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Abstract—This paper presents a method for establishing a
refinement relation between a binary and a high-level abstract
model. The abstract model is based on standard notions of control
flow, such as if-then-else statements, while loops and variable
scoping. Moreover, it contains high-level data structures such as
lists and records. This makes the abstract model amenable for
off-the-shelf verification techniques such as model checking or
interactive theorem proving. The refinement relation translates,
e.g., sets of memory locations to high-level datatypes, or pointer
arithmetic to standard HOL functions such as list operations
or record accessors. We show applicability of our approach
by verifying functions from a binary containing the Network
Security Services framework from Mozilla Firefox, running on
the x86-64 architecture. Our methodology is interactive. We show
that we are able to verify approximately 1000 lines of x86-64
machine code (corresponding to about 400 lines of source code)
in one person month.

I. INTRODUCTION

Formal verification provides a way to get trustworthy
correctness proofs of software. Typically, formal verification
revolves around source code. In contrast, this paper concerns
formal verification of binaries. Binary verification minimizes
the trusted computing base (TCB) of the verification effort [I].
It is, however, harder than traditional source code verification,
due to the large semantical gap between source and machine
code. Traditional methods of verification cannot directly be
applied. For example, a binary model typically has a large
and unstructured memory model, which creates a huge state
space making model checking unscalable. Similarly, applying
interactive theorem proving (ITP) to the small step semantics
of individual assembly instructions does not scale either, due
to the amount of intricate user interaction involved.

This paper provides a methodology for proving a refinement
relation between assembly in a binary and abstract code.
The abstract code consists of structured control flow, function
calls, scoping, local- and global variables, malloc/realloc, and
compound data structures such as lists and records. It does not
have a heap, pointers, or goto’s. As a result, the abstract code
can easily be verified by traditional methods of verification,
i.e., model checking or ITP with Hoare logic. The refinement
relation preserves safety- and liveness properties; it suffices to
verify the abstract code to verify the binary. An example is
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given in Figure [. The start is the original x86-64 assembly.
The final result is formally proven correct abstract code.

Binary verification has been an active research field for
years. The predominant techniques are decompilation-into-
logic (DiL) [2], [B], verified compilation [4], [8] and trans-
lation validation [B], [[], [R]. This paper can be seen as an
extension to DiL: the abstract code is on a higher level of ab-
straction than a binary embedded into HOL using DiL, making
it easier to verify. The main difference between our approach
and both verified compilation and translation validation is that
our approach requires few assumptions on the source language
and the compilation process. In principle, our approach can
be used in a setting where source code is unavailable, e.g.,
proprietary software, native code or components written in
assembly to begin with. Section IM will discuss this further.

We demonstrate applicability of the methodology by for-
mally verifying a part of the Network Security Services (NSS)
framework included in the Firefox browser". This framework
implements security protocols such as SSL and TLS. Dealing
with actual production code, instead of artificial examples,
requires dealing with binaries that are the result of a complex
build toolchain. The code contains advanced control-flow,
signed and unsigned arithmetic, various casting between types,
large and deeply nested structs, and function calls to both
functions inside the current binary as well as outside (system
calls and dynamically linked code). Arrays and structs are
translated to standard HOL datatypes (i.e., lists and records).
Pointer arithmetic is translated to HOL operations such as
taking the nth element of a list or dropping a number of
elements. We show that we are able to verify approximately
1000 lines of x86-64 machine code (corresponding to about
400 lines of source code) in one person month 2.

II. METHODOLOGY

Figure 0 presents — with an example — an overview of
the methodology used for obtaining formally proven correct
abstract code from a binary. Key is formulating a simulation
relation. A simulation relation maps concrete states to abstract

