
Archie: A Speculative Replicated Transactional System

Sachin Hirve
Virginia Tech

hsachin@vt.edu

Roberto Palmieri
Virginia Tech

robertop@vt.edu

Binoy Ravindran
Virginia Tech

binoy@vt.edu

ABSTRACT
We present Archie, a high performance fault-tolerant trans-
actional system. Archie complies with the State Machine
Approach, where the transactional state is fully replicated
and total ordered transactions are executed on the repli-
cas. Archie avoids the serial execution after transactions
get ordered, which is the typical bottleneck of those pro-
tocols, by anticipating the work and using speculation to
process transactions in parallel, enforcing a predefined or-
der. The key feature of Archie is to avoid any non-trivial
operation to perform post total order’s notification, in case
the sequencer node remains stable (only a single timestamp
increment is needed for committing a transaction). This ap-
proach significantly shortens the transaction’s critical path.
The contention of speculative execution is always kept lim-
ited by activating a fixed number of transactions at a time.
A comprehensive evaluation, using three competitors and
three well known benchmarks, shows that Archie outper-
forms competitors in all medium/high contention scenarios.

Categories and Subject Descriptors
H.2.4 [Database Management]: Transaction processing;
D.4.5 [Software]: Fault-tolerance

General Terms
Algorithms, Performance

Keywords
Fault-Tolerance, Replication, Speculation

1. INTRODUCTION
The State Machine Approach (SMA) [23] is a well-known

coordination technique for building fault-tolerant services
where all distributed nodes receive and process the same se-
quence of requests. Many replicated transactional schemes
provide SMA with a transaction semantics (we name them

SMA-based transactional systems, hereafter) so that trans-
actions can be processed in a way such that the overall sys-
tem is always available even in presence of faults. In such
systems, each node replicates the entire shared state (full
replication). As high-level characterization, SMA-based trans-
actional systems can be classified according to the time when
transactions are ordered globally. On the one hand, trans-
actions can be executed by clients before a global certifica-
tion is invoked to resolve conflicts against other transactions
running on remote nodes. This approach is known as De-
ferred Update Replication (DUR) [26, 22, 3, 14]. On the
other hand, clients can postpone the transaction execution
until the agreement on a common order is reached. This
way, they do not process transactions but simply broadcast
transaction requests to all nodes and wait until the fastest
replica replies. This method is known as Deferred Execution
Replication (DER) [16, 10].

In both of these cases, an additional layer for ordering
transactions is needed. This layer implements a total order
protocol, such as Multi-Paxos [15], for agreeing on a set of
previously proposed values in the presence of faults. En-
forcing this order while transactions are certified/executed
is usually done serially [26, 13, 10] (serial phase hereafter),
with a significant impact on the total transaction execution
time because any task done after the establishment of the
global order increases latency perceived by clients. In ad-
dition, in such systems, the throughput is always bound by
the performance of the (usually single) committer thread.

One approach that overcomes this limitation consists of
relaxing the total order while providing a set of partial or-
ders where only conflicting transactions are commonly seri-
alized [16]. This allows the parallelization of the serial phase
and also of the ordering process but requires additional infor-
mation from the application to classify submitted transac-
tions. However, in the presence of write-intensive workload
with medium/high conflicts, establishing the total order still
represents the most effective design choice.

In this paper we present Archie, an SMA-based transac-
tional scheme that incorporates a set of protocol and sys-
tem innovations that extensively use speculation for remov-
ing any non-trivial task after the delivery of the transac-
tion’s order. The main goal of Archie is to avoid the time-
consuming operations (e.g., the entire transaction’s execu-
tion or iterations over transaction’s read and written ob-
jects) performed after this notification, such that a transac-
tion can be immediately committed.

In order to accomplish the above goal, we designed Mi-
MoX, an optimized sequencer-based total order layer which

inherits the advantages of two well-known mechanisms: the
optimistic notification [12, 17], issued to nodes prior to the
establishment of the total order; and batching [21, 6], as a
means for improving the throughput of the global ordering
process. MiMoX proposes an architecture that mixes these
two mechanisms, thus allowing the anticipation (thanks to
the optimistic notification) of a big amount of work (thanks
to batching) before the total order is finalized. Nodes take
advantage of the time needed for assembling a batch to com-
pute a significant amount of work before the delivery of the
order is issued. This anticipation is mandatory in order to
minimize (and possibly eliminate the need for) the trans-
action’s serial phase. As originally proposed in [17], Mi-
MoX guarantees that if the sequencer node (leader) is not
replaced during the ordering process (i.e., either suspected
or crashed), the sequence of optimistic notifications matches
the sequence of final notifications. As a distinguishing point,
the solution in [17] relies on a ring topology as a means for
delivering transactions optimistically, whereas MiMoX does
not assume any specific topology.

At the core of Archie there is a novel speculative parallel
concurrency control, named ParSpec, that processes/certi-
fies transactions upon their optimistic notification and en-
forces the same order as the sequence of optimistic notifica-
tions. The key enabling point for guaranteeing the effective-
ness of ParSpec is that the majority of transactions specula-
tively commit before the total order is delivered. This goal is
reached by minimizing the overhead caused by the enforce-
ment of a predefined order on the speculative executions.
ParSpec achieves this goal by the following steps:
- Executing speculative transactions in parallel, but allow-

ing them to speculative commit only in-order, thus reduc-
ing the cost of detecting possible out-of-order executions;

- Dividing the speculative transaction execution into two
stages: the first, where the transaction is entirely specula-
tively executed and its modifications are made visible to
the following speculative transactions; the second, where
a ready-to-commit snapshot of the transaction’s modifica-
tions is pre-installed into the shared data-set, but not yet
made available to non-speculative transactions.
A transaction starts its speculative commit phase only

when its previous transaction, according to the optimistic
order, becomes speculatively-committed and its modifica-
tions are visible to other successive speculative transactions.
The purpose of the second stage concerns only the non-
speculative commit, thus it can be removed from the spec-
ulative transaction’s critical path and executed in paral-
lel. This approach increases the probability of speculatively
committing a transaction before the total order is notified.
The final commit of an already speculatively-committed trans-
action consists of making the pre-installed snapshot avail-
able to all. In case the MiMoX’s leader is stable during
the execution, ParSpec realizes this task without iterating
over all transaction’s written objects but, rather, it just in-
creases one local timestamp. Clients are informed about
their transactions’ outcome while other speculative transac-
tions execute. As a result, transaction latency is minimized
and ParSpec’s high throughput allows more clients to sub-
mit requests.

The principles at the base of Archie can be applied in
both DUR- and DER-based systems. For the purpose of this
paper, we optimized Archie to cope with the DER model.
This is because DER has three main benefits over DUR.

First, it makes application behavior independent of failures.
When a node in the system crashes or stops serving incoming
requests, other nodes are able to transparently service the
same request, process the transaction, and respond back to
the application. Second, it does not suffer from aborts due to
contention on shared remote objects because a common seri-
alization order is defined prior to starting transaction (local)
execution, thus yielding high performance and better scala-
bility in medium/high contention scenarios [13]. Third, with
DER, the size of network messages exchanged for establish-
ing the common order does not depend on the transaction’s
logic (i.e., the number of objects accessed). Rather, it is lim-
ited to the name of the transaction and, possibly, its input
parameters, which reduces network usage and increases the
ordering protocol’s performance.

As commonly adopted in several SMA-based transactional
systems [13, 10, 18] and thanks to the full replication model,
Archie does not broadcast read-only workloads through Mi-
MoX; read-only requests are handled locally, in parallel with
the speculative execution. Processing write transactions
(both conflicting and not conflicting) in the same order on all
nodes allows Archie to guarantee 1-copy-serializability [2].

We implemented Archie in Java and we conducted a com-
prehensive experimental study using benchmarks including
TPC-C [5], Bank and a distributed version of Vacation [4].
As competitors, we selected one DUR-based: PaxosSTM [26]
– a high-performance open source transactional system; and
two DER-based: one non-speculative (SM-DER [23]) and
one speculative (HiperTM [10]) transactional system.

Our experiments on PRObE [7], a state-of-the-art public
cluster, reveal Archie’s high-performance and scalability.
On up to 19 nodes, Archie outperforms all competitors in
most of the tested scenarios. As expected, when the con-
tention is very low, PaxosSTM behaves better than Archie.

