
T-L Plane-Based Real-Time Scheduling for
Homogeneous Multiprocessors

Hyeonjoong Cho a Binoy Ravindran b E. Douglas Jensen c

aDept. of Computer and Information Science, Korea University, South Korea
bECE Dept., Virginia Tech., Blacksburg, VA 24061, USA

cThe MITRE Corporation Bedford, MA 01730, USA

Abstract

We consider optimal real-time scheduling of periodic tasks on multiprocessors—i.e.,
satisfying all task deadlines, when the total utilization demand does not exceed the
utilization capacity of the processors. We introduce a novel abstraction for reasoning
about task execution behavior on multiprocessors, called T-L plane and present T-L
plane-based real-time scheduling algorithms. We show that scheduling for multipro-
cessors can be viewed as scheduling on repeatedly occurring T-L planes, and feasibly
scheduling on a single T-L plane results in an optimal schedule. Within a single T-
L plane, we analytically show a sufficient condition to provide a feasible schedule.
Based on these, we provide two examples of T-L plane-based real-time scheduling al-
gorithms, including non-work-conserving and work-conserving approaches. Further,
we establish that the algorithms have bounded overhead. Our simulation results val-
idate our analysis of the algorithm overhead. In addition, we experimentally show
that our approaches have a reduced number of task migrations among processors,
compared to a previous algorithm.

Key words: real-time scheduling, optimality, multiprocessor systems

1 Introduction

Multiprocessor architectures (e.g., Symmetric Multi-Processors or SMPs, Sin-
gle Chip Heterogeneous Multiprocessors or SCHMs) are becoming more attrac-
tive for embedded systems, primarily because major processor manufacturers
(Intel, AMD) are rapidly decreasing the prices and increasing the cost/performance.

Email addresses: raycho@korea.ac.kr (Hyeonjoong Cho), binoy@vt.edu
(Binoy Ravindran), jensen@mitre.org (E. Douglas Jensen).

Preprint submitted to Elsevier 4 January 2010

Responding to this trend, real-time operating system (RTOS) vendors are in-
creasingly providing multiprocessor platform support. But this exposes the
critical need for real-time scheduling for multiprocessors—a comparatively
undeveloped area of real-time scheduling which has recently received signifi-
cant research attention, but is not yet well supported by the RTOS products.
Consequently, the impact of cost-effective multiprocessor platforms remains
nascent.

Liu [2] first addressed the multiple-resource scheduling problem that considers
allocating several identical resources (e.g., multiple processors) to a number of
periodic tasks, where a task is characterized by two parameters, execution time
and period. A valid schedule must satisfy two constraints: (1) at any instant, at
most one task can be executed on any single processor; and (2) no single task
can be executed on more than one processor at the same time instant. Under
these constraints, a feasible real-time schedule allocates the exact time units
of the resource that each task requires for its execution to the task during its
period.

One unique aspect of multiprocessor scheduling is the degree of run-time
migration that is allowed for job instances of a task across processors (at
scheduling events). Example migration models include: (1) full migration,
where jobs are allowed to arbitrarily migrate among processors during their
execution. This usually implies a global scheduling strategy, where a single
shared scheduling queue is maintained for all processors, and a system-wide
scheduling decision is made by a single (global) scheduling algorithm; (2) no
migration, where tasks are statically (off-line) partitioned and allocated to
processors. At run-time, job instances of tasks are scheduled on their respec-
tive processors by processors’ local scheduling algorithm, like single proces-
sor scheduling; and (3) restricted migration, where some form of migration is
allowed—e.g., at job boundaries.

Carpenter et al. [3] have catalogued multiprocessor real-time scheduling algo-
rithms considering the degree of job migration and the complexity of priority
mechanisms employed. The latter includes classes such as (1) static, where
task priorities never change, e.g., rate-monotonic (RM); (2) dynamic but fixed
within a job, where job priorities are fixed, e.g., earliest-deadline-first (EDF) 1 ;
and (3) fully-dynamic, where job priorities are dynamic.