1 https://developer.mozilla.org/en- US/docs/Mozilla/Projects/NSS
2All materials available at: https://filebox.ece.vt.edu/~freek/reassembly |
verification-code_abstraction.zip
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526: push rbp 559:  jmp 57e
527:  mov rbp,rsp 55b: movzx eax,[rbp-0x9]
52a: sub rsp,0x20 55f:  lea rdx,[rax*4+0x0]
52e:  mov eax,edi 567: mov rax,[rbp-0x8]
530: mov [rbp-0x14],al 56b: add rax,rdx
533: movzx eax,[rbp-Ox14] | 56e: mov [rax],0x0
537: shl rax,0x2 574: movzx eax,[rbp-0x9]
53b:  mov rdi,rax 578: add eax,0x1
53e: call malloc 57b:  mov [rbp-0x9],al
543: mov [rbp-0x8],rax 57e: movzx eax,[rbp-0x9]
547:  cmp [rbp-0x8],0x0 | 582: cmp al,[rbp-0x14]
54c:  jne 555 585: jb 55b
S54e:  mov eax,0x0 587: mov rax,[rbp-0x8]
553:  jmp 58b 58b: leave
555: mov [rbp-0x9],0x0 | 58c: ret
(a) Assembly

55b->57b:

[ (RSPO - 17),1] :=
[[(RSPO - 16),8]

[(RSPO - 17),1]
+ ucast ([ (RSPO - 17),11)

(b) CFG

+ 1
* 4,4]1 := 0

local variable ¢
address of array x with 4-byte elements
return variable ret

587->587:
RAX := [(RSPO - 16),8]
(d) Symbolic Execution (two blocks shown)
526->53b;
53e->53e; [(RSPO - 17),1] +—
543->54c; [ (RSPO - 16),8] +—
if ZF then RAX —>
54e->553 (e) Simulation Relation
else
555->559; build_array(n) =
while True do 1: xo L :=malloc(n *4);
57e->585; 2: if Ao -2(Lo) = None then
if CF then 3: Aoo’ - ret(C o’) = None
55b->57b 4: else
else 3 Ao’ - i(Lo') = 0;
break 6: while Ao i(Lo) <n do
fi 7: Xoo’ -i(Lo')=i(Lo)+ 1
od; 8: ANz(Lo')=x(Lo)[i(Lo) =0
587->587 9: od;
fi; 10: Aoa’ -ret(Co’) = x(L o)
58b->58c¢c 11: fi

(c) Control Flow (f) Abstract Code

Fig. 1. Example for initializing array

states. A concrete state is the state of the binary, consisting of
registers, flags, and memory. An abstract state is defined by
the user: it solely contains variables (i.e., no registers, flags or
memory).

We start with assembly (see Figure 1a), obtained by running
off-the-shelf disassembly tools (in our case objdump). We
use off-the-shelf tools [U] to extract the control flow graph
(CFG) from the binary (Figure 1b). The CFG has as nodes
addresses that mark the begin and end of a basic block. From
the CFG, the control flow (e.g., while- and if-statements) is
inferred (Figure 1c). For each basic block, we run symbolic

execution (Figure 1d): the instructions of a basic block are
run on some universally quantified, concrete — but completely
unspecified — state s. The result is a new concrete state s’, with
register, flag, and memory updates wrt. s. In the example, for
block [55b->57b] the new concrete state s’ consists of two
updates: the 1-byte value at address RSP0O—-17 is incremented,
and 0 is written to 4 bytes at a certain memory location.

Figure le shows the simulation relation. This relation needs
to be defined manually. In this example, it maps the 1-byte
of memory at location RSP0-17 in the concrete world to
local variable ¢ in the abstract world. It maps the 8-byte



memory region at address RSPO—-16 to an array-pointer, and
the register RAX to the return variable ret.

Finally, the abstract code for the binary as a whole is
the result of combining the inferred control flow and the
abstract code per block (Figure 1f). For each basic block, the
simulation relation maps the concrete state s’ to an abstract
state ¢’ (we will use resp. s and o to denote concrete and
abstract states). For example, for basic block [55b->57b],
applying the simulation relation to s’ produces an abstract
state ¢’ in which local variable i has been incremented and
one element of array x has been assigned 0 (see lines 7 and
8 of Figure If).

Symbolic execution is done with a custom proof method
built in Isabelle / HOL [I0] and is formally proven correct wrt.
a given machine model. The control flow is inferred based on
informal tools and manual inspection; the result is formally
proven in Isabelle/HOL to be a simulation of the original
binary. All rewrite and inference rules have been formally
proven correct, except for our treatment of malloc. The TCB of
our approach consists solely of: 1.) the machine model, 2.) the
embedding of the binary in Isabelle/HOL, 3.) our semantics
given to malloc.

