
Generalized Consensus for Practical Fault Tolerance
Mohit Garg

Virginia Tech

mohitce@vt.edu

Sebastiano Peluso

Virginia Tech

peluso.sebastiano@gmail.com

Balaji Arun

Virginia Tech

balajia@vt.edu

Binoy Ravindran

Virginia Tech

binoy@vt.edu

Abstract
Despite extensive research on Byzantine Fault Tolerant (BFT)

systems, overheads associated with such solutions preclude

widespread adoption. Past e�orts such as the Cross Fault

Tolerance (XFT) model address this problem by making a

weaker assumption that a majority of nodes are correct and

communicate synchronously. Although XPaxos of Liu et al.

(applying the XFT model) achieves similar performance as

Paxos, it does not scale with the number of faults. Also, its

reliance on a single leader introduces considerable downtime

in case of failures. We present Elpis, the �rst multi-leader

XFT consensus protocol. By adopting the Generalized Con-

sensus speci�cation, we were able to devise a multi-leader

protocol that exploits the commutativity property inherent

in the commands ordered by the system. Elpis maps accessed

objects to non-faulty replicas during periods of synchrony.

Subsequently, these replicas order all commands which ac-

cess these objects. The experimental evaluation con�rms

the e�ectiveness of this approach: Elpis achieves up to 2x

speedup over XPaxos and up to 3.5x speedup over state-of-

the-art Byzantine Fault-Tolerant Consensus Protocols.

CCS Concepts • Security and privacy → Distributed
systems security; • Software and its engineering→ Soft-
ware fault tolerance;

Keywords Consensus; Generalized Consensus; Byzantine

Fault Tolerance; Collision Recovery; Blockchain

ACM Reference Format:
Mohit Garg, Sebastiano Peluso, Balaji Arun, and Binoy Ravindran.

2019. Generalized Consensus for Practical Fault Tolerance. In Mid-
dleware ’19: Middleware ’19: 20th International Middleware Confer-
ence, December 8–13, 2019, Davis, CA, USA. ACM, New York, NY,

USA, 13 pages. h�ps://doi.org/10.1145/3361525.3361536

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for pro�t or commercial advantage and that copies bear

this notice and the full citation on the �rst page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior speci�c permission and/or a fee. Request

permissions from permissions@acm.org.

Middleware ’19, December 8–13, 2019, Davis, CA, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7009-7/19/12.

h�ps://doi.org/10.1145/3361525.3361536

1 Introduction
Consensus solutions underpin numerous distributed systems

– from horizontally scalable databases [2, 13, 16] and key-

value stores [3] to distributed synchronization services [12,

17] – providing strong consistency, fault-tolerance, and high

availability. These systems employ State Machine Replica-

tion [29] where Consensus algorithms are used to achieve

agreement on a common order among concurrent client re-

quests that each node in a distributed system should execute,

even in the presence of faults.

Consensus algorithms are designed using two prominent

fault models: the Crash Fault Tolerance (CFT) model and

the Byzantine Fault Tolerance (BFT) model [23]. CFT proto-

cols do not tolerate any non-crash faults – even accidental

faults like hardware errors, miscon�gurations, and software

bugs, that are increasingly common in production systems

today [1, 4, 5]. BFT protocols, on the other hand, shield appli-

cations from non-crash faults, includingmalicious actors, but

are expensive, requiring more resources and complex mes-

saging patterns. Notably, in geo-scale deployments where

round-trip timings (RTT) are high, BFT protocols have sig-

ni�cantly higher client-perceived latencies, discouraging

widespread adoption. Various approaches [8, 18, 25] improve

the performance of BFT protocols, but the lower bounds of

the BFT model [23] prevents from reducing both the number

of communication steps as well as the quorum size, which is

essential for reducing wide-area latencies.

Most practical systems today operate in secure networks

with solutions in place to thwart malicious attacks like dis-

tributed denial-of-service [31]. For these systems, the Cross

Fault Tolerance (XFT) model [24] achieves a favorable trade-

o� between the CFT and BFT models. Mainly, the XFT model

relaxes the assumption that the adversary can launch coordi-

nated attacks, which is unlikely in geo-scale deployments but

is su�cient to shield applications from crash faults, network

faults, and non-crash non-malicious faults. This enables the

XFT model to use the same quorum size and the same num-

ber of communication steps as the CFT model by assuming

that a majority of processes are correct and synchronous.
XPaxos [24], the lone XFT protocol, is leader-based with

performance similar to CFT-based Raft/Multi-Paxos [27]

https://doi.org/10.1145/3361525.3361536
https://doi.org/10.1145/3361525.3361536

Middleware ’19, December 8–13, 2019, Davis, CA, USA Mohit Garg, Sebastiano Peluso, Balaji Arun, and Binoy Ravindran

protocols. While the XFT model is built with an assump-

tion that be�ts the geo-replicated setting, the accompany-

ing algorithm, XPaxos, provides poor scalability and perfor-

mance. XPaxos inherits the shortcomings of leader-based

approaches: imbalanced load distribution, where the leader

does more work than other nodes; high latency for requests

originating from non-leader nodes due to the requirement

of forwarding requests to the leader; and the inability to

deliver any commands whenever the current leader is slow

or Byzantine pending a leader/view-change.

To address these aspects, we present Elpis, the �rst multi-

leader XFT consensus protocol that exploits the underlying

commutativity of commands to provide fast decisions in

three communication steps from any node, in the common

case. We achieve this by exploiting workload locality that

is very common in geo-scale deployments. The core idea of

Elpis is enabling ownership at a �ner granularity. Rather than
having a single leader that is responsible for ordering all com-

mands regardless of their commutative property, we assign

ownership to individual nodes such that each node mostly

proposes only commutative commands with respect to other

nodes. As a result, each node is responsible for deciding the

order of all commands that commute with other nodes. We

de�ne commutativity by the object(s) that a command ac-

cesses during its execution. With this, we assign ownership
to nodes on a per-object basis. Such ownership assignment

guarantees that no other node will propose con�icting com-

mands, and thus, fast decisions in three communication steps

can be achieved from the owner nodes. Furthermore, clients

bene�t from workload locality by sending requests to the

closest node (with ownership) and observe optimal latencies.

Elpis also allows for dynamic ownership changes. Individ-

ual nodes can gain ownership of any object(s) using a special

ownership acquisition phase. We recognize the con�icts be-

tween multiple nodes trying to acquire the ownership of the

same object(s) concurrently. We address this using a recti-

�cation mechanism that follows the ownership acquisition

phase during con�icts andminimizes the number of retries to

acquire ownership. Additionally, while XPaxos and BFT pro-

tocols like PBFT [15] use a three-phase view-change/leader

election sub-protocol in addition to the normal operation

phases, Elpis requires just one additional phase (two for reg-

ular operation) for liveness. This linear procedure of Elpis

also improves on the combinatorial view-change mechanism

of XPaxos.

We implemented Elpis and competitors - M
2
Paxos [28],

XPaxos, PBFT, Zyzzyva [18] - in Java, using the JGroups

messaging toolkit for the �rst two protocols and BFT-SMaRT

[10] a highly optimized implementation of PBFT to imple-

ment Zyzzyva. We extensively evaluated each of the existing

solutions and contrasted their performances to show the

gains achieved by our solution. To summarize, Elpis achieves

up to 2x speedup over XPaxos and up to 3.5x speedup over

the state-of-the-art BFT Consensus Protocols.

The core contributions of this paper are:

1. The design and implementation of the �rstmulti-leader

Cross Fault Tolerant (XFT) consensus protocol

2. An ownership con�ict resolution protocol that mini-

mizes retries due to proposer contention using a more

cohesive algorithm.

3. An extensive evaluation and comparison to the exist-

ing state-of-the-art in the BFT space.

The rest of the paper is organized as follows: In Section 2,

we discuss the desirable properties which are seemingly

amiss from production systems today. Section 3 presents the

system model and assumptions. In Section 4.1, we introduce

Elpis at a high level, while in Section 4.3, we delve into

the details and present the algorithm pseudocode. Section 5

presents the correctness proof of Elpis supported by a TLA+

speci�cation [20] for the algorithm.We evaluate our solution

and competitors in Section 6, and we summarize the existing

state-of-the-art solutions that are related to our contribution,

Elpis in Section 7. We conclude in Section 8.

2 Motivation
One of the primary motivations for Elpis is to provide strong

consistency in geo-replication. Under the CAP theorem [11],

only one out of two – Consistency or Availability – can

be guaranteed in the presence of a network partition. Dis-

tributed systems like Cassandra [14] and DynamoDB [30]

choose availability over consistency under a network par-

tition. While availability can not be assured in real-world

systems, these systems hand-over the burden of ensuring

consistency to application developers. Additionally, such

systems cannot safeguard applications from faults such as

data corruptions without additional mechanisms. In contrast,

with Elpis, the objective is to favor strong consistency, while

striving to provide high availability under faults. Speci�cally,

using the localized ownership mechanism, we ensure that a

faulty node does not bring the system to a standstill (pending

leader election), unlike single-leader based protocols. As long

as a majority of nodes are up, clients requests are executed.

