
reInstruct: Toward OS-aware CPU microcode
reprogramming

Yubo Wang
The Pennsylvania State University

University Park, PA, USA
yubow@psu.edu

Ruslan Nikolaev
The Pennsylvania State University

University Park, PA, USA
rnikola@psu.edu

Binoy Ravindran
Virginia Tech

Blacksburg, VA, USA
binoy@vt.edu

Abstract
Historically, the microcode layer has been a proprietary tech-
nology which is tightly controlled by the CPU vendors. The
microcode layer enables a great flexibility for translating ISA-
visible instructions into internal hardware micro-operations.
In x86-64, many system-level instructions are microcoded,
which enables a great untapped opportunity for OS develop-
ers, who want to experiment with future ISA extensions.
Recent research work has identified hidden CPU instruc-

tions, which are enabled via a firmware exploit, and also
partially reverse-engineered and decrypted Intel Goldmont
microcode. We go a step further and design an experimental
framework for Linux, which allows to transparently mod-
ify existing microcoded instructions directly from an OS at
runtime. We show how microcode alterations can be used
to defeat normal root-privilege isolation in Linux almost
without any trace. We also show our new approach which re-
lies on ISA modification via microcode patching to improve
performance of commonly-used lightweight Linux system
calls. Our approach, effectively, adjusts the CPU ISA to better
serve a specific OS kernel and applications, an idea which
has been out of reach for commodity hardware previously.

CCS Concepts: • Software and its engineering → Op-
erating systems; • Security and privacy → Operating
systems security.

Keywords: Red Unlock, microcode, Goldmont, Linux
ACM Reference Format:
YuboWang, Ruslan Nikolaev, and Binoy Ravindran. 2025. reInstruct:
Toward OS-aware CPUmicrocode reprogramming. In 3rdWorkshop
on Kernel Isolation, Safety and Verification (KISV ’25), October 13–16,
2025, Seoul, Republic of Korea. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3765889.3767043

1 Introduction
Modern CPUs implement complex instructions, e.g., CPUID,
SYSCALL, and RDRAND, through an internal control layer called

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
KISV ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2202-8/25/10
https://doi.org/10.1145/3765889.3767043

microcode. Rather than executing such instructions as a sin-
gle atomic hardware operation, the CPU dispatches them
into lower-level micro-operations (𝜇ops) executed by a per-
core microcode engine. Intel x86 has more than 2,700 distinct
𝜇ops [12]; many simple instructions map to one 𝜇op, while
complex ones decompose into 50+ 𝜇ops [6, 11].
Microcode is crucial for architectural features, hardware

bug fixes [2, 9], and platform-specific extensions. Yet it re-
mains proprietary: engines are undocumented, updates are
cryptographically signed [17], and delivery is restricted to
official BIOS/OS channels [10]. Consequently, (1) system
software cannot fully observe or instrument instruction be-
havior, and (2) researchers cannot explore alternative designs,
optimizations, or vulnerabilities at the instruction level.

This work challenges this traditional assumption by show-
ing that custom, self-authored microcode patches can run
on a standard Linux system without vendor blessing. We
present a Linux-based framework that dynamically patches
CPU microcode. Using RDRAND as a case study, we present:

1. Returning constant values instead of random numbers,
2. Reading arbitrary memory while bypassing privilege

checks,
3. Accessing kernel data structures, e.g., task_struct

list,
4. Stealing a sudo password by reading its input buffer

from another process in user space.

Beyond these demonstrations, we also show practical ben-
efits of OS-driven customization. Our framework replaces
lightweight system calls such as getcpu(2), providing a fast
path at the microcode level.
Overall, this prototype opens new opportunities for OS-

based exploration of microcode behavior, performance op-
timizations, and instruction-level control without vendor
blessing.

2 Background
2.1 Intel Microcode
Intel Goldmont (GLM) CPUs implement complex instruc-
tions using internal microcode sequences stored in hardware
arrays [3, 5]. By default, microcode resides in a dedicated
read-only memory (MSROM), with each instruction mapped
to a fixed entry point. As we show in Figure 1, in GLM,
instructions are organized into triads of three 𝜇ops plus a

https://orcid.org/0009-0001-0728-2106
https://orcid.org/0000-0002-1699-0593
https://orcid.org/0000-0002-8663-739X
https://doi.org/10.1145/3765889.3767043
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3765889.3767043

KISV ’25, October 13–16, 2025, Seoul, Republic of Korea Yubo Wang, Ruslan Nikolaev, and Binoy Ravindran

...