Some limitations include: we do not support concurrent
code, self-modifying code, or indirect branching. We do not
prove termination. We have implemented the approach for
x86-64 specifically; implementing it for other architectures is
mostly a matter of engineering.

III. APPLICATIONS

As a case study, we have selected a number of functions
from the Firefox NSS library. Moreover, we have applied our
methodology to several standard examples, such as the Linux
wc program, functions such strncmp and memcpy, and to
a binary containing functions pertaining a stack data structure
written in CH. The NSS case study was selected based on
the following criteria. First, complexity: the functions contain
advanced flow control, do pointer arithmetic, contain arrays,
deeply nested records, linked lists, malloc and realloc, etc.
Second, relevance: the functions concern the SSL functionality
of Firefox and are security-critical.

Table 0 provides an overview. We have used Isabelle/HOL
and made heavy use of 1.) its word library [IT], 2.) Eisbach,
its library for defining proof methods [I2], 3.) Sledgehammer,
its tool for proof automation [[3], and 4.) its integrated SMT
solvers Z3 [[4] and CVC4 [I5]. The second column provides
the number of assembly instructions in the binary. For each
function, we have inferred abstract code, and established a
formal simulation relation between the binary and that abstract
code. The abstract code is then translated to PROMELA and
verified using SPIN 6.4.8. In SPIN, assertions are added to
verify basic sanity conditions, such as no null-pointer derefer-
ences or buffer overflow. Column 3 shows the fully explored
state space (states / transitions). We exposed some simple
undocumented preconditions concerning integer parameters
that should be non-zero. Since the functions do not have a
formal specification, it is not possible to determine whether

these are actually indicators of bugs. The functions where
Column 3 is empty are not verified in isolation, since they
do not do anything interesting on their own. Instead, they
are all called by function sslBuffer_AppendVariable, so this
function was verified. The state space of this function could
not be explored fully. We have modified some of its constants,
e.g., decreasing a maximum list size, to allow a state space
exploration of this function and all callees.

We consider a code snippet from the NSS library as ex-
ample. It demonstrates how structs are dealt with and how
pointer arithmetic is abstracted to list operations. Consider
the C code below (the code is shown just for purpose of
presentation, it was not used during verification). The code
uses two C structs. An ss1ReadBuffer consists of a pointer
buf of type PRUint 8« (platform-independent 8-bit integer)
and a length len. Struct ss1Reader is defined by an offset
offset and an sslReadBuffer ss1_buf. The code copies
the offsetted pointer of the given reader to out.

#define SSL_READER_CURRENT (r)
((r)—-—>buf.buf + (r)->offset)

SECStatus sslRead_Read
(sslReader #*reader, ...,
sslReadBuffer =xout) {

out—->len =
out->buf

count;
SSL_READER_CURRENT (reader) ;

The abstract code defines two records that match the structs.
For example, the ssIReadBuffer record contains a field buf of
type “8 word list option”. The state of the caller must include
a reader and an out: they are call-by-reference variables.
Code abstraction provides the following code (only a part is
shown):

len(out(Co’)) = count
A buf(out(Co’)) =
drop(offset(reader(Co)), buf(ssl_buf(reader(Co))))

In words, copying an offsetted pointer is abstracted to dropping
a certain amount of elements from a list. In similar fashion,
we have proved a simulation between various pointer-based
operations in assembly and abstract list operations. For exam-
ple, for one of the NSS functions we proved an assembly
implementation of a linked list of structs equivalent to a
recursive HOL data structure.

IV. RELATED WORK

This work is inspired by and builds upon two major results
in binary verification: decompilation-into-logic [2], [3] and
translation validation [6], [Z], [16], [K].

Decompilation-into-Logic (DiL) reads machine code and
embeds it into HOL. Blocks are given pre- and postconditions,
and loops are translated to recursive functions. A certificate
theorem relates the decompiled function to the machine code.