The Proportionate fair (Pfair) algorithms [4] that allow full migration and
fully dynamic priorities have been shown to be theoretically optimal—i.e.,
they achieve a schedulable utilization bound (below which all tasks meet their
deadlines) that equals the total capacity of all processors. Fairness allows

1 Periodic tasks consist of an infinite sequence of identical activities, jobs, that are
regularly activated at a constant rate. Using EDF, once a job starts, its priority
does not change until its completion.

2

all tasks to receive a share of the processor time and simultaneously make
progress. However, Pfair algorithms incur significant run-time overhead due
to their quantum-based scheduling approach [5,6]—under Pfair, tasks can be
decomposed into several small uniform segments, which are then scheduled,
causing frequent scheduling and migration.

Zhu et al. proposed boundary fair (BF) scheduling, which makes schedul-
ing decisions only at period boundaries to reduce the number of scheduling
points [7]. It is not as fair as Pfair (fair at any time quantum), but fair enough
(only at period boundaries) to get a feasible schedule. Especially when the
number of tasks is small (less than 100 in their experiments), they showed
that the overhead of BF is less than that of PD (an efficient Pfair algorithm).
Note that as the number of tasks increases, the frequency of boundaries also
increases and consequently, the number of scheduling points of BF becomes
similar to that of PD.

In this paper, we focus on the multiple-resource scheduling problem. We in-
troduce an abstraction for reasoning about the execution behavior of a class
of periodic tasks on multiprocessors, time and local remaining execution-time
plane (abbreviated as the T-L plane). The T-L plane makes it possible to
envision the entire scheduling activity over time as scheduling in repeated T-L
planes of various sizes, so that feasibly scheduling on a single T-L plane results
in an optimal schedule for all T-L planes across time.

Moreover, the T-L plane provides a visual model of task execution behavior on
multiprocessors, which allows insightful and analytical understanding. Based
on this in-depth understanding from the visual model, we present the minimum
but sufficient guidelines for designing feasible scheduling algorithms for our
task model on multiprocessors. This provides flexibility in the sense that task
priorities can be assigned as desired within the constraints of the sufficiency
guidelines.

More concretely, T-L plane-based scheduling consists of two phases: the local
parameter decision phase (LD-P) to establish a T-L plane over a period of
time, and the local scheduling phase (LS-P) to locally schedule tasks within
the established T-L plane. First focusing on LS-P, we analytically derive a
sufficient condition to provide a feasible schedule within a single T-L plane.
Based on this, we provide two examples of T-L plane-based real-time schedul-
ing algorithms, one non-work-conserving and one work-conserving. The work-
conserving approach is for reducing task response times, while the non-work-
conserving approach smoothes out the task completion flow. In addition, we
experimentally show that our approach outperforms an existing algorithm
(McNaughton’s [14] which Zhu et al. used in [7]) for local scheduling by re-
ducing unnecessary migration.

3

Thus, the paper’s contributions include the T-L plane scheduling abstraction
for optimal multiprocessor real-time scheduling of a class of periodic tasks. We
also provide a set of sufficient conditions for feasible scheduling of that class.
Finally, we provide two T-L plane-based real-time scheduling algorithms—one
work-conserving and one non-work-conserving. These have bounded schedul-
ing overhead and simultaneously, lower number of task migrations compared
to the existing algorithm mentioned above.

The rest of the paper is organized as follows: In Section 2, we discuss the
rationale behind the T-L plane. In Section 3, we analytically discuss the prop-
erties of T-L plane-based real-time scheduling. In Section 4, we establish two
examples of T-L plane-based scheduling algorithms and establish the upper-
bound of the algorithms’ overhead. Several experimental results are discussed
in Section 5. The paper concludes in Section 6.

2 Preliminaries

2.1 Model

We consider global scheduling, where task migration is not restricted, on an
SMP system with M identical processors. The application is assumed to con-
sist of a set of tasks, denoted T={T1, T2,..., TN}. Tasks are assumed to arrive
periodically at their release times ai. Each task Ti has an execution time ci,
and a relative deadline di which is the same as its period pi. The utilization
ui of a task Ti is defined as ci/di and is assumed to be less than 1. Simi-
lar to [5,8], we assume that tasks may be preempted at any time, and are
independent—i.e., they do not share resources or have any precedences.