MSROM

MSRAM

Match Registers

SEQW
ROM

SEQW
RAM

...
rdrand
...

Instruction

syscall

Figure 1.Microcode patching on Intel Goldmont CPUs.

sequence word (SEQW), which controls execution and can
act as a synchronization primitive (e.g., LFENCE). Goldmont
CPUs support up to 7,936 triads in MSROM [3].

A special writable area, MSRAM, enables microcode patch-
ing. GLM provides 128 triads in MSRAM, which can override
MSROM microcode. Execution is redirected through match
registers: if a microcode address in MSROM matches a regis-
ter, control jumps to the corresponding MSRAM entry. Up
to 32 hooks are available [3].
This design gives vendors fine-grained control over in-

struction semantics and post-silicon fixes, but not to sys-
tem designers or researchers. Recent work has attempted
to reverse-engineer and repurpose microcode [3, 5, 13, 14],
challenging its presumed immutability for ordinary users.

2.2 INTEL-SA-00086
INTEL-SA-00086 is a buffer-overflow vulnerability in Intel
ME, TXE, and SPS, affecting a wide range of processors
(Atom, Celeron, Pentium, Core, Xeon, etc.) [8]. It enables
privilege escalation and was exploited to unlock CPUs. Be-
cause ME/TXE/SPS run independently of the main CPU and
OS, such escalation is nearly impossible to trace. Further-
more, the vulnerability can be exploited long after Intel has
fixed it by simply downgrading the corresponding ME, TXE,
or SPS version in the BIOS image, as long as the older version
remains compatible with the processor.

Our unlocking method directly builds on INTEL-SA-00086
to enable access to MSRAM and match/patch structures.

2.3 Unlocking the CPU
TheCHIP-RED-PILL project [5] leveraged INTEL-SA-00086
to expose Intel microcode internals. By reverse-engineering
the PCH firmware, the authors discovered a hidden red un-
lock mechanism to enable undocumented debug interfaces
on Atom and Celeron CPUs. They focused on Goldmont and
Goldmont Plus, though the method can apply more broadly.
Unlocking grants access to MSROM, MSRAM, and CRBUS.
Their tools support (1) dumping microcode arrays, (2)

observing instruction entry points and 𝜇op sequences, (3)

writing to MSRAM and match/patch tables, and (4) analyzing
microcode payloads. This was the first demonstration that
MSROM could be patched and arbitrary 𝜇ops injected into
MSRAM without vendor approval. However, the approach
lacked reliability in standard environments, provided no OS
integration, required boot-time or JTAG/SPI setups, and did
not support real software workloads.

2.4 CustomProcessingUnit
Borrello et al. introduced CustomProcessingUnit [3], a UEFI-
based framework for GLM microcode patching and tracing.
The authors extracted update routines, built a microcode
assembler/decompiler, and designed a domain-specific lan-
guage (DSL) for writing custom payloads. Demonstrations
included replacing INT1, INT3, and RDRAND to return fixed
values or access sensitive memory regions (e.g., SMRAM).

However, CustomProcessingUnit is not designed for
commodity OSs and has severe limitations:

• Runs only in the UEFI shell, so patches vanish after
OS boot,

• Lacks multi-core support in SMP systems,
• Cannot produce Linux-visible behaviors or evaluate
realistic use cases. If ported to Linux, patches would
reset within ∼10ms due to CPU sleep states.

These limitations motivate our work: bringing microcode
patching into standard Linux.

2.5 Unlocking Issues
We found that the unlocking methods from Sections 2.3
and 2.4 fail on newer Goldmont boards. For example, we
had to patch the BIOS SMIP area to avoid verification errors
when incorporating the red-unlock exploit.

2.6 RDRAND Random Generator
The RDRAND instruction is widely used to generate random
numbers using hardware CPU capabilities. In many of our
microcode experiments, we piggyback on this instruction to
avoid side effects due to CPU microcode changes. This in-
struction is not critical to the Linux functionality and the ker-
nel can avoid using it altogether by specifying the nordrand
parameter. Furthermore, the community does not fully trust
RDRAND for security reasons, so it is often avoided by main-
stream software, e.g., OpenSSL for Debian disables it [4].