Moreover, Elpis empowers shard-based systems to guar-

antee linearizability on multi-shard operations. Most geo-

graphically distributed systems run a per-shard consensus

protocol (e.g., CockroachDB [2], Spanner [16]) to achieve

scalability with the number of nodes. However, guarantee-

ing linearizability on multi-shard transactions is non-trivial

and requires additional hardware components such as GPS

clocks which timestamp transactions to establish order (Ex-

ample, CockroachDB uses HLC (hybrid logical clocks), and

YugaByte [6] uses Hybrid Time). Such systems can instead

depend on a single instance of Elpis to guarantee lineariz-

ability as well as scalability without the need for additional

mechanisms. Multi-shard operations can be easily executed

without complicated cross-shard transactions by the appli-

cation layer.

Generalized Consensus for Practical Fault Tolerance Middleware ’19, December 8–13, 2019, Davis, CA, USA

Furthermore, Elpis provides an appealing trade-o� be-

tween CFT and BFT protocols. While CFT protocols cannot

tolerate non-crash faults, BFT protocols require more nodes

and larger quorums to tolerate the same number of faults

as CFT protocols. The need for bigger quorums in the BFT

model is due to the assumption that t non-faulty processes

could be slow in responding in the presence of t Byzantine
processes. Therefore, an additional t non-faulty processes are
required to distinguish between messages from non-faulty

and Byzantine processes. Hence, a quorum of size 2t+1 out
of 3t+1 processes is required for consensus protocols that

employ the BFT model. In practice, this assumption implies

that an adversary can a�ect the network on a wide scale as

well as attack multiple nodes all in a coordinated fashion.

This is a strong assumption, especially for geo-replicated

systems where data-centers are distributed around the world

and linked using secure networks. The XFT model, instead,

provides the same quorum size and uses the same number

of communication steps as the CFT model.

Multi-leader consensus solutions [7, 26, 28] have been pro-

posed for the CFT model in recent years to address the afore-

mentioned issues with the single leader algorithms. Such so-

lutions adopt the Generalized form of Consensus [21], which

exploits the underlying commutativity of commands enter-

ing the system, such that the commutative commands can

be ordered di�erently across di�erent nodes and only non-

commutative commands need consistent ordering across all

the processes. Implementing this in the XFT model is non-

trivial due to the addition of Byzantine nodes wherein com-

mands originating from these nodes cannot be committed.

Our goal is to provide a Generalized Consensus algorithm

in the XFT model which achieves high performance in the

geo-replicated setting using XFT, an adversary model which

be�ts the geo-replicated setting.

3 System Model and Problem Formulation
This section speci�es the system assumptions used for de-

signing Elpis, the contribution of this paper. There exists a

set Π = {p1,p2, ...,pN } of processes that communicate by

message passing and do not have access to shared memory.

Additionally, there exist clients which can communicate with

any process in the system.

3.1 Cross Fault-Tolerance (XFT) Model
The processes may be faulty; they may fail by crashing (tc)
or be Byzantine (tnc). However, faulty processes do not break
cryptographic hashes, digital signatures, and MACs. A pro-

cess that is not faulty is correct. The network is complete and

each pair of processes is connected using a reliable point-to-
point bidirectional link. The network can be asynchronous;
that is, the processes might not be able to receive messages

in a timely manner. In this case, we say that the network is

partitioned and the system model abstracts these partitions

as network faults (tp). Following the XFTmodel [24], the total

number of faults are bounded by,

tnc + tc + tp ≤
⌊N − 1

2

⌋
(1)

where tnc are the number of non crash-faulty or byzantine

processes, tc is the number of crash-faulty processes and tp
is the number of partitioned processes. In any other case, the

system is considered to be in anarchy. For discussion in this

paper, the system is assumed to be never in anarchy – there

always exists at least a majority of correct and synchronous

processes.

TheGeneralized Consensus [21] speci�cation is usedwhere

the processes try to reach consensus on a sequence of com-

mands, the C-Struct. The Consensus algorithm orders non-

commutative commands before deciding and decides com-

mutative commands directly. Every process can propose

commands using the C-Propose interface and the processes

decide command structures C-struct using the C-Decide(C-
struct cs) interface. Finally, the identi�ers for the objects

accessed by the commands are known apriori and is repre-

sented with the LS attribute in every command. That is, for

a command c , the identi�ers for its set of objects is c .LS .

3.2 Problem Statement
Given the system model, the problem is formulated as fol-

lows: How to implement State Machine Replication (SMR) us-
ing Generalized Consensus in the Cross Fault-Tolerance (XFT)
model? The SMR clients invoke commands by sending a re-

quest to a process which then uses the C-Propose interface

to propose.When the process decides, it applies theC−Struct
to the State Machine and generates a reply which is returned

to the client. Given that the majority of processes are correct

and communicate synchronously (Equation 1), the following

properties should be guaranteed.

Non-trivialityOnly proposed commands are decided and

added to the C-structs.
Stability If a process decided a C-struct cs at any time,

then it can only decide cs • σ , where σ is a sequence of

commands, at all later times.

Consistency Two C-structs decided by two di�erent pro-

cesses are pre�xes of the same C-struct.
Liveness If a command c is proposed it will eventually be

decided and added to the C-struct.

In Section 4, we illustrate how Elpis achieves State Ma-

chine Replication, and in Section 5, we prove that Elpis satis-

�es all of the properties listed above.

4 Protocol Description
4.1 Overview
Interestingly, Elpis derives the inspiration for implementing

Generalized Consensus from M
2
Paxos [28] which does not

tolerate Byzantine faults. The core idea of M
2
Paxos is to

Middleware ’19, December 8–13, 2019, Davis, CA, USA Mohit Garg, Sebastiano Peluso, Balaji Arun, and Binoy Ravindran

avoid contention amongmultiple processes that propose non-

commutative commandsC by dynamically choosing a unique

owner for the objects on which the commands operate. This

owner now orders all commands which access the objects for

this epoch. Once an owner is chosen, other processes forward
any command in C to the owner. If a process does not have

the ownership of the objects accessed by a command, it �rst

tries to acquire the ownership by running the ownership
acquisition phase (Section 4.3.5). If the process acquires the

ownership, it tries to decide the command.

For Byzantine Fault Tolerant algorithms a quorum of size

2t + 1 out of 3t + 1 processes is required where t is the
number of faulty processes. The two Byzantine quorums

intersect at t + 1 processes, one of which is guaranteed to

be correct. Elpis, on the other hand, uses 2t + 1 processes.

A set of 2t + 1 processes would include t faulty processes

which is determinant to the liveness of the protocol. Hence,
a quorum of size 2t + 1 seems implausible. Elpis takes the ap-

proach wherein if a faulty process is detected, clients switch

to another proposer after receiving t + 1 Aborts in the com-
mit phase (Section 4.3.3). Since a majority of processes are

correct and communicate synchronously (Section 3.1), when

an honest proposer is found this t + 1 synchronous set of

correct processes form a quorum of size 2t + 1 with the t + 1
processes in the iteration which last aborted. In the worst

case the client retries request with a maximum of t faulty
proposers and on the t + 1 try the request is decided.

The ownership acquisition can a�ect the progress of the

protocol if multiple processes try to acquire the ownership

by issuing an increasing sequence of epoch values similar to

Paxos [19]. To attenuate this scenario all processes are allot-

ted tag values picked from a set of totally ordered elements

and prioritized as such when proposing. The acceptor which

replies with a Nack message includes the tag of the process

it last sent an Ack for the highest epoch for the objects in

the message received. Upon receiving t + 1 Nack messages

the proposer starts a coordinated collision recovery phase

by using a tag picked in a predetermined fashion (Section

4.3.2). At the end of the collision recovery phase (CR), the

failing processes reevaluate the ownership con�guration in

the system depending on the result of CR and either take

command of the objects or else forward the command to the

process picked.

Initially, a home process pi that is closest (incurs lowest
latency) to the client receives the request. The client sets a

timer and waits for responses. Each correct process responds

with either a signed Replymessage or a signedAbortmessage.

If the client receives t+1messageswithmatching replies then

the client is sure that the request is replicated. Alternatively,

if the client receives t+1Abort messages or the timer expires,

then pi is not part of the correct and synchronous group and

it retries with another process.

In summary, Elpis solves two challenges of implement-

ing Generalized Consensus in the XFT model: (1) How to

tolerate Byzantine faults with 2t +1 processes with no prede-

termined leaders (2) How to reliably acquire the ownership

as measured in terms of the number of retries required in the

presence of multiple processes vying to take the ownership
of objects by using two major components:

1. A common-case protocol which allows processes to ac-

quire ownership of the objects, decide the commands,

and return responses to the clients.