The cost of context switches and task migrations are assumed to be negligible,
as in [5,8].

2.2 Time and Local Execution Time Plane

In the fluid scheduling model, each task executes at a constant rate, which is
similar to its utilization demand, at all times [13]. The quantum-based Pfair
scheduling algorithm is based on the fluid scheduling model, as the algorithm
constantly uses task utilization to track the allocated task execution rate.
The Pfair algorithm’s success in constructing optimal multiprocessor schedules
(meeting all deadlines) for its intended class of tasks can be attributed to
fairness—informally, all tasks receive a share of the processor time, and thus

4

are able to simultaneously make progress. P-fairness is a strong notion of
fairness, which ensures that at any instant, no application is one or more
quanta away from its due share (or fluid schedule) [4,10]. The significance of
the fairness concept in Pfair’s optimality is also supported by the fact that task
urgency, as represented by the task deadline, is not sufficient for constructing
optimal schedules with respect to meeting all deadlines, as we observe from
the poor deadline satisfaction ratio [5,11] of global EDF for multiprocessors.

Fig. 1. Fluid Schedule versus a Practical Schedule

Thus, to design an optimal multiprocessor scheduling algorithm for the task
model described above, we focus on the fluid scheduling model and the fairness
notion. To better understand the multiprocessor real-time scheduling problem
we are considering, we create an abstraction, called T-L plane, on which to-
kens representing tasks move over time. (The horizontal location of the token
represents the current time and the vertical location of the token represents
its remaining execution time. We will describe it in more detail later.) The
T-L plane is inspired by the L-C plane abstraction introduced by Dertouzos et
al. in [12]. We use the T-L plane to depict fluid schedules, and present a new
scheduling algorithm that is able to approximate the fluid schedule without
using time quanta.

Figure 1 illustrates the fundamental idea behind the T-L plane. For a task Ti

with ai, ci, and di, the figure shows a 2-dimensional plane with time represented
on the x-axis and the task’s remaining execution time represented on the y-
axis. If ai is assumed as the origin, the dotted line from (0, ci) to (di, 0) depicts
the fluid schedule, the slope of which is −ui. Since the fluid schedule is ideal
but practically impossible, the fairness of a scheduling algorithm depends on
how much the algorithm approximates the fluid schedule path.

When Ti runs like in Figure 1, for example, its execution can be represented as
a broken line between (0, ci) and (di, 0). Note that task execution is represented
as a line whose slope is -1 since x and y axes are in the same scale, and the
non-execution over time is represented as a line whose slope is zero. It is clear

5

that the Pfair algorithm can also be represented on the T-L plane as a broken
line based on time quanta.

Fig. 2. T-L Planes

When N number of tasks are considered, their fluid schedule can be con-
structed as shown in Figure 2. After constructing the fluid schedule of each
task over time, two consecutive scheduling events are considered, t1 and t2, for
example. 2 Then, a horizontal line for each task is established from the fluid
schedule at the following scheduling event t2 to the previous scheduling event
t1—more accurately, the vertical location of the horizontal line is determined
from the vertical location of the fluid schedule line at the event t2. The length
of the horizontal line is t2− t1, which is, not surprisingly, the same as those of
all other tasks between t1 and t2. At the previous scheduling event t1, a ver-
tical line of the same length as the horizontal line is drawn for each task, and
together with the horizontal line, this yields a right isosceles triangle between
t1 and t2 for each task. Since the triangles between two consecutive scheduling
events for each task are the same size, those N triangles can be overlapped
with the fluid schedule of each task inside. The whole schedule over time can
be represented as the sequence of these overlapped triangles, {TL0,...,TLk,...},
where k is simply increasing over time. We call this triangle the T-L plane. The
size of the ktℎ T-L plane, TLk, may change over k. The bottom side of each
triangle represents time. The left vertical side of each triangle represents the
task’s remaining execution time, which we call the local remaining execution
time.

Definition 1 (Local Remaining Execution Time) lki (t) denotes the i
tℎ task’s

2 In this paper, we assume that all tasks have deadlines equal to their periods.
Thus, the events occur at task period boundaries.

