiano Giuffrida, and Elias
Athanasopoulos. 2016. VTPin: practical VTable hijacking protection
for binaries. In Proceedings of the 32nd Annual Conference on Computer
Security Applications. ACM, 448-459.

Sam Silvestro, Hongyu Liu, Corey Crosser, Zhigiang Lin, and Tongping
Liu. 2017. FreeGuard: A Faster Secure Heap Allocator. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2389-2403.

Sam Silvestro, Hongyu Liu, Tianyi Liu, Zhigiang Lin, and Tongping
Liu. 2018. Guarder: A Tunable Secure Allocator. In 27th USENIX Secu-
rity Symposium (USENIX Security 18). USENIX Association, Baltimore,
MD, 117-133. https://www.usenix.org/conference/usenixsecurity 18/
presentation/silvestro

Alexander Sotirov. 2007. Heap feng shui in javascript. Black Hat Europe
2007 (2007).

Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. Sok:
Eternal war in memory. In 2013 IEEE Symposium on Security and Pri-
vacy. IEEE, 48-62.

Victor van der Veen, Dennis Andriesse, Manolis Stamatogiannakis, Xi
Chen, Herbert Bos, and Cristiano Giuffrdia. 2017. The dynamics of
innocent flesh on the bone: Code reuse ten years later. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1675-1689.

Yves Younan. 2015. FreeSentry: protecting against use-after-free vul-
nerabilities due to dangling pointers.. In NDSS.

Yves Younan, Wouter Joosen, and Frank Piessens. 2006. Efficient
protection against heap-based buffer overflows without resorting to
magic. In International Conference on Information and Communications
Security. Springer, 379-398.

Yves Younan, Wouter Joosen, Frank Piessens, and HV den Eynden.
2005. Security of memory allocators for C and C++. Technical Re-
port. Technical Report CW 419, Department of Computer Science,
Katholieke Universiteit Leuven.

https:

https://doi.org/10.1145/2892208.2892212
https://github.com/UTSASRG/Guarder
https://github.com/UTSASRG/Guarder
http://www.malloc.de/en/
http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
https://doi.org/10.1109/ECRTS.2004.35
https://doi.org/10.1109/ECRTS.2004.35
https://gist.github.com/thestinger/b43b460cfccfade51b5a2220a0550c35
https://gist.github.com/thestinger/b43b460cfccfade51b5a2220a0550c35
https://nvd.nist.gov/vuln/detail/CVE-2017-0144
https://nvd.nist.gov/vuln/detail/CVE-2017-0144
https://nvd.nist.gov/
https://doi.org/10.1145/1866307.1866371
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://www.usenix.org/conference/usenixsecurity18/presentation/silvestro
https://www.usenix.org/conference/usenixsecurity18/presentation/silvestro

	Abstract
	1 Introduction
	2 Motivation and Related Works
	2.1 Heap-Related Vulnerabilities
	2.2 Existing Secure Memory Allocators
	2.3 Other Related Works

	3 Threat Model and Assumptions
	4 SlimGuard: Design and Implementation
	4.1 Overview
	4.2 Randomized Allocations and Over-Provisioning
	4.3 Data and Metadata Segregation
	4.4 Dynamic Canary
	4.5 Guard Pages
	4.6 Other Security Features
	4.7 Multithreading and Compatibility

	5 Security Analysis and Evaluation
	5.1 Security Features Comparison
	5.2 Security Analysis
	5.3 Security Evaluation

	6 Performance Evaluation
	6.1 Micro-benchmarks
	6.2 Macro-benchmarks

	7 Conclusion
	Acknowledgments
	References