3 Implementation
3.1 BIOS Modification
We modify the motherboard’s underlying BIOS image and
integrate an exploit similar to the previous discussion in [5].
Unlike the previous researchers, we use a different board
with a newer version of Intel TXE, which we first downgrade
(from v3.1 to v3.0) to enable the INTEL-SA-00086 vulnerabil-
ity. We then integrate an exploit via the debug trace file into

reInstruct: Toward OS-aware CPU microcode reprogramming KISV ’25, October 13–16, 2025, Seoul, Republic of Korea

0x0

0x7BFF
0x7C00

0x7DFF

MSROM

MSRAM

0x428

0x7D00

RDRAND

0x7D000x428

Match & Patch

Entry 0
Entry 1

...
Entry 31

Figure 2. Microcode patch redirection for the RDRAND in-
struction. The original entry point is 0x428 in MSROM. We
place the patch at MSRAM address 0x7d00 and register a
Match-and-Patch entry mapping 0x428 to 0x7d00. Gold-
mont provides 32 such entries; in our experiments we pre-
cleared MSRAM and the match table, so any slot could be
used. For simplicity, we chose the first entry. When RDRAND
is executed, the CPU checks the table, detects the override,
and executes the patched 𝜇ops from MSRAM instead of the
original microcode.

Linux KernelUser-space
program

CPU 0

CPU 1

CPU n

Other LKMs

UCODE

ioctl

udbgwr

Microcode
Patch

Invoke

...

Figure 3. Overall kernel module workflow for dynamic mi-
crocode patching. A user-space program invokes ioctl() to
submit a binary patch blob to our kernel module (UCODE).
The module uses the undocumented Intel instruction UD-
BGWR (microcode debug write) to write the patch into
MSRAM and update match-and-patch entries. The patch
is then applied across all logical CPU cores.

the BIOS image, and additionally patch the SMIP area of the
BIOS (with the original data) to bypass motherboard checks.

3.2 Patching Mechanism
In our design, we completely avoid the UEFI prompt and
let the Linux kernel boot normally. We currently disable
CPU power-savings features, as they may interfere and reset
microcode-related modifications. (This can be revisited in
the future by adding a recovery procedure when switching
from a lower-power mode.)
To enable microcode patching in a standard Linux en-

vironment, we implemented a special kernel module. The
kernel module writes the microcode patch into MSRAM (the
base address is 0x7c00). Then it modifies the corresponding
match entry, which consists of:

• The original microcode entry point to match (e.g.,
0x428 for RDRAND),

• An offset into MSRAM,
• An enable bit and control flags.

When a microcode instruction is triggered, as shown in
Figure 2, the sequencer first checks the match table. If a
match exists, execution is redirected to MSRAM instead of
MSROM, effectively replacing the instruction’s behavior.

This patching architecture is undocumented but has been
successfully reverse-engineered in prior work. Our imple-
mentation reuses this mechanism to override specific instruc-
tions such as RDRAND with custom 𝜇ops.

3.3 Kernel Module Design
For convenience, we developed a mechanism which allows
dynamic patch injection directly from user space, as shown
in Figure 3. There are several challenges that we address in
our kernel module:

• Applying microcode patches across all logical CPU
cores (SMP support),

• Enabling runtime patching without reboot,
• Providing a clean user interface via ioctl.

Device Interface and Patch Application. The kernel
module registers a character device node (e.g., /dev/ucode)
and exposes a custom ioctl command that accepts a binary
patch blob containing:

• Microcode 𝜇ops implementing the desired behavior
(e.g., RAX = ADD(RBX, 0x1)),

• Patch metadata such as the match address, MSRAM
offset, and patch length.

When invoked, the module iterates over all online CPU
cores, writes the patch into MSRAM via UDBGWR, and installs
a match-and-patch entry to override the target instruction.
(UDBGWR is an undocumented Intel instruction capable of
modifying MSRAM and match-and-patch structures.) Once
installed, the new microcode behavior is immediately active
on all cores.

3.4 User-Space Interface
From the user’s perspective, interaction with our system
reduces to three steps:

1. Construct the patch blob,
2. Open /dev/ucode,
3. Invoke ioctl() to submit this patch blob:

ioctl(fd, UCODE_PATCH_LOAD, &buffer)

All device nodes share a common ioctl handler, which
dispatches the request to our module when the com-
mand is UCODE_PATCH_LOAD.