6

local remaining execution time at time t on the ktℎ T-L plane, which is sup-
posed to be consumed before the end of the ktℎ T-L plane.

Ti’s deadline may not coincide with the end of TLk, as more than one T-L
plane often exists between a task’s release and completion. Fluid schedules for
tasks are constructed to be overlapped in each TLk plane, which keeps their
slopes the same.

The abstraction of T-L planes is significantly meaningful in scheduling our
task model for multiprocessors, because T-L planes are repeated over time,
and a feasible scheduling algorithm for a single T-L plane leads to feasible
scheduling of all tasks on all repeated T-L planes.

2.3 Scheduling on T-L planes

Figure 3 details a single T-L plane. (When k is omitted, it implicitly means
the current ktℎ T-L plane, TLk. We explicitly use the index k when necessary,
for example, when comparing two adjacent T-L planes.)

Fig. 3. A Single T-L Plane

The status of each task is represented as a token on the T-L plane. The token’s
location describes the current time as a value on the horizontal axis and the
task’s remaining execution time as a value on the vertical axis. The remaining
execution time of a task here means time that must be consumed before the
finishing time of the T-L plane, tf , and not the task’s deadline. Hence, we call
it the local remaining execution time.

As scheduling decisions are made over time, each task’s token moves on the
T-L plane. Although the ideal paths of tokens are shown as dotted lines in
Figure 3, the tokens are allowed to move only on two paths. (Therefore, tokens

7

can deviate from the ideal paths.) When the task is selected and executed, the
token moves diagonally down, as TN moves. Otherwise, it moves horizontally,
as T1 moves. If M processors are being scheduled and executing, at most M
tokens can diagonally move together. The scheduling objective on the T-L
plane is to make all tokens arrive at the bottom of the T-L plane before tf—
i.e., to make the local remaining execution times of all tasks be consumed
before tf . We call this successful arrival locally feasible. If all tokens are locally
feasible on each T-L plane, it is possible for them to be scheduled throughout
all consecutive T-L planes over time, approximating all tasks’ ideal paths.

For convenience, we define the local laxity of a task Ti.

Definition 2 (Local Laxity) The local laxity of the task Ti at the current
time tcur is denoted as tf − tcur − li(tcur), where 1 ≤ i ≤ N .

The diagonal of the T-L plane has an important meaning: when a token reaches
that side, it indicates that the task does not have any local laxity. Thus, if
it is not selected immediately, then it cannot satisfy the scheduling objective
of local feasibility. We call the diagonal of the T-L plane the no local laxity
diagonal (or NLLD). All tokens are supposed to stay on or under the NLLD.
We call the tokens both on NLLD and between NLLD and the bottom line of
the T-L plane active. Active tokens have non-zero local remaining execution
time. We call the tokens lying on or below the bottom line of the T-L plane
inactive.

We observe that there are two time instants when the scheduling decision has
to be made again on the T-L plane. One instant is when the local remaining
execution time of a task is completely consumed, and it would be better for the
system to run another task instead. When this occurs, the token reaches the
horizontal line, as TN does in Figure 3. We call this the bottom reaching event
(or event-B). The other instant is when the local laxity of a task becomes zero
so that the task must be selected immediately. When this occurs, the token
reaches the NLLD, as T1 does in Figure 3. We call this the ceiling reaching
event (or event-C). To distinguish these events from traditional scheduling
events, we call events B and C secondary events.

To design a scheduling algorithm for a single T-L plane, we propose guide-
lines for locally-feasible scheduling (GLS), which are sufficient to provide local
feasibility. (The sufficiency of the GLS is proved in Section 3.)

(GLS.1) At every scheduling event, as many active tokens as the number of
processors allows (up to M) should be selected.

(GLS.2) At event-C, the token that invokes the event should be selected im-
mediately.

Since an active token changes to inactive when it reaches the bottom line of

8

the T-L plane, (GLS.1) implies following (GLS.3).

(GLS.3) At event-B, the token that invokes the event should not be selected
if there are still at least M active tokens.