The paper makes the following contributions:
- Archie is the first fully-implemented DER-based transac-

tional system that eliminates costly operations during the
serial phase by anticipating the work through speculative
parallel execution.

- MiMoX is the first total order layer that guarantees a
reliable optimistic delivery order (i.e., the optimistic or-
der matches the total order) without any assumption on
the network topology, and maximizes the overlapping time
(i.e., the time between the optimistic and relative total or-
der notifications) when the sequencer node is not replaced
(e.g,. due to a crash).

- ParSpec is the first parallel speculative concurrency con-
trol that removes from the transaction’s critical path the
task to install written objects and implements a lightweight
commit procedure to make them visible.

2. ARCHIE
Assumptions. We assume a distributed system, where

a set of processes Π = {p1, . . . , pn} communicate using mes-
sage passing links. To eventually reach an agreement on the
order of transactions when nodes are faulty, we assume that
the system can be enhanced with the weakest type of unre-
liable failure detector [8] that is necessary to implement a
leader election.

Nodes may fail according to the fail-stop (crash) model [2].
We assume 2f +1 nodes where at most f nodes are simulta-
neously faulty. In any communication step, a node contacts
all other nodes and waits for a quorum Q of replies. We as-

sume the classical quorum [15] Q=f +1 such that a quorum
can always be formed because N−f ≥ Q. This way any two
quorums always intersect, thus ensuring that, even though
f failures happen, there is always at least one node with the
last updated information that we can use for recovering the
system. Further, we consider only non-byzantine faults.

For the sake of generality and following the trend of [13,
10, 16], we adopt the programming model of software trans-
actional memory (STM) [24] and its natural extension to
distributed systems (i.e., DTM). DTM allows the program-
mer to simply mark a set of operations with transactional
requirements as an “atomic block”. The DTM framework
transparently ensures the block’s transactional properties
while executing it concurrently with other blocks. There ex-
ists many frameworks that integrate STM-like atomic block
abstraction with different types of transactional systems,
such as Key-Value store [19, 22]. The adoption of this
model does not restrict the applicability of our approach.
Archie only assumes the existence of transactional read and
write operations to instrument. As all DER-based systems,
snapshot-deterministic [18, 16] transactions are assumed.
This excludes any forms of non-determinism.

Transaction Processing Model. Archie defines appli-
cation threads that invoke transactions (also called clients),
and service threads that process transactions. These two
groups of threads do not necessarily run on the same phys-
ical machine. Our transaction processing model is similar
to the multi-tiered architecture that is popular in relational
databases and other modern storage systems, where dedi-
cated threads (different from threads that invoke transac-
tions) process transactions.

Archie provides an application-level library that contains
interfaces for interacting with the transactional system such
as the invoke procedure. We adopt the store-procedure ab-
straction, common in DBMS, where the client does not send
all the transactional operations to the service threads. When
a client performs a transaction Tx, it is wrapped into a trans-
action request REQ(Tx) and marked as a read-only or write
transaction depending on Tx’s operations. If all operations
are reads, Tx is marked as read-only (Tr); otherwise as a
write (Tw). For a write transaction, REQ(Tw) is passed to
MiMoX, which is responsible for ordering REQ(Tw) among
all the other requests submitted concurrently.

MiMoX delivers each transaction request (or a batch of
them) twice, once optimistically and once finally. These two
events are handled at each node by ParSpec, the local con-
currency control protocol. When REQ(Tw) is optimistically
delivered, ParSpec extracts Tw from REQ(Tw), retrieves
Tw’s business logic, and starts executing it speculatively.
When REQ(Tw) is finally delivered, ParSpec commits Tw

if Tw executed in an order compliant with the final deliv-
ery order. Otherwise, Tw is aborted and restarted. ParSpec
works completely locally; no network interaction is needed.

When a client issues a read-only transaction Tr, the li-
brary targets one node in the system and delivers REQ(Tr)
directly to that node, without ordering the request globally.

3. MIMOX
MiMoX is a network system that ensures total order of

messages across remote nodes. It relies on Multi-Paxos [15],
an algorithm of the Paxos family, which guarantees agree-
ment on a sequence of values in the presence of faults (i.e.,
total order). MiMoX is sequencer-based – i.e., one elected

node in the system, called the leader, is responsible for defin-
ing the order of the messages.

MiMoX provides the APIs of Optimistic Atomic Broad-
cast [12]: broadcast(m), which is used by clients to broad-
cast a message m to all nodes; final-delivery(m), which is
used for notifying each replica on the delivery of a message
m (or a batch of them); and opt-delivery(m), which is used
for early-delivering a previously broadcast message m (or a
batch of them) before the final-delivery(m) is issued.

Each MiMoX message that is delivered is a container of
either a single transaction request or a batch of transaction
requests (when batching is used). The sequence of final-

delivery(m) events, called final order, defines the transac-
tion serialization order, which is the same for all the nodes
in the system. The sequence of opt-delivery(m) events,
called optimistic order, defines the optimistic transaction se-
rialization order. Since only the final order is the result of a
distributed agreement, the optimistic order may differ from
the final order and may also differ among nodes (i.e., each
node may have its own optimistic order). As we will show
later, MiMox guarantees the match between the optimistic
and final order when the leader is not replaced (i.e., stable)
during the ordering phase.

3.1 Ordering Process
MiMoX defines two types of batches: opt-batch, which

groups messages from the clients, and final-batch, which
stores the identification of multiple opt-batches. Each final-
batch is identified by an unique instance_ID. Each opt-
batch is identified by a pair <instance_ID, #Seq>.

When a client broadcasts a request using MiMoX, this
request is delivered to the leader which aggregates it into a
batch (the opt-batch). In order to preserve the order of these
steps, and for avoiding synchronization points that may de-
grade performance, we rely on single-thread processing for
the following tasks. For each opt-batch, MiMoX creates the
pair <instance_ID, #Seq>, where instance_ID is the iden-
tifier of the current final-batch that will wrap the opt-batch,
and #Seq is the position of the opt-batch in the final-batch.
When the pair is defined, it is appended to the final-batch.
At this stage, instead of waiting for the completion of the
final-batch and before creating the next opt-batch, MiMoX
sends the current opt-batch to all the nodes, waiting for the
relative acknowledgments. Using this mechanism, the leader
informs nodes about the existence of a new batch while the
final-batch is still accumulating requests. This way, MiMoX
maximizes the overlap between the time needed for creating
the final-batch with the local processing of opt-batches; and
enables nodes to effectively process messages, thanks to the
reliable optimistic order.

Each node, upon receiving the opt-batch, immediately
triggers the optimistic delivery for it. As in [17], we be-
lieve that within a data-center the scenarios where the leader
crashes or becomes suspected are rare. If the leader is stable
for at least the duration of the final-batch’s agreement, then
even if the opt-batch is received out-of-order with respect to
other opt-batches sent by the leader, this possible reorder-
ing is still nullified by the ordering information (i.e., #Seq)
stored within each opt-batch.

After sending the opt-batch, MiMoX loops again serving
the next opt-batch, until the completion of the final-batch.
When ready, MiMoX uses the Multi-Paxos algorithm for
establishing an agreement among nodes on the final-batch.

The leader proposes an order for the final-batches, to which
the other replicas reply with their agreement – i.e., accept
messages. When a majority of agreement for a proposed
order is reached, each replica considers it as decided.

The message size of the final-batch is very limited because
it contains only the identifiers of opt-batches that have al-
ready been delivered to nodes. This makes the agreement
process fast and includes a high number of client messages.

3.2 Handling Faults and Re-transmissions
MiMoX ensures that, on each node, an accept is triggered

for a proposed message (or batch) m only if all the opt-
batches belonging to m have been received. Enforcing this
property prevents loss of messages belonging to already de-
cided messages (or batches).