Once loaded, the patched instruction (e.g., RDRAND) can be
called directly from user programs via inline assembly.

3.5 Security Considerations
Our current prototype does not implement any security con-
trols; the /dev/ucode interface is left open to demonstrate
feasibility. In a realistic deployment, however, strong safe-
guards would be essential. We envision restricting access

KISV ’25, October 13–16, 2025, Seoul, Republic of Korea Yubo Wang, Ruslan Nikolaev, and Binoy Ravindran

 ioctl(fd,
 UCODE_APPLY_PATCH,
 &rdrand_patch)

fd = open("/dev/ucode")

User-space Program

rax = ZEROEXT(0x1137)

Microcode Patch

 struct ucode_patch
 rdrand_patch = {
 metadata,
 binary uops
 }

Compile

on_each_cpu(apply_patch,
&rdrand_patch)

ioctl handler triggered
in our kernel module

 asm ("rdrand %%rax"
 : "=a"(res))

 Value observed:
 res = 0x1137

Figure 4. End-to-end patching flow for replacing RDRAND
with a constant-return instruction. The patch is defined in a
microcode DSL, compiled into a binary structure, and loaded
via a user-space ioctl interface. The kernel module installs
the patch on all cores and configures redirection logic. After
patching, the user program executes RDRAND and receives
the constant value 0x1137.

so that only user-specified, trusted applications can install
and use customized microcode. To further isolate workloads,
microcode state could be treated as part of the thread con-
text, with patches switched on context switches. This would
ensure that custom instructions remain visible only to the
application that installed them, preventing accidental or ma-
licious invocation by other processes.

Modifying CPU microcode via a /dev/ucode interface op-
erates under the same assumptions as accessing /dev/kmem.
Just like /dev/kmem, which can modify kernel memory, mi-
crocode updates assume the same level of trust in the caller
and bypass standard user-space protections. Therefore, from
a security and privilege standpoint, we do not fundamentally
change anything.

4 Evaluation
We evaluated our framework on a Goldmont CPU board
(Intel Celeron N3350) running Debian 12 with a vanilla Linux
kernel. Each demo highlights a distinct capability of our
patched RDRAND instruction, including functional overrides,
security bypasses, and performance optimizations. Although
we tested other instructions, we use RDRAND throughout for
consistency.

Patches were loaded via our kernel module (Section 3.3) us-
ing a user-space ioctl interface, and test programs invoked
the modified instruction through inline assembly.

4.1 Replacing RDRAND with a Constant Value
To verify correctness, we first patched RDRAND to return a
fixed constant value. This validates that microcode modi-
fications are correctly loaded, triggered, and executed on
hardware.

Patch Logic. The patch has one micro-op (𝜇op) that zero-
extends a 64-bit immediate value 0x1137 into a destination
register (rax). In the GLM domain-specific language, this is:

rax := ZEROEXT(0x1137)

Execution Flow. Figure 4 shows the full patching pipeline.
The patch is assembled into a binary format with meta-
data (hook address, patch address, etc.) and encoded 𝜇ops,
wrapped in a C structure, and passed to user space. The user
program opens the character device exposed by the kernel
module and installs the patch via an ioctl call. The kernel
module writes it to MSRAM and updates the Match-and-
Patch table, redirecting RDRAND from address 0x428 to the
patch at 0x7d00. After patching, executing RDRAND in user
space returns 0x1137, confirming successful patching.

4.2 Arbitrary Memory Read
In this experiment, we show that a modified RDRAND in-

struction can act as a generic memory read primitive, capable
of accessing any virtual address without triggering protec-
tion mechanisms, i.e., accessing kernel-space addresses from
user space. The patch logic isminimal: we replace the original
microcode with a single load operation that reads memory
from the address in rax and returns the value in rbx:

rbx := LDZX(rax)

This instruction behaves as an unchecked dereference:
it does not perform any permission checks and succeeds
even when accessing kernel memory. (Due to the in-kernel
1:1 physical map, we can even access other processes.) The
patching and installation process is identical to Figure 4.

Once the patch is installed, a user-space program passes a
desired address via rax and invokes RDRAND to retrieve the
64-bit value stored at that address.