The fact that obeying these GLS’s is sufficient for a scheduling policy to be
able to provide local feasibility in a T-L plane allows significant flexibility in
designing a scheduling algorithm. For example, a scheduling algorithm may
assign task priorities for a particular application while ensuring local feasibility
by following the GLS’s. The priority assignment also could be either work-
conserving or non-work-conserving, specify processor affinity, etc. At time tkf
of TLk, the time instant for the next task period event, the next T-L plane
TLk+1 starts to be drawn and the designed scheduling algorithm remains valid.
Thus, the scheduling algorithm is consistently applied for every event.

We consider local scheduling algorithms (LSA) designed following the GLS’s.
In the next section, we analytically prove that an LSA provides local feasibility
in a T-L plane.

3 Properties of LSAs

A fundamental property of an LSA is its local feasibility—i.e., an LSA can
consume all task local remaining execution times before the T-L plane ends.
In this section, we prove that an LSA guarantees local feasibility on the T-
L plane. We first suppose the case that N > M . The case that N ≤ M is
considered later in Section 3.4.

3.1 Critical Moment

Figure 4 shows an example of token flows on a T-L plane. All tokens flow from
left to right over time. The scheduling algorithm selects up to M tokens from
at most N active tokens and they flow diagonally down. The others which are
not selected take horizontal paths. When the event-C or B happens, denoted
by tj where 0 < j < f , the LSA is invoked to make a scheduling decision.

Definition 3 (Local Utilization) The local utilization ri(tj) for a task Ti

at time tj is defined to be li(tj)

tf−tj
, which describes how much processor capacity

needs to be utilized for executing Ti within the remaining time until tf . Here,
li(tj) is the local remaining execution time of task Ti at time tj.

Note that when k is omitted, it implicitly means the current ktℎ T-L plane.

9

Fig. 4. Example of Token Flow

Theorem 4 (Initial Local Utilization Value in T-L plane) Let all tokens
arrive at the bottom line before tk−1

f on the (k−1)tℎ T-L plane. Then, the initial
local utilization value ri(0) ≤ ui for all task Ti on the ktℎ T-L plane.

PROOF. If all tokens arrive at tk−1
f with li(t

k−1
f) ≤ 0, then they can restart

on the next T-L plane (the ktℎ T-L plane) from or below the positions where
their ideal fluid schedule lines start. The slope of the fluid schedule path of
task Ti is ui. Thus, ri(0) = li(0)/tf ≤ ui. □

Well-controlled tokens have both departing and arriving points which are the
same as, or lower than, those of their fluid schedule lines on the T-L plane
(even though their actual paths on the T-L plane are different from their
fluid schedule paths). Well controlled tokens are locally feasible. Note that we
assume ui ≤ 1 and

∑
ui ≤ M .

Fig. 5. Critical Moment

We define critical moment to be the sufficient and necessary condition that
all tokens are not locally feasible. (Local infeasibility of the tokens implies
that all tokens do not arrive at the bottom line of the T-L plane before tf .) A
critical moment is the first secondary event time when more than M tokens
simultaneously reach the NLLD. Figure 5 shows this. Right after the critical

10

moment, only M tokens from those on the NLLD are selected. The non-
selected ones move out of the triangle, and as a result, they will not arrive
at the bottom line of the T-L plane before tf . Note that only horizontal and
diagonal moves are permitted for tokens on the T-L plane.

Theorem 5 (Critical Moment) At least one critical moment occurs if and
only if tokens are not locally feasible on the T-L plane.

PROOF. We prove both the necessary and sufficient conditions.

Only-if part. Assume that a critical moment occurs. Then, non-selected tokens
move off of the T-L plane. Since only -1 and 0 are allowed for the slope of the
token paths, it is impossible that the tokens off of the T-L plane reach the
bottom line of the T-L plane.

If part. We assume that when tokens are not locally feasible, no critical mo-
ment occurs. If there is no critical moment, then the number of tokens on the
NLLD never exceeds M . Thus, all tokens on the diagonal can be selected by
the LSA up to time tf . This contradicts our assumption that tokens are not
locally feasible. □

We define total local utilization at the jtℎ secondary event.

Definition 6 (Total Local Utilization) The total local utilization at the
jtℎ secondary event, S(tj), is defined as

∑N
i=1 ri(tj).