Name NoA  State Space Name NoA  State Space
*_Append 47 13K / 13K *_AppendNumber 48 27K / 29K
*_AppendVariable 85 Inconclusive *_Grow 70 135/ 139
*_InsertLength 49 1.5M / 1.6M *_read 63 1.3M / 1.4AM
*_ReadNumber 83 124K / 132K *_ReadVariable 53 1.5M / 1.6M
*_Skip 43 92 /95 wekk 75 1.5M / 1.6M
*_Clear 36 45745 ok 154
**_Number 37 **_Variable 36
sslServerCert 65 SSL_EncodeUintX 43

TABLE I

*=SSLBUFFER,**=SSL3_APPENDHANDSHAKE, ***=SSL._ GETCERTIFICATEREQUESTCAS

It provides preconditions such that the machine code exe-
cutes correctly (no unspecified behavior). DiLL provides more
automation than our interactive methodology and has been
applied to several architectures. The main difference between
this work and DiL is that our abstract code is on a higher
level of abstraction. DiL embeds assembly into HOL, this
work lifts assembly operations (see Figure ). For example, we
translate malloced memory regions to HOL lists, and memory
operations (i.e., pointer arithmetic) to list operations. The
memory model of the abstract code solely consists of variables.
As a result, our abstract code is easily verifiable using off-the-
shelf verification techniques. Moreover, we support advanced
control flow not supported by DiL.

Translation validation is a technique which considers an
artifact written in some source language, and its compiled
version. It is then verified whether the semantics of the
compiled artifact relate to the semantics of the source. Sewell
et al. successfully applied translation validation to verify the
binary of seL4 [R]. They prove a refinement relation between
compiled ARM machine code and C source code. This method
shows excellent scalability. Translation validation inherently
requires source code. This paper can be seen as a step towards
translation validation without source code, i.e., inference val-
idation. The cost of the absence of source code is that more
manual interaction is required in defining a simulation relation,
and running symbolic execution to create abstract code.

Significant results have been achieved in verified compila-
tion [['7], [IX], [T9], [20]. The CompCert project[#], [2T], [22],
[23] provides verified compilation for C99 with optimizations.
The tool-chain CakeML provides proof synthesis and in-logic
execution of ML code [8]. Verified compilation is top-down,
whereas our approach can be considered bottom-up.

Finally, various studies apply ITP to verify machine code
directly. Myreen et al. present Hoare logic for machine code
[24], [25]. Similar to this work, their logic deals with com-
plexities typical for binaries, e.g., stack frames, heap and the
binary are within the same memory space. Goel et al. use the
ACL2 theorem prover to verify properties over x86 machine
code [26]. They verify, among others, a simplified version
of the program wc. Our treatment of basic blocks is similar
to them: using symbolic execution and automated methods
such as SAT solvers, basic blocks can be dealt with largely
automatically. Matthews et. al. use ACL2 combined with a
simple machine model called TINY as well as Java bitcode to
apply VCG to machine code [77]. Both of these languages

feature a stack rather than registers such as x86, ARM,
and most other mainstream ISAs do. Generally, applying
ITP directly to machine code suffers from scalability due
to the amount of user interaction required. Studies typically
either assume a simplified machine model, or modify code to
simplify proofs. In contrast, we target unmodified production
code of the Firefox browser running on x86-64.

V. CONCLUSION

This paper presents a methodology for establishing a re-
finement relation between assembly in a binary and abstract
code. We show that the abstract code can easily be verified by
off-the-shelf verification techniques. The abstract code has a
relatively small state space and closely matches PROMELA, the
verification language of the model checker SPIN. This allows
explicit-state model checking to verify safety- and liveness
properties. Moreover, within the same formal environment as
the code abstraction, Hoare logic can be used to interactively
prove functional properties over binaries.

The methodology is applied to programs compiled for
the x86-64 architecture. We consider programs with non-tail-
recursive functions, various types of loops, function calls to
both in- and outside the binary, type casting, signed and un-
signed arithmetic, mallocs / reallocs, arrays, large and deeply
nested structs, and linked lists. For each function, we derive
abstract code where pointer arithmetic concerning arrays is
translated to standard HOL list operations, and pointer arith-
metic concerning structs is translated to HOL records. When
applied to production code of the Firefox Mozilla browser, we
were able to verify approximately 1.000 lines of machine code
in one person month.

In the near future we aim to achieve more automation.
This requires the development of proof methods that further
automate symbolic execution, flow control inference, and
inference of abstract operations out of concrete state changes.
The most intricate part — from a user perspective — is defining
the simulation relation. Further research can focus on deciding
a simulation relation automatically. Ultimately, we aim to
automatically infer formal abstract specifications from black-
box binaries.
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