4.2.1 Reading Kernel task_struct List. As a first de-
monstration, we use the patched RDRAND to traverse the ker-
nel’s task_struct list. Starting from the global init_task
symbol, we follow the doubly-linked tasks list to enumerate
all running processes.

For each task, we use RDRAND to retrieve in-kernel memory
fields such as the process ID (PID) and the comm string. Since
the patched RDRAND bypasses all privilege checks, this works
from user space without requiring any system calls, kernel
modules, or debugging interfaces.

The output shown in Figure 5 confirms that our program
can accurately identify and print kernel process metadata
entirely via microcode-based memory reads. This experi-
ment demonstrates that a single 𝜇op (rbx := LDZX(rax)) is
sufficient to leak arbitrary kernel structures from user space.

4.2.2 Stealing sudo Password Input. We then show a
more impactful demonstration: stealing a password typed
into a sudo prompt from another user. In our test scenario, an

reInstruct: Toward OS-aware CPU microcode reprogramming KISV ’25, October 13–16, 2025, Seoul, Republic of Korea

Figure 5. Reading the kernel’s task_struct list using
patched RDRAND. The user-space program starts from
init_task, follows the tasks list, and prints each task’s
PID and comm field, similar to the output of ps.

Figure 6. Real-time password extraction via patched RDRAND.
Left: the attack program, running as labuser, identi-
fies the sudo process and reads the cleartext password
thisisapassword from its input buffer. Right: the victim
user testuser enters the password into a sudo prompt,
which does not echo input.

unprivileged user-space program (run as labuser)1 contin-
uously scans the task_struct list for any process that uses
sudo. Once found, it uses patched RDRAND to probe memory
regions of the target process and locate its input buffer.

As shown in Figure 6, this technique allows us to extract
the cleartext password (thisisapassword) entered by an-
other user (testuser) in real time, despite having no privi-
leges or direct interaction.

This highlights a realistic attack scenario: in shared envi-
ronments such as university labs or research clusters, users
often have sudo rights on their own machines, but not on
others. If an attacker with local microcode patching capabil-
ity can extract the password of an IT administrator during
a maintenance session, they may gain access to additional
systems where that password is valid.

The most concerning aspect of this attack is its invisibility:
since thememory read is performed entirely at themicrocode
level, the operating system has no way to detect or log it.
From the OS’s perspective, the attack program is simply
executing the RDRAND instruction multiple times—an entirely
legal and unprivileged action. No system calls, page faults, or
kernel transitions occur during the attack, leaving no trace
in audit logs, syscall monitors, or traditional detection tools.

1Wedo not even require root privileges for this program. Although to insert a
kernel module, we typically need corresponding permissions on this specific
machine, we can retrieve password for any admin user who potentially has
access to a variety of other machines with the same password.

This illustrates a new class of stealthy microarchitectural
attacks, where malicious behavior is implemented not in
software, but in hardware-level control logic that the OS
cannot observe or defend against.

4.3 Replacing getcpu() with Microcode for
Performance Optimization

We also explore the potential for OS-aware optimizations
at the microcode level. One specific area of optimization is
replacing expensive OS system calls with customized mi-
crocoded calls, which directly access kernel memory. A fair
amount of Linux system calls can be repeatedly used by var-
ious programs and can potentially be replaced: getcpu(2),
getuid(2), getpid(2), getppid(2), uname(2), getcwd(2),
getrlimit(2), sysconf(2), etc. Many of these calls are un-
cachable in user space since their output depends on the
current kernel state or other system calls, e.g., setuid(2).
In our experiment, we reimplement the functionality of

the getcpu(2) system call entirely at the microcode level.

Design. The getcpu(2) syscall returns the current logical
CPU core ID [15]. To emulate this functionality, we install
different microcode patches on each core. Each patch re-
places RDRAND with a constant-return 𝜇op, as in Section 4.1,
but the returned constant is set to that core’s ID:

• On CPU 0: rax := ZEROEXT(0x0)
• On CPU 1: rax := ZEROEXT(0x1)
• On CPU 2: rax := ZEROEXT(0x2), etc.

Usage. After patching, a user-space program can retrieve
the current core ID by simply executing the RDRAND instruc-
tion. No system call, no kernel transition, and no vDSO
lookup is required. This acts as a direct, one-instruction
replacement for getcpu().