2. A collision recovery protocol which helps resolve the

ownership if multiple processes try to acquire the own-

ership concurrently.

4.2 State maintained by a process pi
Each process pi maintains the following data structures.

- Decided and LastDecided The former is a multidimensional

array that maps a pair of 〈l , in〉 to a request where l is the
object and in is the consensus instance. Decided[l][in] = r .
If r has been decided in the consensus instance in (i.e., in

position in) of the object l . The latter is a uni-dimensional

array which maps the consensus instance in that pi last
observed for an object l . The initial value for Decided is

NULL while the initial value for LastDecided is 0.

- Epoch It is an array thatmaps an object to an epoch number

(non-negative integer). Epoch[l] = e means that e is the
current epoch number that has been observed by pi for
the object l . The initial value is 0.

- Owners. It is an array that maps an object to a process.

Owners[l] = pj means that pj is the current owner of the
object l. The initial values are NULL.

- Rnd, CommitLog, StatusLog These are three multidimen-

sional arrays. The �rst one maps a pair of 〈l , in〉 to an

epoch number. Rnd[l][in] = e if e is the highest epoch

number in which pi has participated in the consensus in-

stance in of object l . Therefore, CommitLoд[l][in] = 〈r , e〉
implies that the process received a quorum of Commits for
request r and epoch e . The StatusLog maintains the valid
〈r , e〉 that the process is willing to commit on. Hence,

StatusLoд[l][in] = 〈r , e〉 implies that pi would accept a

replicate message for r in epoch e and reject others.

- statusList, commitList, decideList, trustList. These are four
multidimensional arrays which are used to store Commit,

Status, Decide and Trust messages respectively. The

initial value is NULL.
- Tags An array which maps a process pi to it is tag. The

tag of a process pi is equal to Taд[pi] ∈ S where S is a

totally ordered set. The tag is used during collision recovery
(Section 4.3.6). This mapping has to be prede�ned by the

application layer during setup and is static during the

protocol execution.

- Estimated Amultidimensional arraywhichmaps the 〈l , in〉
to the address of the process which this process estimates

to be the owner of the object l for an epoch e . Hence,
Estimated[l][in] = 〈e, tpe ,pe 〉 implies that for epoch e this

Generalized Consensus for Practical Fault Tolerance Middleware ’19, December 8–13, 2019, Davis, CA, USA

Figure 1. Elpis: p0 sends a Prepare �rst to acquire the ownership or Replicate directly if it has the ownership of all the

objects in the request. Client expects t + 1 matching Reply messages.

process estimates pe to be the owner where tpe is the tag
of the process.

- Leader This is a multidimensional array which maps the

〈l , in〉 pairs to the 〈e,pt 〉 pairs for which the collision recov-
ery decides ownership. The value of this array is updated

only during the collision recovery. The initial value is NULL.

4.3 Detailed Protocol
It is assumed that all processes, including the clients, possess

public keys Pk of all the processes. Each messagem includes

the digest of the message D(m) and a signed message sent

by some process p along with it is digest is represented as

〈m〉σp . Unless otherwise stated, each process validates the

messages received by �rst verifying the signatures using the

corresponding public key in Pk and then by verifying the

message by using a checksum mechanism by comparing it

against the message digest. Any message parameter which

includes object l as the key can be veri�ed to be for the

correct l by matching the objects in req.LS . In other words,

an object l ′ cannot exist in the message which does not exist

in req.LS , otherwise the message is deemed to be invalid.

A client c sends a signed request req = 〈Reqest, o, t, ls, c〉σc
to a process pi where o represents the command to be exe-

cuted, t is the client’s timestamp, and ls contains the objects
accessed by the operation o and sets a timer. The timer is

useful if the client sends a request to a process which has

crashed or is partitioned from other processes.

4.3.1 Coordination Phase
When a request req is proposed by process pi using the

C-Propose interface, Elpis coordinates the decision for req.
In the Coordination phase (Algorithm 1), pi reads the own-
ership of objects in the system. Depending on the current

ownership con�guration, the process either invokes the repli-
cation phase (Section 4.3.2), forwards the request to the owner
or tries to acquire the ownership for all the objects accessed

by the req by executing ownership acquisition (Section 4.3.5).

The process pi �nds the consensus instance it last decided
for each object in LS and which is not decided for req. For
every such object, pi sets in equal to LastDecided[l]+1 and

Algorithm 1 Elpis: Coordination phase (node pi).
1: upon C-Propose(Request r)
2: Set ins ← {〈l, LastDecided [l] + 1〉 : l ∈ r .ls ∧ @in :

Decided [l][in] = c }
3: if ins = ∅ then
4: return
5: if IsOwner(pi , ins) = > then
6: Array eps
7: ∀〈l, in 〉 ∈ ins, eps[l][in] ← Epoch[l]
8: ∀〈l, in 〉 ∈ ins Estimated [l][in] ← 〈eps[l][in], Taд[pi], pi 〉
9: Replicate(r eq, ins, eps)
10: else if |GetOwners(ins) | = 1 then
11: send Propose(c) to pk ∈ GetOwners(ins)
12: wait(timeout) until ∀l ∈ c .LS, ∃in : Decided [l][in] = c
13: if ∃l ∈ c .LS, @in : Decided [l][in] = c then
14: trigger C-Propose(r) to pi
15: else
16: AcqisitionPhase(c)
17:

18: function Bool IsOwner(Replica pi , Set ins)
19: for all 〈l, in 〉 ∈ ins do
20: if Owners[l] , pi then
21: return ⊥
22: return >
23:

24: function Set GetOwners(Set ins)
25: Set res ← ∅
26: for all 〈l, in 〉 ∈ ins do
27: r es ← r es ∪ {Owners[l]}
28: return res

adds it to the ins set (line 2). If the process has the ownership
of all objects in req.LS then the process tries to achieve a fast
decision by executing the replication phase without changing
the epoch. If the replication phase succeeds, pi is able to

execute the req in two communication delays and returns

the response to the client.

Alternatively, If pi detects that pk has the ownership of

all objects in ins, it forwards the req to the pk . To avoid

blocking in case pk crashes or is partitioned, pi also sets a

timer. Upon expiration of the timer, if the pi detects that the
req has not been decided, it takes charge of the req and tries

to C − Propose the req (lines 10-14).

Finally, if pi detects no owners for all objects in ins, it
tries to acquire the ownership by executing the acquisition
phase (4.3.5) (line 14). A di�erent process, pk can have the

ownership of some subset of objects in req.LS , however this
process proceeds to steal ownership as complete ownership

Middleware ’19, December 8–13, 2019, Davis, CA, USA Mohit Garg, Sebastiano Peluso, Balaji Arun, and Binoy Ravindran

is necessary for setting the correct instance number ins for
proper linearization of commands during execution.

Algorithm 2 Elpis: Replication phase (node pi).
1: function Bool Replicate(Request r, Set ins, Array eps)
2: send 〈Replicate, r, ins, eps 〉σpi to all pk ∈ Π

3:

4: upon Replicate(〈r, Set ins, Array eps 〉) from pj
5: if ∀〈l, in 〉 ∈ ins, Rnd [l][in] ≤ eps[l][in] ∧

(
IsOwner(pj , ins) = >

∨StatusLog[l][in] = 〈r, eps[l][in]〉
)
then

6: CommitPhase(pj , −, r, ins, eps)
7: else if StatusLog[l][in] , ⊥∧StatusLog[l][in] , 〈r, eps[l][in]〉 then
8: send 〈Abort, r 〉σpi to r .c
9: else
10: for all 〈l, in 〉 ∈ ins ∧(Rnd [l][in] > eps[l][in]) do
11: Set def erTo← Estimated [l][in]
12: send 〈Commit, −, −, ins, eps, def erTo, NACK 〉σpi to pj

4.3.2 Replication Phase
In the Replication phase (Algorithm 2), pi requests the repli-
cation of request req for instance ins and epochs eps. It sends
a signed Replicate message to all processes in Π. Upon re-

ceiving a Replicate message the process pj checks if the
received message is for an epoch greater than or equal to

the last observed Rnd[l][in] for all the objects in the request

and checks if pi is, in fact, the owner of all the objects in the

message (line 5). If both of these conditions are satis�ed, pj
starts the commit phase (Section 4.3.3) for the request with

the received ins and eps values (line 6).
The Replication phase is invoked during either the Acquisi-

tion phase (Section 4.3.5) where a process is trying to acquire

the ownership or invoked directly by a process which al-

ready has the ownership of all objects in the request req.LS .
Otherwise, a StatusLoд is constructed by collecting Status
messages in the Acquisition phase. This request, epoch pair

in the StatusLoд[l][in] is considered to be valid. This is dis-
cussed further in (Section 4.3.5). Hence, the 〈r , eps[l][in]〉
in the Replicate message should match the values in the

StatusLoд for a process pi which is trying to acquire the

ownership. If this is not the case then pi has equivocated and
hence, this phase concludes by sending an Abort message

to the client.