As an example, consider three nodes {N1,N2,N3}, where
N1 is the leader. The final-batch (FB) is composed of three
opt-batches: OB1, OB2, OB3. N1 sends OB1 to N2 and N3.
Then it does the same for OB2 and OB3. But N2 and N3 do
not receive both messages. After sending OB3, the FB is
complete, and N1 sends the propose message for FB. Nodes
N2 and N3 send the accept message to the other nodes, rec-
ognizing that there are unknown opt-batches (i.e., OB2 and
OB3). The only node having all the batches is N1. There-
fore, N2 and N3 request N1 for the re-transmission of the
missing batches. In the meanwhile, each node receives the
majority of accept messages from other nodes and triggers
the decide for FB. At this stage, if N1 crashes, even though
FB has been agreed, OB2 and OB3 are lost, and both N2

and N3 cannot retrieve their content anymore.
We solve this problem using a dedicated service at each

node, which is responsible for re-transmitting lost messages
(or batches). Each node, before sending the accept for an
FB, must receive all the opt-batches. The FB is composed
of the identification of all the expected opt-batches. Thus,
each node is easily able to recognize the missing batches.
Assuming that the majority of nodes are non-faulty, the
re-transmission request for one or multiple opt-batches is
broadcast to all the nodes such that, eventually the entire
sequence of opt-batches belonging to FB is rebuilt and the
accept message is sent.

Nodes can detect a missing batch before the propose mes-
sage for the FB is issued. Exploiting the sequence number
and the FB’s ID used for identifying opt-batches, each node
can easily find a gap in the sequence of the opt-batches re-
ceived, that belong to the same FB (e.g., if OB1 and OB3

are received, then, clearly, OB2 is missing). Thus, the re-
transmission can be executed in parallel with the ordering,
without additional delay. The worst case happens when the
missing opt-batch is the last in the sequence. In this case,
the propose message of FB is needed to detect the gap.

3.3 Evaluation
We evaluated MiMoX’s performance by an experimen-

tal study. We focused on MiMoX’s scalability in terms of
the system size, the average time between optimistic and
final delivery, the number of requests in opt-batch and final-
batch, and the size of client requests. We used the PRObE
testbed [7], a public cluster that is available for evaluating
systems research. Our experiments were conducted using
19 nodes (tolerating up to 9 failures) in the cluster. Each
node is equipped with a quad socket, where each socket hosts
an AMD Opteron 6272, 64-bit, 16-core, 2.1 GHz CPU (total

64-cores). The memory available is 128GB, and the network
connection is a high performance 40 Gigabit Ethernet.

For the purpose of the study, we decided to finalize an
opt-batch when it reaches the maximum size of 12K bytes
and a final-batch when it reaches 5 opt-batches, or when the
time needed for building them exceeds 10 msec, whichever
occurs first. All data points reported are the average of six
repeated measurements.

 90

 95

 100

 105

 110

 115

 120

 125

 130

 3 5 7 9 11 13 15 17 19

1
0

0
0

x
 m

s
g

s
 p

e
r

s
e

c

Nodes

10 bytes
20 bytes
50 bytes

Figure 1: MiMoX’s message throughput.

Figure 1 shows MiMoX’s throughput in requests ordered
per second. For this experiment, we varied the number of
nodes participating in the agreement and the size of each
request. Clearly, the maximum throughput (122K requests
ordered per second) is reached when the node count is low
(3 nodes). However, the percentage of degradation in per-
formance is limited when the system size is increased: with
19 nodes and request size of 10 bytes, the performance de-
creases by only 11%.

Figure 1 shows also the results for request sizes of 20
and 50 bytes. Recall that Archie’s transaction execution
process leverages the ordering layer only for broadcasting
the transaction ID (e.g., method or store-procedure name),
along with its parameters (if any), and not the entire trans-
action business logic. Other solutions, such as the DUR
scheme, use the total order layer for broadcasting the trans-
action read- and write-set after a transaction’s completion,
resulting in larger request size than Archie’s. In fact, our
evaluations with Bank and TPC-C benchmarks revealed that
almost all the transaction requests can be compacted be-
tween 8 and 14 bytes. MiMoX’s performance for a request
size of 20 bytes is quite close to that for 10 byte request size.
We observe a slightly larger gap with 19 nodes and 50 byte
request size, where the throughput obtained is 104K. This is
a performance degradation lesser than 15% with respect to
the maximum throughput. This is because, with smaller re-
quests (10 or 20 bytes), opt-batches do not get filled to the
maximum size allowed, resulting in smaller network mes-
sages. On the other hand, larger requests (50 bytes) tend to
fill batches sooner, but these bigger network messages take
more time to traverse.

Figure 2 shows MiMoX’s delay between the optimistic and
the relative final delivery, named overlapping time. This
experiment is the same as that reported in Figure 1. MiMoX
achieves a stable overlapping time, especially for a request
size of 10 bytes, of ≈8 msec. This delay is non-negligible
if we consider that Archie processes transactions locally.
Using bigger requests, the final-batch becomes ready sooner
because less requests fit in one final-batch. As a result, the

 0

 2

 4

 6

 8

 10

 12

 14

3 5 7 9 11 13 15 17 19

m
ill

is
e

c
o

n
d

s
 (

m
s
e

c
)

Nodes

10 bytes
20 bytes
50 bytes

Figure 2: Time between optimistic/final delivery.

time between optimistic and final delivery decreases. This is
particularly evident with a request size of 50 bytes, where we
observe an overlapping time that is, on average, 4.6 msec.

The last results motivate our design choice to adopt DER
as a replication scheme instead of DUR.

Request Final-batch Opt-batch % Re NF % Re F
size (bytes) size size

10 4.91 230.59 0% 1.7%
20 4.98 166.45 0% 3.4%
50 5.12 90.11 0% 4.8%

Table 1: Size of requests, batches, and % reorders.

Table 1 shows other information collected from the pre-
vious experiments. It is interesting to observe the number
of opt-batches that makes up a final-batch (5 on average)
and the number of client requests in each opt-batch (varies
from 90 to 230 depending on the request size). This last
information confirms the reason for the slight performance
drop using requests of 50 bytes. In fact, in this case each
opt-batch transfers ≈ 4500 bytes in payload, as compared
to ≈ 2300 bytes for request size of 10 bytes.

In these experiments, we used TCP connections for send-
ing opt-batches. Since MiMoX uses a single thread for send-
ing opt-batches and for managing the final-batch, reorders
between optimistic and final deliveries cannot happen except
when the leader crashes or is suspected. Table 1 supports
this. It reports the maximum reordering percentages ob-
served when leader is stable (column Re NF) and when the
leader is intentionally terminated after a period of stable
execution (column Re F), using 19 nodes.

4. PARSPEC
ParSpec is the concurrency control protocol that runs lo-

cally at each node. MiMoX delivers each message or a
batch of messages twice: once optimistically and once fi-
nally. These two events are the triggers for activating Par-
Spec’s activities. Without loss of generality, hereafter, we
will refer to a message of MiMoX as a batch of messages.

Transactions are classified as speculative: i.e., those that
are only optimistically delivered, but their final order has
not been defined yet; and non-speculative: i.e., those whose
final order has been established. Among speculative trans-
actions, we can distinguish between speculatively-committed
(or x-committed hereafter): i.e., those that have completely
executed all their operations and cannot be aborted anymore
by other speculative transactions; and active: i.e., those that

are still executing operations or that are not allowed to spec-
ulatively commit yet. Moreover, each transaction T records
its optimistic order in a field called T.OO. T ’s optimistic
order is the position of T within its opt-batch, along with
the position of the opt-batch in the (possible) final-batch.

ParSpec’s main goal is to activate in parallel a set of spec-
ulative transactions, as soon as they are optimistically de-
livered, and to entirely complete their execution before their
final order is notified.

As a support for the speculative execution, the following
meta-data are used: abort-array, which is a bit-array that
signals when a transaction must abort; LastX-committedTx,
which stores the ID of the last x-committed transaction; and
SCTS, the speculative commit timestamp, which is a mono-
tonically increasing integer that is incremented each time a
transaction x-commits. Also, each node is equipped with an
additional timestamp, called CTS, which is an integer incre-
mented each time a non-speculative transaction commits.

For each shared object, a set of additional information is
also maintained for supporting ParSpec’s operations: (1) the
list of committed and x-committed versions; (2) the version
written by the last x-committed transaction, called spec-

version; (3) the boolean flag called wait-flag, which in-
dicates that a speculative active transaction wrote a new
version of the object, and wait-flag.OO, the optimistic or-
der of that transaction; and (4) a bit-array called readers-

array, which tracks active transactions that already read the
object during their execution. Committed (or x-committed)
versions contain VCTS, which is the CTS (or the SCTS) of the
transaction that committed (or x-committed) that version.

The size of the abort-array and readers-array is bounded
by MaxSpec, which is an integer defining the maximum num-
ber of speculative transactions that can run concurrently.
MaxSpec is fixed and set a priori at system start-up. It can
be tuned according to the underlying hardware.