Performance. To measure the latency of each approach,
we run the corresponding code in a tight loop with many
iterations and compute the average cycle count using the
RDTSC instruction. Our results are summarized below:

• Traditional getcpu() syscall: 511 cycles
• Microcode-based getcpu(): 43 cycles

This demonstrates that microcode can be used not only
to override instruction semantics, but also to significantly
accelerate performance-critical kernel functionality. In our
experiments, the microcode-based version is 12× faster than
the traditional syscall path. In applications with frequent per-
core optimizations (e.g., schedulers, packet routing, NUMA-
aware tasks), such microcode-based fast paths may offer
significant benefits.

Discussion. While this use case is relatively simple, it
points to a broader possibility: lightweight syscall offload-
ing into the microcode layer. Unlike traditional syscalls, mi-
crocode execution avoids mode switches and stack changes,
offering a path toward OS-aware optimization.

KISV ’25, October 13–16, 2025, Seoul, Republic of Korea Yubo Wang, Ruslan Nikolaev, and Binoy Ravindran

Although the measured latency of 43 cycles may appear
high compared to the native RDRAND instruction (about 9
cycles), it still represents a 12× speedup over the traditional
getcpu() syscall path. We suspect that this overhead stems
from inherent microcode redirection costs and MSRAM ac-
cess latency. Further investigation and optimization are part
of our future work, with the goal of approaching the cost of
native microcode execution.

5 Future Work
Looking ahead, we see several directions to extend this work.

5.1 Fine-Grained Microcode Customization
We plan to support more flexible deployment strategies:

• Per-core patching: By applying different microcode ver-
sions to different cores, we can optimize low-level
primitives such as getcpu(2) for local contexts, im-
proving multi-core efficiency,

• Per-thread patching: This enables different applications
(or even different threads within the same application)
to use microcode tailored to their specific workloads.
For instance, one thread may benefit from a patched
floating-point operator while another prefers a custom
memory access pattern,

• Per-phase patch switching: Applications with distinct
execution phases (e.g., training vs. inference, initial-
ization vs. steady-state, mapping vs. reducing) could
dynamically switch between optimizedmicrocode vari-
ants suitable for each phase.

5.2 Improved Tooling and Framework Support
Our prototype is functional but low-level. We aim to de-
velop a robust toolchain with better debugging, compatibility
checks, and a DSL for patch specification. MSROM already
reuses functions across instructions (e.g., privilege checks
in virtualization). Our DSL should capture such higher-level
structures, supporting function reuse, modular composition,
and richer control flow. Achieving this requires stronger
patch representation, code generation, and linking. Fine-
grained customization (Section 5.1) also demands infrastruc-
ture integration, such as embedding patch-switching into
Linux context switches.

5.3 More Powerful Patch Capabilities
With deeper understanding and more flexible patching mech-
anisms, we aim to: (1) simplify redundant safety checks in
trusted contexts, (2) repurpose microarchitectural registers
to reduce memory traffic, and (3) apply fine-grained 𝜇op
optimizations (e.g., eliminating mutually canceling actions).
Our current grasp of the SEQW mechanism and CRBUS ad-
dresses is incomplete, limiting patch scope. We plan to fur-
ther reverse-engineer undocumented features and integrate
them into a more capable toolchain.

5.4 Other CPU Architectures
INTEL-SA-00086 has also been applied to Skylake [1]. More-
over, recent AMD processors, including Zen 5, have also been
found to be vulnerable to microcode changes without vendor
blessing [16]. These architectures still require microcode de-
cryption and reverse engineering to better understand their
microcode formats. While our current focus is Goldmont,
we plan to port the framework as more details emerge.

6 Conclusion
This work presents reInstruct, a prototype framework that
enables dynamic microcode patching from user space on
x86 CPUs. We show that microcode, which is traditionally
considered opaque and tightly controlled by vendors, can be
exposed as a programmable system interface, opening new
possibilities for application-specific CPU behavior.
Our framework applies and switches microcode patches

at runtime via a Linux kernel module. Case studies demon-
strate both performance gains, such as a microcode-based
syscall replacement, and security risks, such as unauthorized
memory reads.
To our knowledge, this is the first system to enable such

flexible user-space microcode changes on commodity hard-
ware, entirely within the standard Linux stack. By allowing
software to adapt hardware behavior dynamically, we open
paths for research in custom acceleration, 𝜇op-level tuning,
patch scheduling, and OS-level micro-architectural control.