Otherwise, if the message does not fall under either of the

cases mentioned above then pj has already acknowledged a

message for eps[l][in] from the owner of the objects in the

message and sends a Nack message along with the infor-

mation about the last process it sent an Ack for the highest

epoch for one or more 〈l , in〉 pairs (lines 8-10). This infor-
mation returned with the Nack message is relevant for the

collision recovery and it is discussed in detail in Section 4.3.6.

4.3.3 Commit Phase
In the Commit phase (Algorithm 3), correct processes coor-

dinate to pick a valid request for instances in ins and for

the epochs in eps in the presence of Byzantine processes.

The request req received in the Replicate message is broad-

casted using Commit messages and each received Commit

is collected in the commitList (lines 11-14).

Algorithm 3 Elpis: Commit phase (node pi).
1: function Void CommitPhase(Replica po , Array toForce, Request req, Set ins, Ar-

ray eps)
2: Array toDecide
3: for all 〈l, in 〉 ∈ ins : toForce[l][in] = 〈r eq′, −〉 : r eq′ , NU LL do
4: toDecide[l][in] ← r eq′

5: if ∀〈l, in 〉 ∈ ins, toDecide[l][in] = NU LL then
6: for all 〈l, in 〉 ∈ ins do
7: toDecide[l][in] ← r eq
8: send 〈Commit, po, toDecide, ins, eps, −, −〉σpi to all pk ∈ Π

9:

10: upon Commit(〈 Replica po, Array toDecide, Set ins, Array eps, Array
def erTo, Value ack 〉) from pj

11: if ∀〈l, in 〉 ∈ ins, Rnd [l][in] ≤ eps[l][in] then
12: for all 〈l, in 〉 ∈ ins do
13: e ← eps[l][in]
14: Set commitList [l][in][eps[l][in]] ← commitList [l][in][e]

∪ { 〈toDecide[l][in], po, def erTo, ack, j 〉 }
15: if ∀〈l, in 〉 ∈ ins,

|commitList [l][in][e] | ≥ sizeof (Quorum) then
16: if ∃〈−, −, def erTo, NACK, −〉 : commitList [l][in][e] then
17: ∀〈l, in 〉 ∈ ins, Set def ers[l][in] ← def erTo :

〈−, −, ins, eps, def erTo, NACK, −〉
18: trigger Defer(ins, eps, def ers)
19: else if ∀〈l, in 〉 ∈ ins,

∃〈r, po 〉3〈r, po 〉= 〈r ′, p′o 〉 : Valid(ins, commitList) then
20: ∀〈l, in 〉 ∈ ins, Owners[l] ← po
21: ∀〈l, in 〉 ∈ ins, CommitLoд[l][in] ← 〈r, eps[l][in]〉
22: ∀〈l, in 〉 ∈ ins, Rnd [l][in] ← eps[l][in]
23: send 〈Decide, po, r, ins, eps 〉σpi to all pk ∈ Π
24: else
25: send 〈Abort, r eq 〉σpi to r eq .c

26: else
27: for all 〈l, in 〉 ∈ ins ∧(Rnd [l][in] > eps[l][in]) do
28: Set def erTo← Estimated [l][in]
29: send 〈Commit, −, −, ins, eps, def erTo, NACK 〉σpi to po
30: function Array Valid(Set ins,Set eps, Set Commits)
31: Array toCommit
32: for all 〈l, in 〉 ∈ ins do
33: e ← eps[l][in]
34: Set requests ← 〈r ′, p′o 〉 : 〈p

′
o, r
′, −, −, −〉∈ Commits[l][in][e]

35: if ∃〈r, po 〉3 | 〈r, po 〉= 〈r ′, p′o 〉 : r equests | ≥ sizeof (Quorum)
∧r = r eq then

36: toCommit [l][in] ← 〈r, po 〉
37: return toCommit

There are two cases for Byzantine processes: (1) Any t
acceptors could send arbitrary request values rather than

forwarding req, (2) The proposer which has the ownership
can equivocate by sending req to some processes and some

request req′ to the rest of the processes. To tackle both of

these scenarios a request r is valid ifpi receives t+1matching

Commit messages (Ack) for r and r matches the request for

which this phase was invoked. If there exists a valid req
for all 〈l , in〉 pairs, then this phase successfully concludes

by setting the owners array to the process which sent the

Replicate message which invoked this Commit phase, adds
the values to the CommitLoд and sends a Decide message

to all the processes (line 19 - 22). Otherwise, if either there

exists no common request req in atleast t +1messages or req
does not match the request for which this phase was invoked,

Generalized Consensus for Practical Fault Tolerance Middleware ’19, December 8–13, 2019, Davis, CA, USA

then this process Aborts by sending an Abort message to the

Client (line 24).

If pi does not acquire t + 1 Commit messages (Ack) and
there exist Nack Commitmessages, then some other process

has stolen the ownership. In this case, pi triggers the Collision
Recovery phase (Section 4.3.6).

Algorithm 4 Elpis: Decision phase (node pi).
1: upon Decide(〈Set toDecide, Set ins, Array eps 〉) from pj
2: for all 〈l, in 〉 ∈ ins do
3: e ← eps[l][in]
4: Set decideList [l][in][e] ← decideList [l][in][e] ∪

{ 〈toDecide[l][in], j 〉 }
5: if ∀〈l, in 〉 ∈ ins,∃r 3 |r = r ′ : 〈r ′, −〉 : Decides[l][in][eps[l][in]]|

≥ sizeof (Quorum) then
6: for all 〈l, in 〉 ∈ ins do
7: if Decided [l][in] = NU LL then
8: Decided [l][in] ← r
9:

10: upon (∃r : ∀l ∈ r .LS, ∃in : Decided [l][in] = r ∧
in = LastDecided [l] + 1)

11: Cstructs ← Cstructs • r
12: Reply r ep = C-Decide(Cstructs)
13: send Reply(r eply) to r .c
14: for all l ∈ r .LS do
15: pi .lastDecided [l] + +

4.3.4 Decision Phase
In the Decision phase (Algorithm 4) a process pi tries to learn
a request. Upon receiving a Decide message the process

stores the message in the decides array indexed by the 〈l , in〉
pair and the epoch e . If pi receives t + 1 matching messages

then the process pi assumes this request to be decided for the

object l and instance in (lines 2-6). When a request is decided

for all the objects accessed by the request, pi appends it to its
Cstruct , executes the request and returns the response to the
client as a Reply message and increments the LastDecided
for all objects (lines 7-13).

4.3.5 Acquisition Phase
In the Acquisition phase (Algorithm 5) the process pi tries to
acquire the ownership of the objects in req.ls and also assure
that a faulty process is not able to acquire the ownership.

Similar to the Coordination phase, for each object in ls of
the request req the process pi �nds the consensus instance
LastDecided[l] it last decided for the object and which is not

decided for c and �nds the next position by setting in equal

to LastDecided[l] + 1 and adds it to the ins set. Additionally,
for each pair (l , in) ∈ ins , it increments the current epoch

number for the object l. The process pi now sends a Prepare

message to all processes in Π(lines 1-6).
Before sending a Prepare message, the process also sets

Estimated[l][in] to its tag and epoch thus estimating itself to
acquire the ownership. This is relevant if this process receives

a Prepare message for the same or a lower epoch for the

objects it is trying to acquire the ownership. In that case, this

process will send a Nack message using the Estimated[l][in]
values.