When an opt-batch is optimistically delivered, ParSpec
extracts the transactions from the opt-batch and processes
them, activating MaxSpec transactions at a time. Once all
these speculative transactions finish their execution, the next
set of MaxSpec transactions is activated. As it will be clear
later, this approach allows a quick identification of those
transactions whose history is not compliant anymore with
the optimistic order, thus they must be aborted and restarted.

In the abort-array and readers-array, each transaction
has its information stored in a specific location such that, if
two transactions Ta and Tb are optimistically ordered, say in
the order Ta > Tb, then they will be stored in these arrays
respecting the invariant Ta > Tb.

Since the optimistic order is a monotonically increasing in-
teger, for a transaction T , the position i= T.OO mod MaxSpec

stores T ’s information. When abort-array[i]=1, T must
abort because its execution order is not compliant anymore
with the optimistic order. Similarly, when an object obj
has readers-array[i]=1, it means that the transaction T
performed a read operation on obj during its execution.

Speculative active transactions make available new ver-
sions of written objects only when they x-commit. This way,
other speculative transactions cannot access intermediate
snapshots of active transactions. However, when MaxSpec

transactions are activated in parallel, multiple concurrent
writes on the same object could happen. When those trans-
actions reach their x-commit phase, different speculative ver-
sions of the same object could be available for readers. As

an example, consider four transactions {T1,T2,T3,T4} that
are optimistically delivered in this order. T1 and T3 write
to the same object Oa, and T2 and T4 read from Oa. When
T1 and T3 reach the speculative commit phase, they make
two speculative versions of Oa available: OT1

a and OT3
a . Ac-

cording to the optimistic order, T2’s read should return OT1
a

and T4’s read should return OT3
a . Even though this approach

maximizes concurrency, its implementation requires travers-
ing the shared lists of transactional meta-data, resulting in
high transaction execution time and low performance [1].

ParSpec finds an effective trade-off between performance
and overhead for managing meta-data. In order to avoid
maintaining a list of speculative versions, ParSpec allows an
active transaction to x-commit only when the speculative
transaction optimistically ordered just before it is already
x-committed. Formally, given two speculative transactions
Tx and Ty such that Ty.OO = {Tx.OO} + 1, Ty is allowed
to x-commit only when Tx is x-committed. Otherwise, Ty

keeps spinning even when it has executed all of its opera-
tions. Ty easily recognizes Tx’s status change by reading
the shared field LastX-committedTx. We refer to this prop-
erty as rule-comp. By rule-comp, read and write operations
become efficient. In fact, when a transaction T reads an ob-
ject, only one speculative version of the object is available.
Therefore, T ’s execution time is not significantly affected by
the overhead of selecting the appropriate version according
to T ’s history. In addition, due to rule-comp, even though
two transactions may write to the same object, they can x-
commit and make available their new versions only in-order,
one after another. This policy prevents any x-committed
transaction to abort due to other speculative transactions.

In the following, ParSpec’s operations are detailed.

4.1 Transactional Read Operation
When a write transaction Ti performs a read operation

on an object X, it checks whether another active transac-
tion Tj is writing a new version of X and Tj ’s optimistic
order is prior to Ti’s. In this case, it is useless for Ti to
access the spec-version of X because, eventually, Tj will
x-commit, and Ti will be aborted and restarted in order
to access Tj ’s version of X. Aborting Ti ensures that its
serialization order is compliant with the optimistic order.
Ti is made aware about the existence of another transac-
tion that is currently writing X through X.wait-flag, and
about its order through X.wait-flag.OO. If X.wait-flag=1
and X.wait-flag.OO < Ti.OO, then Ti waits until the pre-
vious condition is no longer satisfied. For the other cases,
namely when X.wait-flag=0 or X.wait-flag.OO > Ti.OO, Ti

proceeds with the read operation without waiting, accessing
the spec-version. Specifically, if X.wait-flag.OO > Ti.OO,
then it means that another active transaction Tk is writing
to X. But, according to the optimistic order, Tk is serialized
after Ti. Thus, Ti can simply ignore Tk’s concurrent write.

After successfully retrieving X’s value, Ti stores it in its
read-set, signals that a read operation on X has been com-
pleted, and sets the flag corresponding to its entry in X.readers-
array. This notification is used by writing transactions to
abort inconsistent read operations that are performed be-
fore a previous write takes place.

4.2 Transactional Write Operation
The rule-comp prevents two or more speculative transac-

tions from x-committing in parallel and in any order. Rather,

they progressively x-commit, according to the optimistic or-
der. In ParSpec, transactional write operations are buffered
locally in a transaction’s write-set. Therefore, they are not
available for concurrent reads before the writing transaction
x-commits. The write procedure has the main goal of abort-
ing those speculative active transactions that are serialized
after (in the optimistic order) and a) wrote the same ob-
ject, and/or b) previously read the same object (but clearly
a different version).

When a transaction Ti performs a write operation on an
object X and finds that X.wait-flag = 1, ParSpec checks
the optimistic order of the speculative transaction Tj that
wrote X. If X.wait-flag.OO > Ti.OO, then it means that Tj

is serialized after Ti. So, an abort for Tj is triggered because
Tj is a concurrent writer on X and only one X.spec-version is
allowed for X. On the contrary, if X.wait-flag.OO < Ti.OO
(i.e., Tj is serialized before Ti according to the optimistic
order) then Ti, before proceeding, loops until Tj x-commits.

Since a new version of X written by Ti will eventually be-
come available, all speculative active transactions optimisti-
cally delivered after Ti that read X must be aborted and
restarted so that they can obtain X’s new version. Identi-
fying those speculative transactions that must be aborted
is a lightweight operation in ParSpec. When a speculative
transaction x-commits, its history is fixed and cannot change
because all the speculative transactions serialized before it
have already x-committed. Thus, only active transactions
can be aborted. Object X keeps track of readers using the
readers-array and ParSpec uses it for triggering an abort:
all active transactions that appear in the readers-array af-
ter Ti’s index and having an entry of 1 are aborted. Finally,
before including the new object version in Ti’s write-set,
ParSpec sets X.wait-flag = 1 and X.wait-flag.OO = Ti.OO.

Finally, if a write operation is executed on an object al-
ready written by the transaction, its value is simply updated.

4.3 X-Commit
A speculative active transaction that finishes all of its op-

erations enters the speculative commit (x-commit) phase.
This phase has three purposes: the first (A) is to allow next
speculative active transactions to access the new speculative
versions of the written objects; the second (B) is to allow
subsequent speculative transactions to x-commit; the third
(C) is to prepare “future” committed versions (not yet visi-
ble) of the written objects such that, when the transaction
is eventually final delivered, those versions will be already
available and its commit will be straightforward. However,
in order to accomplish (B), only (A) must be completed
while (C) can be executed later. This way, ParSpec antici-
pates the event that triggers the x-commit of the next spec-
ulative active transactions, while executing (C) in parallel
with that.

Step (A). All the versions written by transaction Ti are
moved from Ti’s write-set to the spec-version field of the
respective objects and the respective wait-flags are cleared.
This way, the new speculative versions can be accessed from
other speculative active transactions. At this time, a trans-
action Tj that accessed any object conflicting with Ti’s write-
set objects and is waiting on wait-flags can proceed.

In addition, due to rule-comp, an x-committed transaction
cannot be aborted by any speculative active transaction.
Therefore, all the meta-data assigned to Ti must be cleaned
up for allowing the next MaxSpec speculative transactions to

execute from a clean state.
Step (B). This step is straightforward because it only con-

sists of increasing SCTS, the speculative commit timestamp,
which is incremented each time a transaction x-commits, as
well as increasing LastX-committedTx.

Step (C). This step is critical for avoiding the iteration
on the transaction’s write-set to install the new commit-
ted versions during the serial phase. However, this step
does not need to be in the critical path of subsequent ac-
tive transactions. For this reason (C) is executed in paral-
lel to subsequent active transactions after updating LastX-

committedTx, such that the chain of speculative transactions
waiting for x-commit can evolve.

For each written object, a new committed, but not yet
visible, version is added to the object’s version list. The
visibility of this version is implemented leveraging SCTS.
Specifically, SCTS is assigned to the VCTS of the version.
SCTS is always greater than CTS because the speculative
execution always precedes the final commit. This way (as
we will show in Section 4.6) no non-speculative transaction
can access that version until CTS is equal to SCTS. If the
MiMox’s leader is stable in the system (i.e., the optimistic
order is reliable), then when CTS reaches the value of SCTS,
then the speculative transaction has already been executed,
validated and all of its versions are already available to non-
speculative transactions.