Unlike prior approaches such as Alpha’s PAL code or RISC-
V custom extensions, which require vendor support and
pre-silicon changes, our framework emphasizes dynamic
programmability. Commodity CPUs can be specialized in
software, with optimizations tailored to workloads and even
switched at context-switch time, enabling per-application
or per-phase specialization beyond static ISA customization.
In trusted settings, users may even relax or remove certain
safety checks after careful consideration of their needs, an
option infeasible for vendor-supplied microcode, but one
that highlights the greater flexibility of our approach.

We envision evolving this prototype into a safe and flexible
dynamicmicrocode interface, akin to the eBPF framework [7]
for microarchitectural behavior: effectively an “eBPF for mi-
crocode” that lets developers extend and specialize CPU
functionality without leaving the standard OS environment.

Availability
We plan to release all aspects of our implementation as open-
source software at a future publication date.

Acknowledgments
We thank the anonymous reviewers for their suggestions
and feedback that significantly helped improve the paper.
This work is supported in part by the US Office of Naval

Research (ONR) under grant N000142412642.

reInstruct: Toward OS-aware CPU microcode reprogramming KISV ’25, October 13–16, 2025, Seoul, Republic of Korea

References
[1] Youness Alaoui. 2019. Exploiting Intel’s Management Engine -

Part 2: Enabling Red JTAG Unlock on Intel ME 11.x (INTEL-SA-
00086). https://kakaroto.homelinux.net/2019/11/exploiting-intels-
management-engine-part-2-enabling-red-jtag-unlock-on-intel-me-
11-x-intel-sa-00086.

[2] AMD. 2023. White paper: Software Techniques for Man-
aging Speculation on AMD Processors – Revision 5.09.23.
https://developer.amd.com/wp-content/resources/Managing-
Speculation-on-AMD-Processors.pdf.

[3] Pietro Borrello, Catherine Easdon, Martin Schwarzl, Roland Czerny,
and Michael Schwarz. 2023. CustomProcessingUnit: Reverse Engi-
neering and Customization of Intel Microcode. In IEEE Workshop on
Offensive Technologies (WOOT 23). doi:10.1109/SPW59333.2023.00031

[4] Debian. 2022. Accepted openssl 3.0.7-1 (source) into unstable – Disable
rdrand engine (the opcode on x86). https://tracker.debian.org/news/
1380694/accepted-openssl-307-1-source-into-unstable.

[5] Mark Ermolov, Dmitry Sklyarov, and Maxim Goryachy. 2021. CHIP
RED PILL: How We Achieved to Execute [Micro]code Inside Intel
Atom CPUs. https://github.com/chip-red-pill. Presentation, Positive
Technologies.

[6] Agner Fog. 2025. The microarchitecture of Intel, AMD and VIA CPUs.
https://www.agner.org/optimize/microarchitecture.pdf. Section 16.2.

[7] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern, and David Miller. 2018.
The eXpress data path: fast programmable packet processing in the
operating system kernel. In Proceedings of the 14th International Confer-
ence on Emerging Networking EXperiments and Technologies (Heraklion,
Greece) (CoNEXT ’18). Association for Computing Machinery, New
York, NY, USA, 54–66. doi:10.1145/3281411.3281443

[8] Intel. 2018. INTEL-SA-00086. https://www.intel.com/content/www/
us/en/security-center/advisory/intel-sa-00086.html.

[9] Intel. 2018. White paper: Intel Analysis of Speculative Execu-
tion Side Channels. https://www.intel.com/content/www/us/en/
developer/articles/technical/software-security-guidance/technical-
documentation/analysis-speculative-execution-side-channels.html.

[10] Intel. 2020. Microcode Update Guidance. https://www.intel.com/
content/www/us/en/developer/articles/technical/software-security-
guidance/best-practices/microcode-update-guidance.html.

[11] Intel. 2025. Intel 64 and IA-32 Architectures Software Developer Man-
uals, Volume 3: System Programming Guide. https://www.intel.com/
content/www/us/en/developer/articles/technical/intel-sdm.html.