Algorithm 5 Elpis: Acquisition Phase (node pi).
1: function Void AcqisitionPhase(Request req)
2: Set ins ← {〈l, LastDecided [l] + 1〉 : l ∈ c .LS ∧ @in :

Decided [l][in] = c }
3: Array eps
4: ∀〈l, in 〉 ∈ ins, eps[l][in] ← + + Epoch[l]
5: ∀〈l, in 〉 ∈ ins, Estimated [l][in] ← 〈eps[l][in], Taд[pi], pi 〉
6: send Prepare(〈ins, eps 〉) to all pk ∈ Π
7:

8: upon Prepare(〈Set ins, Array eps 〉) from pj
9: if ∀〈l, in 〉 ∈ ins, Rnd [l][in] < eps[l][in] then
10: ∀〈l, in 〉 ∈ ins, Rnd [l][in] ← eps[l][in]
11: Set decs ← {〈l, in, CommitLoд[l][in]〉 : 〈l, in 〉 ∈ ins }
12: send Status(〈ins, eps, decs, −, −〉) to all pk ∈ Π
13: else
14: for all 〈l, in 〉 ∈ ins, Rnd [l][in] ≥ eps[l][in] do
15: Set def erTo← 〈Rnd [l][in], Taд[pi]〉
16: send Status(〈ins, eps, decs, def erTo, NACK 〉) to pj
17:

18: upon Status(〈Set ins, Array eps, Array decs, Array def erTo, Value ack 〉)
from pj

19: for all 〈l, in 〉 ∈ ins do
20: e ← eps[l][in]
21: Set statusList [l][in][e] ← statusList [l][in][eps[l][in]] ∪

{ 〈decs[l][in], def erTo, ack, j 〉 }
22: if ∀〈l, in 〉 ∈ ins, |statusList [l][in][eps[l][in]]| ≥ N − t then
23: e ← eps[l][in]
24: if ∃〈−, def erTo, NACK, −〉 : statusList [l][in][e] then
25: ∀〈l, in 〉 ∈ ins, Set def ers[l][in] ← def erTo :

〈−, def erTo, NACK, −〉
26: trigger Defer(ins, eps, def ers)
27: return
28: Set epochiдhest ← Select(ins, statuses)
29: Set valids ← Valid(ins, statuses)
30: if epochiдhest = ∅ ∧ valids = ∅ then
31: ∀〈l, in 〉 ∈ ins, StatusLoд[l][in] ← 〈r eq, eps[l][in]〉
32: if pi = Proposer then
33: Replicate(r eq, ins, eps)
34: else if ∃ 〈r, e, l, in 〉 3 〈r, e, l, in 〉 ∈ epochhiдhest

∧〈r, e, l, in 〉 ∈ valids then
35: StatusLoд[l][in] ← 〈r, e 〉 : 〈r, e, l, in 〉
36: if pi = Proposer then
37: Array toForce[l][in] ← 〈r, e 〉 : 〈r, e, l, in 〉
38: Replicate(toForce[l][in], ins, eps)
39: C-Propose(req)
40: else
41: send Abort(ins, eps, r eq) to all pk ∈ Π, r eq .c
42: function Set Select(Set ins, Set statuses)
43: Array toForce
44: for all 〈l, in 〉 ∈ ins do
45: Epoch k ← max ({k : 〈−, k 〉 ∈ decs ∧ 〈decs, −, −, −〉 ∈

statuses })
46: Request r ← r : 〈r, k 〉 ∈ decs ∧ 〈decs, −, −, −〉 ∈ statuses
47: toForce ← 〈r, k, l, in 〉
48: return toForce
49:

50: function Array Valid(Set ins, Set statuses)
51: Array valid
52: for all 〈l, in 〉 ∈ ins, statuses[l][in] = 〈decs, −, −, j 〉 : 〈decs, j 〉 do
53: Set requests[j] ← 〈v, k 〉 ∈ decs : 〈decs, j 〉
54: if ∃〈r, k 〉3 | 〈r, k 〉 : r equests |≥ t then
55: valid ← 〈r, k, l, in 〉
56: return valid

Upon receiving a Prepare message with a higher epoch

for all objects than the last observed, each process sends its

CommitLoд in the Statusmessage to all the processes (lines

8-12). If the received message has a lower epoch, it sends a

Nack message with the information about process it last sent

an Ack for (lines 14-16). The Status message includes the

CommitLoд for the (object, instance) pairs. Upon receiving

Status messages from enough processes (at least N − t), the

Middleware ’19, December 8–13, 2019, Davis, CA, USA Mohit Garg, Sebastiano Peluso, Balaji Arun, and Binoy Ravindran

process decides if there is a request to be committed from

an aborted Commit Phase from an earlier epoch. For this,

for all 〈request , epoch〉 entries present in the CommitLoд
received from a process pj , the process �rst calculates the
highest epoch values present in the entries for which a re-

quest is present and adds such 〈request , epoch〉 pairs to the

epochhiдhest set (lines 20-27).
However, the request in this log could be from a Byzantine

process. To eliminate such requests, each process also calcu-

lates a valid 〈request , epoch〉 pair by reading theCommitLoдs
it received as part of the Status message. If a pair is present in

more than the number of faulty processes then this 〈request ,
epoch〉 pair is validated. If a 〈request , epoch〉 is present in the
epochhighest set and is also present in the validated set then

process starts a commit phase with a toForce array which

contains this 〈request , epoch〉 pair.
However, if it is not present in either of those sets then

the process starts the Commit Phase with an empty array.

If however, a pair exists in the quorumhiдhest set and is

not present in the validated set or vice versa the leader has

equivocated and the phase Aborts by sending an Abort

message to all processes including the client. Upon receiving

t +1 such Abortmessages the client retries the request with

a di�erent process.

4.3.6 Collision Recovery
Collision recovery (Algorithm 6) is used to reduce the number

of processes contending to acquire the ownership of some

object(s). When a process pi receives Nack messages (line

24 in Algorithm 5 and line 16 in Algorithm 3), the process

pk : 〈−, taд,pk 〉 ∈ deferTo is a process which is executing

Elpis for an epoch equal to or higher than the Epoch[l] at pi
for some object l . Hence, some subset of acceptors return a

Nack message as they have already sent anAck to processpk .
There could be multiple processes like pk at any given time.

For instance, if all processes propose simultaneously for the

same epoch. This phase provides a coordinated mechanism

to �nd a process which is executing ownership acquisition
for the highest epoch with any ties broken by using the taдs
of the processes. Succinctly stated, pi uses collision recovery
to conform to the current ownership recon�guration taking

place in the system as opposed to contending by proposing

higher epoch values.

The process pi may receive multiple Nack messages. In

this case, a set of rules (similar to Fast Paxos [22]) are used

where pi tries to Pick a process to defer to. A deferTo value is
picked if it exists in a majority of Nack messages or has the

maximum count with any ties broken by using the tags. After
the completion of the Collision recovery (CR), the process

sets its owners to the one learned from CR and retries the

request with the coordination phase (lines 1-5).
Before starting the phase pi checks if an instance of Col-

lision Recovery has already been completed by the system

(invoked by some other process). In this case, no additional

Algorithm 6 Elpis: Collision Recovery (node pi).

1: function Defer(〈Set ins, Array eps, Set def ers 〉)
2: Array def erTo← Pick(ins, def ers)
3: Recovery(ins, def erTo)
4: ∀〈l, in 〉 ∈ ins, Owners[l] ← Leader [l][in]
5: trigger C-Propose(r) to pi
6:

7: functionVoid Recovery(〈Set ins , Array eps , Array def erTo 〉)
8: if ∀〈l, in 〉 ∈ ins, ∃〈e, pl 〉 3 Leader [l][in] : 〈e, pl 〉 : e ≥ eps[l][in]

then
9: return
10: else
11: send 〈Trust, ins, def erTo 〉σpi to all pk ∈ Π

12:

13: function Array Pick(Set ins, Set def ers)
14: Array def erTo
15: for all 〈l, in 〉 ∈ ins do
16: Count(〈e, tpl , pl 〉) = | 〈e, tpl , pl 〉 = 〈e

′, t ′pl , p
′
l 〉 : def er [l][in] |

17: if (∃〈e, tpl , pl 〉 3 Count(〈e, tpl , pl 〉) = sizeof (Quorum)) ∨
(∃〈e, tpl , pl 〉 3 Count(〈e, tpl , pl 〉) =

max({Count(〈e ′, t ′pl , p
′
l 〉) : def er [l][in]}))∨

(〈e, tpl , pl 〉 : tpl =max (t ′pl : 〈−, t ′pl , −〉 : def ers[l][in]) then
18: def erTo[l][in] ← 〈e, tpl , pl 〉

19: return def erTo
20:

21: upon Trust(〈Set ins, Array def erTo 〉) from pj
22: if isHiдher (ins, def erTo) then
23: for all 〈l, in 〉 ∈ ins, do
24: Estimated [l][in] ← def erTo[l][in]
25: trustList [l][in] ← trustList [l][in] ∪

{〈e, pr 〉 : 〈e, −, pr 〉 : def erTo[l][in], j }
26: if ∃〈e, po 〉3 | 〈e, po, −〉: trustList [l][in]|

≥ sizeof (Quorum) then
27: Leader [l][in] ← 〈e, po 〉
28: send 〈Trust, ins, def erTo 〉σpi to all pk ∈ Π
29: else
30: ∀〈l, in 〉 ∈ ins, Set est imate ← Estimated [l][in]
31: send 〈Doubt, ins, est imate 〉σpi to pi
32: if ∀〈l, in 〉 ∈ ins, Leader [l][in] , NU LL then
33: return
34:

35: upon Doubt(〈Set ins, Array est imate 〉) from pj
36: ∀〈l, in 〉 ∈ ins, Estimated [l][in] ← def erTo[l][in]
37:

38: function Bool IsHigher(Set ins, Set Received)
39: for all 〈l, in 〉 ∈ ins,Estimated [l][in] = 〈e, tpe , −〉 : 〈e, tpe 〉,

Received [l][in] = 〈e ′, tpr , −〉 : 〈e
′, tpr 〉 do

40: if e > e ′ ∨ (e = e ′ ∧ tpe > tpr) then
41: return ⊥
42: return >

run is required and pi concludes the recovery (line 8-9). How-
ever, if no such instance has been completed thenpi start this
recovery by sending a 〈Trust, ins, eps, leader〉σpi message

to all the nodes (line 5).