4.4 Commit
The commit event is invoked when a final-batch is deliv-

ered. At this stage, two scenarios can happen: (A) the final-
batch contains the same set of opt-batches already received
in the same order, or (B) the optimistic order is contradicted
by the content of the final-batch.

Scenario (A) is the case when the MiMoX’s leader is not
replaced while the ordering process is running. This rep-
resents the normal case within a data-center, and the best
case for Archie because the speculative execution can be
actually leveraged for committing transactions without per-
forming additional validation or re-execution. In fact, Par-
Spec’s rule-comp guarantees that the speculative order al-
ways matches the optimistic order, thus if the latter is also
confirmed by the total order, it means that the speculative
execution does not need to be validated anymore.

In this scenario, the only duty of the commit phase is
to increase CTS. Given that, when CTS=Y , it means that
the x-committed transaction with SCTS=Y has been finally
committed. Non-speculative transactions that start after
this increment of CTS will be able to observe the new ver-
sions written during the step (C) of the x-commit of the
transaction with SCTS=Y .

Using this approach, ParSpec eliminates any complex op-
eration during the commit phase and, if most of the trans-
actions x-commit before their notification of the total order,
then they are committed right away, paying only the delay
of the total order. If the transaction does not contain mas-
sive non-transactional computation, then the iteration on
the write-set for installing the new committed versions, and
the iteration on the read-set for validating the transaction,
have almost the same cost as running the transaction from
scratch after the final delivery. This is because, once the
total order is defined, transactions can execute without any
overhead, such as logging in the read-set or write-set.

In scenarios like (B), transactions cannot be committed

without being validated because the optimistic order is not
reliable anymore. For this reason, the commit is executed
using a single thread. Transaction validation consists of
checking if all the versions of the read objects during the
speculative execution correspond to the last committed ver-
sions of the respective objects. If the validation succeeds,
then the commit phase is equivalent to the one in scenario
(A). When the validation fails, the transaction is aborted
and restarted for at most once. The re-execution happens
on the same committing thread and accesses all the last
committed versions of the read objects.

In both the above scenarios, clients must be informed
about transaction’s outcome. ParSpec accomplishes this
task asynchronously and in parallel, rather than burdening
the commit phase with expensive remote communications.

4.5 Abort
Only speculative active transactions and x-committed trans-

actions whose total order has already been notified can be
aborted. In the first case, ParSpec uses the abort mecha-
nism for restarting speculative transactions with an execu-
tion history that is non-compliant with the optimistic order.
Forcing a transaction T to abort means simply to set the
T ’s index of the abort-array. However, the real work for
annulling the transaction context and restarting from the
beginning is executed by T itself by checking the abort-

array. This check is made after executing any read or write
operation and when Ti is waiting to enter the x-commit
phase. The abort of a speculative active transaction con-
sists of clearing all of its meta-data before restarting.

In the second case, the abort is needed because the spec-
ulative transaction x-committed with a serialization order
different from the total order. In this case, before restarting
the transaction as non-speculative, all the versions written
by the x-committed transaction must be deleted from the ob-
jects’ version lists. In fact, due to the snapshot-deterministic
execution, the new set of written versions can differ from the
x-committed set, thus some version could become incorrectly
available after the increment of CTS.

4.6 Read-Only Transactions
When a read-only transaction is delivered to a node, it is

immediately processed, accessing only the committed ver-
sions of the read objects. This way, read-only workloads
do not interfere with the write workloads, thus limiting the
synchronization points between them. A pool of threads
is reserved for executing read-only transactions. Before a
read-only transaction Ti performs its first read operation on
an object, it retrieves the CTS of the local node and as-
signs this value to its own timestamp (Ti.TS). After that,
the set of versions available to Ti is fixed and composed of
all versions with VCTS ≤ Ti.TS – i.e., Ti cannot access new
versions committed by any Tj ordered after Ti. Some object
could have, inside its version list, versions with a VCTS >
Ti.TS. These versions are added from x-committed trans-
actions, but not yet finally committed, thus their access is
prohibited to any non-speculative transaction.

5. CONSISTENCY GUARANTEES
Archie ensures 1-Copy Serializability [2] as a global prop-

erty, and it ensures also that any speculative transaction
(active, x-committed and aborted) always observes a serial-
izable history, as a local property.

1-Copy Serializability. Archie ensures 1-Copy Seri-
alizability. The main argument that supports this claim is
that transactions are validated and committed serially. We
can distinguish two cases according to the reliability of the
optimistic delivery order with respect to the final delivery
order: i) when the two orders match, and the final commit
procedure does not accomplish any validation procedure; ii)
when the two orders do not match, thus the validation and
a possible re-execution are performed.

The case ii) is straightforward to prove because, even
though transactions are activated and executed speculatively,
they are validated before being committed. The validation,
as well as the commit, process is sequential. This rule holds
even for non-conflicting transactions. Combining serial val-
idation with the total order of transactions guarantees that
all nodes eventually validate and commit the same sequence
of write transactions. The ordering layer ensures the same
sequence of delivery even in the presence of failures, there-
fore, all nodes eventually reach the same state.

The case i) is more complicated because transactions are
not validated after the notification of the final order; rather,
they directly commit after increasing the commit times-
tamp. For this case we rely on MiMoX, which ensures that
all final delivered transactions are always optimistically de-
livered before. Given that, we can consider the speculative
commit as the final commit because, after that, the transac-
tion is ensured to not abort anymore and eventually commit.
The execution of a speculative transaction is necessarily seri-
alizable because all of its read operations are done according
to a predefined order. In case a read operation accesses a ver-
sion such that its execution becomes not compliant with the
optimistic order anymore, the reader transaction is aborted
and restart. In addition, transactions cannot speculatively
commit in any order or concurrently. They are allowed to
do so only serially, thus reproducing the same behavior as
the commit phase in case ii).

Read-only transactions are processed locally without a
global order. They access only committed versions of ob-
jects, and their serialization point is defined when they start.
At this stage, if we consider the history composed of all
the committed transactions, when a read-only transaction
starts, it defines a prefix of that history such that it can-
not change over time. Versions committed by transactions
serialized after this prefix are not visible by the read-only
transaction. Consider a history of committed write transac-
tions, H={T1, . . . ,Ti, . . . , Tn}. Without loss of generality,
assume that T1 committed with timestamp 1; Ti committed
with timestamp i; and Tn committed with timestamp n. All
nodes in the system eventually commit H. Different com-
mit orders for these transactions are not allowed due to the
total order enforced by MiMoX. Suppose that two read-only
transactions Ta and Tb, executing on node Na and Nb, re-
spectively, access the same shared objects. Let Ta perform
its first read operation on X accessing the last version of X
committed at timestamp k, and Tb at timestamp j. Let Pa

and Pb be the prefixes of H defined by Ta and Tb, respec-
tively. Pa(H)={T1, . . . ,Tk} such that k ≤ i and Pb(H)=
{T1, . . . ,Tj} such that j ≤ i. Pa and Pb can be either coinci-
dent, or one is a prefix of the other because both are prefixes
of H: i.e., if k < j, then Pa is a prefix of Pb; if k > j, then
Pb is a prefix of Pa; if k = j, then Pa and Pb coincide.

Let Pa be a prefix of Pb. Now, ∀ Tu, Tv ∈ Pa, Ta and Tb

will observe Tu and Tv in the same order (and for the same

reason, it is true also for the other cases). In other words,
due to the total order of write transactions, there are no two
read-only transactions, running on the same node or differ-
ent nodes, that can observe the same two write transactions
serialized differently.