[12] Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer,
Jesse Whittemore, Sudhindra Pandav, Anna Slobodová, Christopher
Taylor, Vladimir Frolov, Erik Reeber, and Armaghan Naik. 2009. Re-
placing Testing with Formal Verification in Intel Core i7 Processor
Execution Engine Validation. In Computer Aided Verification, Ahmed
Bouajjani and Oded Maler (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 414–429. doi:10.1007/978-3-642-02658-4_32

[13] Benjamin Kollenda, Philipp Koppe, Marc Fyrbiak, Christian Ki-
son, Christof Paar, and Thorsten Holz. 2020. An Exploratory
Analysis of Microcode as a Building Block for System Defenses.
arXiv:2007.03549 [cs.CR] https://arxiv.org/abs/2007.03549

[14] Philipp Koppe, Benjamin Kollenda, Marc Fyrbiak, Christian Kison,
Robert Gawlik, Christof Paar, and Thorsten Holz. 2017. Reverse En-
gineering x86 Processor Microcode. In 26th USENIX Security Sympo-
sium (USENIX Security 17). USENIX Association, Vancouver, BC, 1163–
1180. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/koppe

[15] Linux manual page. 2025. System Calls Manual: getcpu - determine
CPU and NUMA node on which the calling thread is running. https:
//man7.org/linux/man-pages/man2/getcpu.2.html.

[16] Google Security Team. 2025. AMD: Microcode Signature Verification
Vulnerability. https://github.com/google/security-research/security/

advisories/GHSA-4xq7-4mgh-gp6w.
[17] Zhiguo Yang, Qingbao Li, Ping Zhang, and Zhifeng Chen. 2020. Reverse

Engineering of Intel Microcode Update Structure. IEEE Access 8 (2020),
169676–169687. doi:10.1109/ACCESS.2020.3024243

https://kakaroto.homelinux.net/2019/11/exploiting-intels-management-engine-part-2-enabling-red-jtag-unlock-on-intel-me-11-x-intel-sa-00086
https://kakaroto.homelinux.net/2019/11/exploiting-intels-management-engine-part-2-enabling-red-jtag-unlock-on-intel-me-11-x-intel-sa-00086
https://kakaroto.homelinux.net/2019/11/exploiting-intels-management-engine-part-2-enabling-red-jtag-unlock-on-intel-me-11-x-intel-sa-00086
https://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf
https://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf
https://doi.org/10.1109/SPW59333.2023.00031
https://tracker.debian.org/news/1380694/accepted-openssl-307-1-source-into-unstable
https://tracker.debian.org/news/1380694/accepted-openssl-307-1-source-into-unstable
https://github.com/chip-red-pill
https://www.agner.org/optimize/microarchitecture.pdf
https://doi.org/10.1145/3281411.3281443
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00086.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00086.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/analysis-speculative-execution-side-channels.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/analysis-speculative-execution-side-channels.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/analysis-speculative-execution-side-channels.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/microcode-update-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/microcode-update-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/microcode-update-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://doi.org/10.1007/978-3-642-02658-4_32
https://arxiv.org/abs/2007.03549
https://arxiv.org/abs/2007.03549
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/koppe
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/koppe
https://man7.org/linux/man-pages/man2/getcpu.2.html
https://man7.org/linux/man-pages/man2/getcpu.2.html
https://github.com/google/security-research/security/advisories/GHSA-4xq7-4mgh-gp6w
https://github.com/google/security-research/security/advisories/GHSA-4xq7-4mgh-gp6w
https://doi.org/10.1109/ACCESS.2020.3024243

	Abstract
	1 Introduction
	2 Background
	2.1 Intel Microcode
	2.2 INTEL-SA-00086
	2.3 Unlocking the CPU
	2.4 CustomProcessingUnit
	2.5 Unlocking Issues
	2.6 RDRAND Random Generator

	3 Implementation
	3.1 BIOS Modification
	3.2 Patching Mechanism
	3.3 Kernel Module Design
	3.4 User-Space Interface
	3.5 Security Considerations

	4 Evaluation
	4.1 Replacing RDRAND with a Constant Value
	4.2 Arbitrary Memory Read
	4.3 Replacing getcpu() with Microcode for Performance Optimization

	5 Future Work
	5.1 Fine-Grained Microcode Customization
	5.2 Improved Tooling and Framework Support
	5.3 More Powerful Patch Capabilities
	5.4 Other CPU Architectures

	6 Conclusion
	References