Upon receiving a Trust message the process compares

the current estimated leader value to the received value. The

values are ordered by using their epochs �rst and then by

their tags. That is, a value is Higher if it has a higher epoch.
If the epochs are equal then the node tags are used to break

the symmetry (lines 38-42). Therefore, if the received value

is Higher, then the process sets this as the new estimated

value, stores the value in its trustList and forwards the Trust
message to all the processes with the received value (lines

22-26). If the value is lower however, the process sends a

Doubt message with the higher value (line 30-31).

Generalized Consensus for Practical Fault Tolerance Middleware ’19, December 8–13, 2019, Davis, CA, USA

Upon receiving a Doubt message the process sets its

Estimated to the value received in the defer message (line 22).

When the cardinality of statusList[l][in] equals the�orum

for some 〈l , in〉 pair then the process pl : trustList[l][in] is
trusted to be the owner of this 〈l , in〉 pair and when there

is a trusted owner for all 〈l , in〉 ∈ ins then the recovery

concludes.

5 Correctness
We formally speci�ed Elpis in TLA+ [20], and model-checked

with the TLC model checker for correctness as a decision on

the correct value despite the presence of Byzantine acceptors

and abort when the proposer equivocates. The TLA+ speci�-

cation is provided in two anonymous technical reports
1,2

for

the algorithm component and the collision recovery compo-

nent. In this section, we provide an intuition of how Elpis

satis�es the protocol’s guarantees.

Stability: Only the owner of an object l in epoch e suc-
cessfully commits the requests, and thus increments in. A
Byzantine process does not acquire ownership as the pro-

poser equivocation is detected and the execution is aborted.

Since, the correct processes initially start with the same value

of LastDecided[l] and only increment it when a command is

decided for 〈l , in〉, the valid requests proposed by a correct

owner of l in e would follow a complete order for in through-

out the execution of the protocol and would not diverge for

any correct process.

In the rest of the section we refer to StatusLoд[l][in] and
CommitLoд[l][in] as StatusLoд and CommitLoд for brevity

which denote the value of the logs for some 〈l , in〉. The proofs
can be generalized for any instance in of the object for which

the process acquires ownership of the object l .
Non-triviality: A process only appends a command c to

theC−Struct if it receivesCommit messages from amajority

of processes for c and no other command can exist. Correct

processes only sendCommit messages for the value c if they
receive c in the Replicate message.

Consistency: Lets assume some process pi decides a com-

mand c for some 〈l , in〉 and epoch e . This must imply that

this process received Decide messages from ≥ N
2
processes

with the command c and 〈l , in〉 and epoch e . Hence, there
must be a set X of size

N
2
> t which received ≥ N

2
Commit

messages for the command c for 〈l , in〉 and epoch e . All pro-
cesses in X set CommitLoд = 〈c, e〉. The state of at least one
correct process is contained in the quorum and because all

processes in X include 〈c, e〉, the StatusLoд = 〈c, e〉 in the

next epoch.

We argue that if a correct process in X commits request

c ′ in the epoch e ′, and StatusLoд = 〈c, e〉 then for e ′ : 〈c, e ′〉
= StatusLoд ∧ e ′ ≥ e , c ′ = c . We prove this by induction

on the epoch e ′. For the base case, lets suppose StatusLoд =

1
Elpis TLA+ Speci�cation: http://bit.ly/elpistla

2
Elpis Collision Recovery TLA+: http://bit.ly/elpiscr

〈c, e ′〉 at some correct process pi . If pi commits c in e ′ then
it must receive a Replicate request for c . Otherwise if it

receives a request for c ′ , c it would detect that the process

contending for ownership has equivocated andAbort . Hence,
c ′ = c . For e ′, pi commits on c ′, sets CommitLoд = 〈c ′, e ′〉
sets the process which sends c ′ as the owner (which is in

fact correct).

Lets suppose that for any epochs in between e ′ and e ,
StatusLoд = 〈c ′,−〉. We have to prove that if StatusLoд =
〈c, e + 1〉 then c = c ′. The StatusLoд = 〈c, e + 1〉 consists of
valid CommitLoдs for c in e . Since, the StatusLoд = 〈c ′, e〉
any correct process that commits c and sets its Commit Loд
to 〈c, e〉 can only do that if c and c ′ are equal. Hence, c = c ′.
By induction we can say that this is true for all e ′ ≥ e .
We use this argument to prove agreement: If two correct

processes commit c and c ′ then c = c ′. If a correct process
initially commits c in e , then StatusLoд = 〈c, e〉. If another
correct process commit c ′ in e ′, then we know that for any

e > e ′, c = c ′. Hence, the correct processes must agree.

Liveness: Under the assumptions of the XFT model, there

always exists at least a majority of processes that are cor-

rect and synchronous. We see that in the case of a malicious

leader, every correct process detects equivocation and sends

Abort messages to the client. After receiving t + 1 messages

the client switches to a new process. If the process is Byzan-

tine it would again receive the Abort messages or timeout.

This can only happen a maximum of t times.

We show liveness by proving that a correct process in

e ′(> e) is able to collect N − t Status messages and calcu-

late a StatusLoд to �nd the 〈c, e〉 values. If a CommitLoд
contains a value 〈c, e〉, this means it must have received

Commit messages for this value from
N
2
processes (line 21

Algorithm 3). Since, every correct node broadcasts Commit
messages, it’s easy to see that all

N
2
> t nodes in the system

contain the same value in their CommitLoд as well. Using

this and the consistency property above we can see that in

round e ′, if a correct process pi receives the client request,
then every correct process is able to collect the same N − t
CommitLoдs and set StatusLoд to 〈c, e〉. The process pi now
sends a value matching the StatusLoд. At least t+1 processes
share Commit messages and Decide the value.

6 Evaluation
We evaluate Elpis by comparing it against four other con-

sensus algorithms: XPaxos, PBFT, Zyzzyva and M
2
Paxos .

We take the latency measurements in a geo-replicated set-

up by setting up seven nodes using Amazon EC2 (Table 1)

and throughput by placing the nodes in a single placement

group us-east-1 so as to avoid skewing the data due to a

greater variance in latencies in case of the geo-replicated set-

up. Additionally, all the clients are placed at respective nodes

to simulate real-world implementations where requests are

served by the closest data center.

http://bit.ly/elpistla
http://bit.ly/elpiscr

Middleware ’19, December 8–13, 2019, Davis, CA, USA Mohit Garg, Sebastiano Peluso, Balaji Arun, and Binoy Ravindran

FrankFurt Virginia Ohio Ireland Mumbai
Region

0

50

100

150

200

250

300

La
te

nc
y

(m
s)

M2Paxos Elpis XFT PBFT Zyzzyva

(a) 5 nodes

FrankFurt Virginia Ohio Ireland Mumbai Sao Paulo California
Region

0

100

200

300

400

500

La
te

nc
y

(m
s)

M2Paxos Elpis XFT PBFT Zyzzyva

(b) 7 nodes
Figure 2. Latency comparison across regions.

We implemented Elpis, XFT and M
2
Paxos using the re-

liable messages toolkit Jgroups [9], in Java 8. We used the

ClusterPartition MBean con�guration and leveraged

ASYM_ENCRYPT protocol con�gured with RSA 512 for asym-

metric and AES/ECB/PKCS5Paddingwith 128 bit key size for

symmetric encryption for Elpis. We implemented Zyzzyva

using the BFT-SMaRt library (also in Java 8) and used the

default highly optimized PBFT implementation. Unless oth-

erwise stated, each node is a c3.4xlarge instance (Intel Xeon

2.8GHz, 16 cores, 30GB RAM) running Ubuntu 16.04 LTS -

Xenial (HVM).

AWS Region Name Virginia Ohio Frankfurt Ireland Mumbai California Sao Paulo
us-east-1 Virginia - 11 88 74 182 59 140

us-east-2 Ohio 10 - 97 84 191 49 149

eu-central-1 Frankfurt 88 97 - 21 109 145 226

eu-west-1 Ireland 74 84 39 - 122 129 183

ap-south-1 Mumbai 182 191 109 120 - 241 320

us-west-1 California 59 49 145 129 241 - 197

sa-east-1 Sao Paulo 140 149 226 183 320 197 -

Table 1. Average inter-region RTT latencies in ms.