Serializable history. In ParSpec, all speculative trans-
actions (including those that will abort) always observe a
history that is serializable. This is because new specula-
tive versions are exposed only at the end of the transaction,
when it cannot abort anymore; and because each speculative
transaction checks its abort bit after any operation. Assume
three transactions T1, T2 and T3, optimistically ordered in
this way. T1 x-commits a new version of object A, called
A1 and T2 overwrites A producing A2. It also writes object
B, creating B2. Both T2 and T3 run in parallel while T1

already x-committed. Now T3 reads A from T1 (i.e., A1)
and subsequently T2 starts to x-commit. T2 publishes the
A2’s speculative version and flags T3 to abort because its
execution is not compliant with the optimistic order any-
more. Then T2 continues its x-commit phase exposing B2’s
speculative version. In the meanwhile, T3 starts a read op-
eration on B before being flagged by T2, and it finds B2.
Even though T3 is marked as aborted, it already started
the read operation on B before checking the abort-bit. For
this reason, this check is done after the read operation. In
the example, when T3 finishes the read operation on B, but
before returning B2 to the executing thread, it checks the
abort-bit and it aborts due to the previous read on A. As a
result, the history of a speculative transaction is always (and
at any point in time) compliant with the optimistic order,
thus preventing the violation of serializability.

6. IMPLEMENTATION AND EVALUATION
We implemented Archie in Java: MiMoX’s implementa-

tion inherited JPaxos’s [21, 14] software architecture, while
ParSpec has been built from scratch. As a testbed, we used
PRObE [7] as presented in Section 3. ParSpec does not
commit versions on any stable storage. The transaction pro-
cessing is entirely executed in-memory while fault-tolerance
is ensured through replication.

We selected three competitors to compare against Archie.
Two are state-of-the-art, open-source, transactional systems
based on state-machine replication. One, PaxosSTM [26]
implements the DUR model, while the other, HiperTM [10],
complies with the DER model. As the third competitor, we
implemented the classical DER scheme (called SM-DER) [23],
where transactions are ordered through JPaxos [14] and pro-
cessed in a single thread after the total order is established.

PaxosSTM [26] processes transactions locally, and relies
on JPaxos [14] as a total order layer for their global certifi-
cation across all nodes. On the other hand, HiperTM [10],
as Archie, exploits the optimistic delivery for anticipating
the work before the notification of the final order, but it pro-
cesses transactions on single thread. In addition, HiperTM’s
ordering layer is not optimized for maximizing the time be-
tween optimistic and final delivery.

Each competitor provides its best performance under dif-
ferent workloads, thus they represent a comprehensive selec-
tion to evaluate Archie. Summarizing, PaxosSTM ensures
high-performance in workloads with very low contention,
such that remote aborts do not kick-in. HiperTM, as well
as SM-DER, are independent from the contention because
they process transactions using a single thread but their

 80000
 100000
 120000
 140000
 160000
 180000
 200000
 220000
 240000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
n

pe
r s

ec

Replicas

SMR
HiperTM

PaxosSTM
ALVIN-FD

ALVIN

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
n

pe
r s

ec

Replicas

SMR
PaxosSTM

ALVIN-FD
ALVIN

 80000
 100000
 120000
 140000
 160000
 180000
 200000
 220000
 240000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
n

pe
r s

ec
Replicas

SMR
HiperTM

PaxosSTM
ALVIN-FD

ALVIN

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
a
b

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
a
b

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
a
b

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19
Tr

an
sa

ct
io

ns
 p

er
 s

ec
Replicas

SMR
HiperTM

PaxosSTM

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
HiperTM

PaxosSTM

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
a
b

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
a
b

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
HiperTM

PaxosSTM

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
HiperTM

PaxosSTM

ARCHIE-FD
ARCHIE

 0

 5

 10

 15

 20

 25

 3 5 7 9 11 13 15 17 19

10
00

x
Tr

an
sa

ct
io

ns
 p

er
 s

ec

Replicas

SM-DER
HiperTM

PaxosSTM

ARCHIE-FD
ARCHIE

 20

 40

 60

 80

 100

 120

 140

 3 5 7 9 11 13 15 17 19

1
0
0
0
x
 T

ra
n
s
a
c
ti
o
n
 p

e
r

s
e
c

Replicas

(a) Throughput - High - 90%.

 40

 60

 80

 100

 120

 140

 160

 3 5 7 9 11 13 15 17 19

1
0
0
0
x
 T

ra
n
s
a
c
ti
o
n
 p

e
r

s
e
c

Replicas

(b) Throughput - Medium - 90%.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 3 5 7 9 11 13 15 17 19

L
a
te

n
c
y
 (

m
s
)

Replicas

(c) Latency - High - 90%.

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 3 5 7 9 11 13 15 17 19

1
0
0
0
x
 T

ra
n
s
a
c
ti
o
n
 p

e
r

s
e
c

Replicas

(d) Throughput - High - 50%.

 80

 100

 120

 140

 160

 180

 200

 220

 240

 3 5 7 9 11 13 15 17 19

1
0
0
0
x
 T

ra
n
s
a
c
ti
o
n
 p

e
r

s
e
c

Replicas

(e) Throughput - Medium - 50%.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 3 5 7 9 11 13 15 17 19

L
a
te

n
c
y
 (

m
s
)

Replicas

(f) Latency - High - 50%.

Figure 3: Performance of Bank benchmark varying nodes, contention and percentage of write transactions.

 80000
 100000
 120000
 140000
 160000
 180000
 200000
 220000
 240000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
n

pe
r s

ec

Replicas

SMR
HiperTM

PaxosSTM
ALVIN-FD

ALVIN

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
n

pe
r s

ec

Replicas

SMR
PaxosSTM

ALVIN-FD
ALVIN

 80000
 100000
 120000
 140000
 160000
 180000
 200000
 220000
 240000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
n

pe
r s

ec

Replicas

SMR
HiperTM

PaxosSTM
ALVIN-FD

ALVIN

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
a
b

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
a
b

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
a
b

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
HiperTM

PaxosSTM

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
HiperTM

PaxosSTM

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
a
b

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
a
b

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
HiperTM

PaxosSTM

ARCHIE-FD
ARCHIE

 0

 5000

 10000

 15000

 20000

 25000

 3 5 7 9 11 13 15 17 19

Tr
an

sa
ct

io
ns

 p
er

 s
ec

Replicas

SMR
HiperTM

PaxosSTM

ARCHIE-FD
ARCHIE

 0

 5

 10

 15

 20

 25

 3 5 7 9 11 13 15 17 19

10
00

x
Tr

an
sa

ct
io

ns
 p

er
 s

ec

Replicas

SM-DER
HiperTM

PaxosSTM

ARCHIE-FD
ARCHIE

 0

 5

 10

 15

 20

 25

 3 5 7 9 11 13 15 17 19

1
0
0
0
x
 T

ra
n
s
a
c
ti
o
n
s
 p

e
r

s
e
c

Replicas

(a) #1 warehouse.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 3 5 7 9 11 13 15 17 19

1
0
0
0
x
 T

ra
n
s
a
c
ti
o
n
s
 p

e
r

s
e
c

Replicas

(b) #19 warehouses.

 5

 10

 15

 20

 25

 30

 3 5 7 9 11 13 15 17 19

1
0
0
0
x
 T

ra
n
s
a
c
ti
o
n
s
 p

e
r

s
e
c

Replicas

(c) #100 warehouses.

Figure 4: Performance of TPC-C benchmark varying nodes and number of warehouses.

performance is significantly affected by the length of trans-
actions (any operation is on the transaction’s critical path).
This way, workloads composed of short transactions repre-
sent their sweet spot. In addition, SM-DER excels for work-
loads where contention is very high. Here the intuition is
that, if only few objects are shared, then executing transac-
tions serially without any overhead is the best solution.

We provided two versions of Archie: one that exploits the
optimistic delivery and one that postpones the parallel ex-
ecution until the transactions are final delivered. This way,
we can show the impact of the anticipation of the work, with
respect to the parallel execution. The version of Archie
that does not use the optimistic delivery, called Archie-FD,
replaces the x-commit with the normal commit. In contrast
with Archie, Archie-FD installs the written objects dur-
ing the commit. For the purpose of the study, we configured
MaxSpec and the size of the thread pool that serves read-only
transactions as 12. This configuration resulted in an effec-
tive trade-off between performance and scalability on our

testbed. However, these parameters can be tuned for ex-
ploring different trade-offs for the hardware and application
workload at hand.

The benchmarks adopted in this evaluation include Bank,
a common benchmark that emulates bank operations, TPC-
C [5], a popular on-line transaction processing benchmark,
and Vacation, a distributed version of the famous applica-
tion included in the STAMP suite [4]. We scaled the size of
the system in the range of 3-19 nodes and we also changed
the system’s contention level by varying the total number of
shared objects available. All the competitors benefit from
the execution of local read-only transactions. For this rea-
son we scope out read-only intensive workloads. Each node
has a number of clients running on it. When we increase the
nodes in the system, we also slightly increase the number of
clients accordingly. This also means that the concurrency
and (possibly) the contention in the system moderately in-
crease. This is also why the throughput tends to increase
for those competitors that scale along with the size of the

system. In practice, we used on average the following total
number of application threads balanced on all nodes: 1000
for TPC-C, 3000 for Bank, and 550 for Vacation.