6.1 Experimental Setup
For PBFT, Zyzzyva, and XPaxos the primary is placed at

Frankfurt. Additionally, the initial synchronous group for

XPaxos consists of {Frankfurt, Ireland, Ohio} and {Frankfurt,

Ireland, Ohio, Virginia} for the �ve node and seven node ex-

periment respectively. For processes in the single placement

group of Virginia the latency for communicating with other

processes in the group was observed to be close to 2 ms. To

properly load the system, we injected commands into an

open-loop using client threads placed at each node. Com-

mands are accompanied by a 16-byte payload. However, to

not overload the system we limit the number of in �ight mes-

sages by introducing a sleep time where every client sleeps

for a predetermined duration after proposing a request. This

is tuned so as to get the best possible performance for the

setup. We implemented a synthetic application that gener-

ates a workload which covers partitionable case with no

inter-node con�icts (objects are locally accessed), to when

command forwarding is required (a remote owner present

for the objects), and to when multiple nodes have to acquire

the ownership. Since, we are just testing the Consensus layer

we do not execute any commands.

6.2 Latency
Figure 2 shows the comparison of latencies in a geo-replicated

setup where the requests have 100% locality which implies

that the requests in di�erent regions access di�erent objects.

We notice that M
2
Paxos achieves the best response time

for all regions due to a lower quorum size. Elpis expectedly

achieves close but slightly higher latencies than M
2
Paxos

due to the additional overhead of message digests and mes-

sage broadcasts. This overhead is inherent to all the other

protocols including XPaxos. XPaxos achieves best response

time for Frankfurt (the primary). For clients present in all

the other regions the request forwarding to Frankfurt results

in higher response times. In contrast, the primary/owner for

every client in the case of Elpis is present in the same region

as the client, which provides lower response time. PBFT and

Zyzzyva latencies are much higher due to the same reasons

as XPaxos compounded by the requirement of a greater quo-

rum size. Hence, at each step, the primary has to wait for

more messages and thus incurs longer response times. In

summary, Elpis achieves response times close to M
2
Paxos

while promising better resilience.

6.3 Throughput
Figure 3 shows the throughput comparison in the single

placement group us-east-1 as the system is pushed closer

to saturation to achieve the maximum throughput possible.

Elpis-x shows the performance under x% con�ict where x%

Generalized Consensus for Practical Fault Tolerance Middleware ’19, December 8–13, 2019, Davis, CA, USA

Figure 3. Latency vs. throughput in a cluster.

implies that the commands issued by a node access objects

out of which x% are shared with all the other nodes. Hence,

Elpis-0% implies no con�ict and Elpis-100% implies that all

the clients across all nodes propose commands that access

shared objects. PBFT and Zyzzyva peak at under 1x10
5
op-

erations/sec due to complicated message patterns resulting

in higher bandwidth usage. XPaxos and Elpis perform sig-

ni�cantly better as they replicate requests to lower number

of followers as compared to Zyzzyva (t acceptors vs all 3t
nodes) and have less communication steps as compared to

PBFT. Since Elpis relies on multiple owners the inherent

load-balancing in the protocol results in higher throughput

as compared to XPaxos where the primary becomes a bot-

tleneck. As such even the 100% con�ict case achieves higher

throughput than XPaxos because for Elpis all the nodes are

active as compared to XPaxos where only three (the active

synchronous group consists of t + 1 nodes for XPaxos) par-
ticipants are active.

Figure 4. Performance under contention.

6.3.1 Performance under contention
Figure 4 shows the throughput vs latency comparison for

Elpis as the percentage of contention is varied from 0% to

100%. Throughput decreases as the percentage of contention

increases. In the case of contention, collision recovery is

invoked which increases the number of messages exchanged.

Hence, the network is stressed until a single owner emerges

for each object for the con�icting commands which orders

all these commands. Hence, a lower percentage of requests

are concurrently executed across nodes. However, even in

the presence of 100% contention Elpis outperforms all the

competitors as shown in Figure 3.

6.3.2 Performance under faults
In this section, we show the behavior of Elpis in the presence

of faults (t). Figure 5 shows throughput as a function of time.

A Byzantine process is simulated by adding a Byzantine layer

in the Jgroups protocol stack under the Elpis implementation

which when activated intercepts the Replicate messages

and changes the req value in the message to an arbitrary

value. At time 40 secs the message interception is activated

at one of the nodes. This Byzantine node is detected by the

other nodes and the clients start forward their requests to

a di�erent node after receiving t + 1 Abort messages. The

Figure 5. Performance under faults. Initially, t = 0.

node to which the request is forwarded is pre-con�gured

for this experiment. As a result, throughput is decreased as

this node is no longer completing the requests however, the

remaining nodes continue to serve the client requests. In

the presence of a single fault PBFT, Zyzzyva and XPaxos

would start a view-change as a result of which the through-

put would be e�ectively reduced to zero as no requests can

be processed until a new leader emerges. At time 80 secs,

message interception at another node is triggered. At this

point, Elpis continues to decide the client requests via the

active nodes while tolerating the maximum number of faults

outside anarchy.

7 Related Work
PBFT [15] was the �rst e�cient solution to solve consensus

in the BFT model. The protocol requires 3t + 1 processes to
tolerate t faults and uses a quorum of size 2t + 1 to return

the result in �ve message delays. Zyzzyva [18] requires the

same number of processes but achieves consensus in three

message delays when no processes are slow or faulty. As

such it requires bigger quorums of 3t + 1 for the single-phase

Middleware ’19, December 8–13, 2019, Davis, CA, USA Mohit Garg, Sebastiano Peluso, Balaji Arun, and Binoy Ravindran

Protocol PBFT Zyzzyva M2Paxos XPaxos Elpis
Resilience t < n/3 t < n/3 t? < n/2 t < n/2 t < n/2
Best case communication steps 5 3 2 2 3

Base case in the absence of tnc tnc , tp , contention tc , tp , contention tnc , tc tp tnc , tc , tp , contention

Slow-path steps during contention - 2 2
†

- 2

Leader Single Single Multi-Leader Single Multi-Leader

Fault Model BFT BFT CFT XFT XFT

Table 2. Comparison of existing protocols and Elpis.

? only tolerates crash faults † may require multiple runs of this step.

execution in contrast to 2t + 1 required for PBFT. Zyzzyva

is not particularly suited for heterogeneous networks like

the ones in geo-replicated systems as even a single con-

strained network link at any node can make it switch to a

slower two-phase operation. Furthermore, these protocols

rely on a single leader which is a bottleneck for through-

put in geo-replicated systems during normal operation and

incurs downtime during view-change.
Elpis treats M

2
Paxos [28] as an extended speci�cation

of Generalized Consensus and inherits a portion of data

structures and interfaces. Elpis manages dependencies by

mapping an object o to a process po similar to M
2
Paxos .

However, it innovates on how it manages contention. Agree-

ing on ownership of o is a consensus problem in itself and

M
2
Paxos uses a mechanism similar to Phase 1 of Paxos [19].

As such, it does not guarantee liveness when multiple pro-

cesses try to propose commands concurrently. This becomes

even more evident when there exist cyclic dependencies in

compound commands (that access multiple objects) such as

C1 : {a,b}, C2 : {b, c} and C3 : {c,a} where a,b, c are the
object ids.

In the case of Elpis, however, the nodes submit to the

ownership transition taking place in the system as they learn
about it and thereby converge on the contention set. The

nodes learn in two phases. (1) If a node p1 receives a NACK
message for a Prepare or a Commit message from p2, that
implies p2 must have sent an ACK to some node pj (could
be p2 itself). We piggyback this information (taд(pj), and
epoch of ACK (p2 → pj)) in De f er (p2 → p1) (Algo 5 line

24, Algo 3 line 16) messages and let p1 pick the best node
to de f erTo (Algo 6 line 13). Without collision recovery (CR),

however, this can result in a case where the set {p1,p2,p3}
defers to {p3,p1,p2}. (2) Using CR, we force at least a quorum
of nodes (Algo 6 line 26) to Trust the same node to have a

chance to acquire the ownership. If the set now is {p1,p2,p3}
defer to {p1,p1,p3},p2 would not retry ownership acquisition
for ab, but p1 and p3 would (contending on c) and either

acquire the ownership by completing Prepare andCommit or
follow (1) and (2) as above to eventually have a single owner.

Additionally, Elpis guarantees liveness and consistency in

the presence of Byzantine faults, whereas M
2
Paxos does not.

As part of the Cross Fault Tolerance (XFT) [24], model the

authors propose XPaxos which uses 2t + 1 processes. The
protocol is executed by a synchronous group of t + 1 active
processes with a �xed leader for the group. In the presence

of faults, XPaxos transitions to a new group of t+1 processes
using a view − chanдe mechanism. XPaxos provides similar

performance to Paxos while providing higher reliability by

tolerating Byzantine faults and is optimized for the t = 1

case but does not scale well with the number of faults.

Elpis uses Cross Fault Tolerance (XFT), the same system

model as XPaxos but the leaderless protocol of Elpis with

all 2t + 1 active processes di�ers from XPaxos which uses

�xed synchronous groups (sд) of size t +1with a �xed leader.

XPaxos works by determining

(n
t+1

)
sд groups with active

groups switching via a view-change mechanism in case of

faults until a sд with correct processes found. For higher n
and t , the number of such groups increases exponentially.

However, in the worst case of Elpis, a client has to contact a

maximum of t + 1 processes.

8 Conclusion
This paper presented Elpis, the �rst multi-leader XFT proto-

col that overcomes the drawbacks of XPaxos, a single-leader

protocol. Elpis implements generalized consensus. By assign-

ing di�erent and independent objects to di�erent processes,

such that the need for ordering is limited to local scope, each

governed by one of the processes, and transfers ownership

when needed. This way operations on disjoint collections

of objects trivially commute, and Elpis can decide on such

commands in just two communication delays while owner-

ship transfer adds an additional delay. The e�cacy of this

approach is further validated by evaluation as it leads to

signi�cant performance gains over XPaxos and other BFT

protocols. For the geo-replicated setting, Elpis achieves low

latency for clients due to the ownership of objects accessed

by the clients at the local process and high throughput due

to the leaderless approach providing inherent load balanc-

ing. Hence, Elpis is an attractive option for building geo-

replicated fault-tolerant systems as not only does it provides

better performance than BFT protocols but, it also o�ers

higher reliability than CFT protocols.

Acknowledgments
We thank the anonymous reviewers for their valuable com-

ments which have signi�cantly improved the paper. This

work is supported in part by NSF under grant CNS 1523558

and AFOSR under grant FA9550-15-1-0098.

Generalized Consensus for Practical Fault Tolerance Middleware ’19, December 8–13, 2019, Davis, CA, USA

References
[1] 2012. AWS Service Event in the US-East Region: October 22, 2012.

(2012). h�ps://aws.amazon.com/message/680342/
[2] 2018. cockroach: CockroachDB - the open source, cloud-native SQL

database. h�ps://github.com/cockroachdb/cockroach original-date:

2014-02-06T00:18:47Z.

[3] 2018. etcd: Distributed reliable key-value store for themost critical data

of a distributed system. h�ps://github.com/coreos/etcd original-date:

2013-07-06T21:57:21Z.

[4] 2019. Google App Engine: 02 January 2019. (2019). h�ps://status.
cloud.google.com/incident/appengine/19001

[5] 2019. Google Compute Engine: November 05, 2018. (2019). h�ps:
//status.cloud.google.com/incident/compute/18012

[6] 2019. Home | YugaByte DB. https://www.yugabyte.com/. Accessed:

2019-09-04.

[7] Balaji Arun, Sebastiano Peluso, Roberto Palmieri, Giuliano Losa, and

Binoy Ravindran. 2017. Speeding up Consensus by Chasing Fast

Decisions. arXiv:1704.03319 [cs] (April 2017). h�p://arxiv.org/abs/1704.
03319 arXiv: 1704.03319.

[8] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Kneevi, Vivien Quéma,

and Marko Vukoli. 2015. The Next 700 BFT Protocols. ACM Trans.
Comput. Syst. 32, 4 (Jan. 2015), 12:1–12:45. h�ps://doi.org/10.1145/
2658994

[9] Bela Ban. 2002. JGroups, a toolkit for reliable multicast communication.

(2002).

[10] Alysson Neves Bessani and Marcel Santos. 2011. Bft-smart-high-
performance byzantine-faulttolerant state machine replication.

[11] Eric A Brewer. 2000. Towards robust distributed systems. In PODC,
Vol. 7.

[12] Mike Burrows. 2006. The Chubby lock service for loosely-coupled

distributed systems. In Proceedings of the 7th symposium on Operating
systems design and implementation. USENIX Association, 335–350.

[13] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild

Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng

Wu, Huseyin Simitci, et al. 2011. Windows Azure Storage: a highly

available cloud storage service with strong consistency. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles.
ACM, 143–157.

[14] Apache Cassandra. 2014. Apache cassandra. Website. Available online
at http://planetcassandra. org/what-is-apache-cassandra (2014), 13.

[15] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine fault

tolerance. In OSDI, Vol. 99. 173–186.
[16] James C. Corbett, Je�reyDean,Michael Epstein, Andrew Fikes, Christo-

pher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christo-

pher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak,

Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David

Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig,

Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang,

and Dale Woodford. 2013. Spanner: Googles Globally Distributed

Database. ACM Trans. Comput. Syst. 31, 3 (Aug. 2013), 8:1–8:22.

h�ps://doi.org/10.1145/2491245
[17] Patrick Hunt, Mahadev Konar, Flavio P Junqueira, and Benjamin Reed.

2010. ZooKeeper: Wait-free coordination for Internet-scale systems.

(2010), 14.

[18] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and

Edmund Wong. 2007. Zyzzyva: speculative byzantine fault tolerance.

In ACM SIGOPS Operating Systems Review, Vol. 41. ACM, 45–58.

[19] Leslie Lamport. 2001. Paxos made simple. ACM Sigact News 32, 4
(2001), 18–25.

[20] Leslie Lamport. 2002. Specifying systems: the TLA+ language and
tools for hardware and software engineers. Addison-Wesley Longman

Publishing Co., Inc.

[21] Leslie Lamport. 2005. Generalized Consensus and Paxos. (2005), 63.

[22] Leslie Lamport. 2006. Fast Paxos. Distributed Computing 19 (Oct. 2006).
h�ps://www.microso�.com/en-us/research/publication/fast-paxos/

[23] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzan-

tine Generals Problem. ACM Transactions on Programming Languages
and Systems 4, 3 (July 1982), 382–401. h�ps://doi.org/10.1145/357172.
357176

[24] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and

Marko Vukolic. 2016. XFT: Practical Fault Tolerance beyond Crashes..

In OSDI. 485–500.
[25] J-P Martin and Lorenzo Alvisi. 2006. Fast byzantine consensus. IEEE

Transactions on Dependable and Secure Computing 3, 3 (2006), 202–215.
[26] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There

is more consensus in Egalitarian parliaments. ACM Press, 358–372.

h�ps://doi.org/10.1145/2517349.2517350
[27] Diego Ongaro and John K. Ousterhout. 2014. In search of an under-

standable consensus algorithm.. In USENIX Annual Technical Confer-
ence. 305–319.

[28] S. Peluso, A. Turcu, R. Palmieri, G. Losa, and B. Ravindran. 2016. Mak-

ing Fast Consensus Generally Faster. In 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
156–167. h�ps://doi.org/10.1109/DSN.2016.23

[29] Fred B Schneider. 1993. Replication management using the state-

machine approach, Distributed systems. (1993).

[30] Swaminathan Sivasubramanian. 2012. Amazon dynamoDB: a seam-

lessly scalable non-relational database service. In Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data.
ACM, 729–730.

[31] Mohammad Reza Khalifeh Soltanian and Iraj Sadegh Amiri. 2016.

Chapter 1 - Introduction. In Theoretical and Experimental Meth-
ods for Defending Against DDOS Attacks, Mohammad Reza Khal-

ifeh Soltanian and Iraj Sadegh Amiri (Eds.). Syngress, 1 – 5. h�ps:
//doi.org/10.1016/B978-0-12-805391-1.00001-8

https://aws.amazon.com/message/680342/
https://github.com/cockroachdb/cockroach
https://github.com/coreos/etcd
https://status.cloud.google.com/incident/appengine/19001
https://status.cloud.google.com/incident/appengine/19001
https://status.cloud.google.com/incident/compute/18012
https://status.cloud.google.com/incident/compute/18012
http://arxiv.org/abs/1704.03319
http://arxiv.org/abs/1704.03319
https://doi.org/10.1145/2658994
https://doi.org/10.1145/2658994
https://doi.org/10.1145/2491245
https://www.microsoft.com/en-us/research/publication/fast-paxos/
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/2517349.2517350
https://doi.org/10.1109/DSN.2016.23
https://doi.org/10.1016/B978-0-12-805391-1.00001-8
https://doi.org/10.1016/B978-0-12-805391-1.00001-8

	Abstract
	1 Introduction
	2 Motivation
	3 System Model and Problem Formulation
	3.1 Cross Fault-Tolerance (XFT) Model
	3.2 Problem Statement

	4 Protocol Description
	4.1 Overview
	4.2 State maintained by a process pi
	4.3 Detailed Protocol

	5 Correctness
	6 Evaluation
	6.1 Experimental Setup
	6.2 Latency
	6.3 Throughput

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