6.1 Bank Benchmark
We configured the Bank benchmark for executing 10%

and 50% of read-only transactions, and we identified the
high, medium and low contention scenarios by setting 500,
2000, and 5000 total bank accounts, respectively. We report
only the results for high and medium contention (Figure 3)
because the trend in low contention scenario is very similar
to the medium contention though with higher throughput.

Figure 3(a) plots the results of the high contention sce-
nario. PaxosSTM suffers from a massive amount of remote
aborts (≈85%), thus its performance is worse than others
and it is not able to scale along with the size of the system.
Interestingly, SM-DER behaves better than HiperTM be-
cause HiperTM’s transaction execution time is higher than
SM-DER’s due to the overhead of operations’ instrumenta-
tion. This is particularly evident in Bank, where transac-
tions are short and SM-DER’s execution without any over-
head provides better performance. In fact, even if HiperTM
anticipates the execution leveraging the optimistic delivery,
its validation and commit after the total order nullify any
previous gain. We observed also the time between the opti-
mistic and final delivery in HiperTM to be less than 1 msec,
which limits the effectiveness of its optimistic execution.

The two versions of Archie perform better than oth-
ers but still Archie-FD, without the speculative execution,
pays a penalty in performance around 14% against Archie.
This is due to the effective exploitation of the optimistic de-
livery. Consistently with the results reported in Section 3,
we observed an average time between optimistic and final
delivery of 8.6 msec, almost 9× longer than HiperTM. How-
ever, as showed in Figure 3(c), Archie’s average transaction
latency is still much lower than others. The peak through-
put improvement over the best competitor (i.e., SM-DER)
is 54% for Archie and 41% for Archie-FD.

Figure 3(b) shows the results with an increased number
of shared objects in the system. In these experiments the
contention is lower than before, thus PaxosSTM performs
better. With 3 nodes, its performance is comparable with
Archie but, by increasing the nodes and thus the con-
tention, it degrades. Here Archie’s parallel execution has a
significant benefit, reaching a speed-up by as much as 95%
over SM-DER. Due to the lower contention, also the gap
between Archie and Archie-FD increased up to 25%.

Figures 3(d), 3(e), 3(f) show the results with higher per-
centage of read-only transactions (50%). Recall that all pro-
tocols exploit the advantage of local processing of read-only
transactions but absolute numbers are higher than before,
as well as latency is reduced, but the trends are still similar.

6.2 TPC-C Benchmark
TPC-C is characterized by transactions accessing several

objects and the workload has a contention level usually higher
than other benchmarks (e.g., Bank). The mix of TPC-C
profiles is the same as the default configuration, thus gen-
erating 92% of write transactions. We evaluated three sce-
narios, varying the total number of shared warehouses (the
most contented object in TPC-C) in the range of {1,19,100}.
With only one warehouse, all transactions conflict each other
(Figure 4(a)) thus SM-DER behaves better than other com-

petitors. In this case, the parallel execution of Archie is
not exploited because transactions are always waiting for
the previous speculative transaction to x-commit and then
start almost the entire speculative execution from scratch.
Increasing the number of nodes, HiperTM behaves better
than Archie because of minimal synchronization required
due to the single thread processing. However, when the
contention decreases (Figure 4(b)), Archie becomes better
than SM-DER by as much as 44%. Further improvements
can be seen in Figure 4(c) where contention is much lower
(96% of gain).

Archie is able to outperform SM-DER when 19 ware-
houses are deployed, because it bounds the maximum num-
ber of speculative transactions that can conflict each other
(i.e., MaxSpec). We used 12 as MaxSpec, thus the number
of possible transactions that can conflict with each other is
less than the total number of shared objects, thus reducing
the abort percentage from 98% (1 warehouse) to 36% (19
warehouses) (see also Figure 6). Performance of SM-DER
worsens from Figure 4(a) to Figure 4(b). Although it seems
counterintuitive, it is because, with more objects, the cost
of looking up a single object is less than with 19 objects.

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 19 100

%
 X

-c
o

m
m

it
te

d
 t

ra
n

s
a

c
ti
o

n
s

Number of warehouses

3 nodes

11 nodes

19 nodes

Figure 5: % of x-committed transactions before the
notification of the total order.

Figure 5 shows an interesting parameter that helps to un-
derstand the source of Archie’s gain: the percentage of
speculative transactions x-committed before their total or-
der is notified. It is clear from the plot that, due to the
high contention with only one warehouse, Archie cannot
exploit its parallelism thus almost all transactions x-commit
after their final delivery is issued. The trend changes by
increasing the number of warehouses. In the configuration
with 100 warehouses, the percentage of x-committed trans-
actions before their final delivery is in the range of 75%-95%.
The performance related to this data-point is shown in Fig-
ure 4(c) where Archie is indeed the best, and the gap with
respect to Archie-FD increased up to 41%.

Figure 6 reports the percentage of aborted transactions
of the only two competitors that can abort: PaxosSTM
and Archie. PaxosSTM invokes an abort when a trans-
action does not pass the certification phase, while Archie
aborts a transaction during the speculative execution. Re-
call that, in PaxosSTM, the abort notification is delivered to
the client, which has to re-execute the transaction and start
again a new global certification phase. On the other hand,
Archie’s abort is locally managed and the re-execution of
the speculative transaction does not involve any client op-
eration, thus saving time and network load. In this plot, we
vary the number of nodes in the system and, for each node,

 0
 20
 40
 60
 80

 100

3 7 15 19

%
 A

bo
rt

Nodes

PaxosSTM-1
ARCHIE-1

PaxosSTM-19

ARCHIE-19
PaxosSTM-100

ARCHIE-100

 0

 20

 40

 60

 80

 100

3 7 15 19

%
 A

bo
rt

Nodes

ARCHIE-100

 0
 20
 40
 60
 80

 100

3 7 15 19

%
 A

bo
rt

Nodes

PaxosSTM-1
ARCHIE-1

PaxosSTM-19

ARCHIE-19
PaxosSTM-100

ARCHIE-100

 0

 20

 40

 60

 80

 100

3 7 15 19

%
 A

bo
rt

Nodes

ARCHIE-19
PaxosSTM-100

ARCHIE-100

Figure 6: Abort % of PaxosSTM and Archie.

we show the observed abort percentage changing with the
number of warehouses as before. The write intensive work-
load generates a massive amount of aborted transactions in
PaxosSTM while in Archie, thanks to the speculative pro-
cessing of MaxSpec transactions at a time, the contention
does not increase significantly. The only case where Archie
reaches 98% is with only one shared warehouse.

6.3 Vacation Benchmark
The Vacation Benchmark is an application originally pro-

posed in the STAMP suite [4] for testing centralized synchro-
nization schemes and often adopted in distributed settings
(e.g., [26]). It reproduces the behavior of clients that submit
booking requests for vacation related items.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 100 250 500 750 1000

T
ra

n
s
a

c
ti
o

n
s
 p

e
r

s
e

c

Number of relations

SM-DER

HiperTM

PaxosSTM

ARCHIE-FD

ARCHIE

Figure 7: Throughput of Vacation benchmark.

Vacation generates longer transactions than the other con-
sidered benchmarks, thus also its total throughput is lower.
Figure 7 shows the results. In this experiment we varied the
total number of relations (object used for defining the con-
tention in the system) and we fixed the number of nodes to
11. Vacation’s clients do not perform any read-only transac-
tion, however those transactions can still occur as a result of
unsuccessful booking requests. However, the actual number
of read-only transactions counted is less than 3%, thus their
impact on performance is very limited.

With only 100 relations, SM-DER performs slightly bet-
ter than the others, while increasing objects, and thus de-
creasing contention, Archie is the best until 750 relations.
After that, the contention is so low that the certification-
based approach of PaxosSTM prevails. From the results it
is clear how competitors based on single thread processing
(SM-DER and HiperTM) suffer in low contention scenarios
because they cannot take advantage of any parallelism.

7. RELATED WORK
The original Paxos algorithm for establishing agreement

among nodes in the presence of failures was presented in [15],
and later optimized in several works, e.g., [21, 14, 3].

Optimistic delivery has been firstly presented in [12], and
later investigated in [18, 10, 17, 20]. The work in [18] ex-
ploits optimistic delivery and proposes an adaptive approach
to different networks models. The ordering protocol pro-
posed in [17] is the first that ensures no-reordering between
optimistic and final delivery in case of stable leader by rely-
ing on a network with a ring topology. Archie provides the
same property but with a generic network.

S-Paxos [3] introduced the idea of offloading the work for
creating batches from the leader and distributing it across
all nodes. In contrast, MiMoX is the first to exploit the
time needed for creating the batch for maximizing the delay
between the optimistic and final deliveries; and to take ad-
vantage of the process of breaking down a single batch into
multiple batches for ensuring a reliable optimistic delivery.

Transactional replication based on atomic primitives has
been widely studied in the last several years [12, 10, 13, 26,
22]. Some of them focus on partial replication [22], while
others target full replication [10, 13, 26]. Archie guarantees
higher performance than partial replication approaches by
avoiding remote communication in the transaction’s critical
path. In addition, partial replication protocols are affected
by application locality: when transactions are mostly ac-
cessing remote objects instead of local, the performance of
the local concurrency control becomes negligible when com-
pared with network delays. By exploiting full replication,
Archie’s behavior is independent of application locality.

Calvin [25] provides a transactional sequencing and repli-
cation layer over a partitioned storage system. Calvin de-
fines the order of transactions and enforces this order using
single-threaded lock acquisition over objects. Calvin waits
for the final order of requests before starting execution on
requests. In contrast, Archie uses optimistic delivery to ex-
ecute transactions in parallel with the coordination phase.

Eve [11] is a replicated transactional system that proposes
the execution-verify approach. Roughly, Eve inherits the
benefits from the DUR model, while falling back to the DER
approach when the result of the speculative execution is not
compliant with other remote executions. In this case, trans-
actions are re-executed with a predefined order and serially
committed. In high contention scenarios, most speculative
executions could be irreconcilable and Eve does not provide
s specific solution to preserve high performance. ParSpec
solves this issue and could be integrated with Eve for speed-
ing up the performance of this fall-back case.

Recently, a redesign of the state-machine approach, called
P-SMR, has been proposed in [16]. The motivation of both
Archie and P-SMR is similar: both want to increase the
parallelism in state-machine replication. According to [16],
Archie can be classified as sP-SMR (semi-parallel state-
machine replication) because the total order deliveries are
sequential, even though the processing of independent trans-
actions is concurrent. P-SMR provides its best performance
when clients submit independent transactions (or commands),
mostly read-only, while Archie is specifically designed for
write-intensive scenarios where conflicts are not rare but,
thanks to the MaxSpec, the contention is still kept limited.
In addition, P-SMR partitions objects, thus transactions
spanning on multiple partitions could hamper performance.

Archie does not suffer from those transactions because,
even though they could introduce a serialization point, it
is limited to only MaxSpec threads. On the other hand,
in P-SMR read-only transactions read “fresher” versions of
accessed data than in Archie because they are linearized
among other conflicting transactions. P-SMR, in order to
implement parallelism, involves the programmer in the def-
inition of conflicting transactions; Archie does not require
any application knowledge because ParSpec figures out con-
flicts at run time, keeping the programmer out of the loop.

Rex [9] is a fault-tolerant replication system where all
transactions are executed on a single node, thus retaining
the advantages of pure local execution, while traces are col-
lected reflecting the transaction’s execution order. Then,
Rex uses consensus to make traces stable across all replicas
for fault-tolerance (without requiring a total order).

8. CONCLUSION
Most replicated transactional systems based on total or-

der primitives suffer from the problem of single thread pro-
cessing but they still represents one of the best solutions
in scenarios in which majority of transactions access few
shared objects. Archie’s main goal is to alleviate the trans-
action’s critical path by eliminating non-trivial operations
performed after the notification of the final order. In fact, if
the sequencer node is stable in the system, Archie’s commit
procedure consists of just a timestamp increment. Results
confirmed that Archie outperformed competitors in write
intensive workloads with medium/high contention.

Acknowledgment
The authors thank Fernando Pedone and all anonymous re-
viewers for their important comments. This work is sup-
ported in part by US National Science Foundation under
grant CNS-1217385.

9. REFERENCES
[1] J. a. Barreto, A. Dragojevic, P. Ferreira, R. Filipe,

and R. Guerraoui. Unifying thread-level speculation
and transactional memory. In Middleware, pages
187–207, 2012.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[3] M. Biely, Z. Milosevic, N. Santos, and A. Schiper.
S-Paxos: Offloading the Leader for High Throughput
State Machine Replication. In SRDS, pages 111–120,
2012.

[4] C. Cao Minh, J. Chung, C. Kozyrakis, and
K. Olukotun. STAMP: Stanford transactional
applications for multi-processing. In IISWC, pages
35–46, Sept 2008.

[5] T. Council. TPC-C benchmark. 2010.

[6] R. Friedman and R. van Renesse. Packing messages as
a tool for boosting the performance of total ordering
protocols. In HPDC, pages 233–242, 1997.

[7] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd.
Probe: A thousand-node experimental cluster for
computer systems research. volume 38, June 2013.

[8] R. Guerraoui and A. Schiper. Genuine atomic
multicast in asynchronous distributed systems. Theor.
Comput. Sci., 254(1-2):297–316, 2001.

[9] Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and
L. Zhuang. Rex: replication at the speed of multi-core.
In EuroSys, pages 11:1–11:14, 2014.

[10] S. Hirve, R. Palmieri, and B. Ravindran. HiperTM:
High Performance, Fault-Tolerant Transactional
Memory. In ICDCN, pages 181–196, 2014.

[11] M. Kapritsos, Y. Wang, V. Quema, A. Clement,
Alvisi, and Dahlin. All about Eve: execute-verify
replication for multi-core servers. In OSDI, pages
237–250, 2012.

[12] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and
M. Wiesmann. Using optimistic atomic broadcast in
transaction processing systems. IEEE TKDE,
15(4):1018–1032, 2003.

[13] T. Kobus, M. Kokocinski, and P. T. Wojciechowski.
Hybrid replication: State-machine-based and
deferred-update replication schemes combined. In
ICDCS, pages 286–296, 2013.

[14] J. Kończak, N. Santos, T. Żurkowski, P. T.
Wojciechowski, and A. Schiper. JPaxos: State machine
replication based on the Paxos protocol. Technical
Report EPFL-REPORT-167765, Faculté Informatique
et Communications, EPFL, July 2011. 38pp.

[15] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., pages 133–169, 1998.

[16] P. J. Marandi, B. Bezerra, and F. Pedone. Rethinking
state-machine replication for parallelism. In ICDCS,
pages 368–377, 2014.

[17] P. J. Marandi, M. Primi, and F. Pedone. High
performance state-machine replication. In DSN, pages
454–465, 2011.

[18] R. Palmieri, F. Quaglia, and P. Romano. OSARE:
Opportunistic speculation in actively replicated
transactional systems. In SRDS, pages 59–64, 2011.

[19] S. Peluso, P. Romano, and F. Quaglia. SCORe: A
scalable one-copy serializable partial replication
protocol. In Middleware, pages 456–475, 2012.

[20] P. Romano, R. Palmieri, F. Quaglia, N. Carvalho, and
L. Rodrigues. An optimal speculative transactional
replication protocol. In ISPA, pages 449–457, 2010.

[21] N. Santos and A. Schiper. Tuning paxos for
high-throughput with batching and pipelining. In
ICDCN, pages 153–167, 2012.

[22] N. Schiper, P. Sutra, and F. Pedone. P-Store: Genuine
Partial Replication in WAN. In SRDS, pages 214–224,
2010.

[23] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Comput. Surv., 22(4):299–319, 1990.

[24] N. Shavit and D. Touitou. Software transactional
memory. In PODC, pages 204–213, 1995.

[25] A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, and D. J. Abadi. Calvin: Fast distributed
transactions for partitioned database systems. In
SIGMOD, pages 1–12, 2012.

[26] P. T. Wojciechowski, T. Kobus, and M. Kokocinski.
Model-driven comparison of state-machine-based and
deferred-update replication schemes. In SRDS, pages
101–110, 2012.