Corollary 7 (Total Local Utilization at Critical Moment) Supposing that
the critical moment occurs at the jtℎ secondary event on a T-L plane, the total
local utilization at the critical moment S(tj) is greater than M .

PROOF. The local remaining execution time li(tj) for the tasks on the NLLD
at the critical moment (at the jtℎ secondary event) is tf − tj, because the T-L
plane is an isosceles triangle. Therefore, S(tj) =

∑N
i=1 ri(tj) =

∑M
i=1

tf−tj
tf−tj

+
∑N

i=M+1
li(tj)

tf−tj
= M +

∑N
i=M+1

li(tj)

tf−tj
> M . □

From the task perspective, the critical moment is the time when more than
M tasks have no local laxity. Thus, the scheduler cannot make them locally
feasible with M processors.

11

3.2 Event-C

Event-C happens when a non-selected token reaches the NLLD. Note that
selected tokens never reach the NLLD. Event-C indicates that the task has no
local laxity and hence should be selected immediately. Figure 6 illustrates this,
where event-C happens at time tc when the token TM+1 reaches the NLLD.

Note that this is under the basic assumption that there are more than M
tasks, i.e., N > M . This implicit assumption holds in Section 3.2 and 3.3.

For convenience, we suppose that an LSA selects M tasks from T1 to TM and
their tokens move diagonally. We give indices i to tokens inversely according
to their local utilization—i.e., ri(tj) ≥ ri+1(tj) where 1 ≤ i < M and ∀j,
as shown in Figure 6. It also implies that for all M + 1 ≤ i < N and j,
ri(tj) ≥ ri+1(tj).

Fig. 6. Event-C

Lemma 8 (Sufficient and Necessary Condition for Event-C) The event-
C occurs at time tc, if and only if 1− rM+1(tc−1) ≤ rM(tc−1), where ri(tc−1) ≥
ri+1(tc−1), (1 ≤ i < M) or (M + 1 ≤ i < N).

PROOF. The time when TM+1 reaches the NLLD is tc−1 + (tf − tc−1 −
lM+1(tc−1)). The time when the token TM reaches the bottom of the T-L
plane is tc−1+ lM(tc−1). We prove both the sufficient and necessary conditions.
If part. We assume 1− rM+1(tc−1) ≤ rM(tc−1).

1− lM+1(tc−1)

tf − tc−1

≤ lM(tc−1)

tf − tc−1

tf − tc−1 − lM+1(tc−1) ≤ lM(tc−1).

When adding tc−1 to both sides, we confirm that the time when TM+1 reaches
the NLLD is prior or equal to the time when TM reaches the bottom of the

12

T-L plane. Thus, event-C then occurs.
Only-if part. If the secondary event at time tc is event-C, then token TM+1

must reach the NLLD earlier than when token TM reaches the bottom of the
T-L plane.

tc−1 + (tf − tc−1 − lM+1(tc−1)) ≤ tc−1 + lM(tc−1)

1− lM+1(tc−1)

tf − tc−1

≤ lM(tc−1)

tf − tc−1

.

Thus, 1− rM+1(tc−1) ≤ rM(tc−1). □

Corollary 9 (Necessary Condition for Event-C) Event-C occurs at time
tc only if S(tc−1) > M(1 − rM+1(tc−1)), where ri(tc−1) ≥ ri+1(tc−1), (1 ≤ i <
M) or (M + 1 ≤ i < N).

PROOF.

S(tc−1) =
M∑

i=1

ri(tc−1) +
N∑

i=M+1

ri(tc−1) >
M∑

i=1

ri(tc−1) ≥ M ⋅ rM(tc−1).

Based on Lemma 8, M ⋅ rM(tc−1) ≥ M ⋅ (1− rM+1(tc−1)). □

Theorem 10 (Total Local Utilization for Event-C) When event-C oc-
curs at tc and S(tc−1) ≤ M , then S(tc) ≤ M , ∀c where 0 < c ≤ f .

PROOF. We define tc−tc−1 = tf−tc−1−lM+1(tc−1) as ±. Total local remaining
execution time at tc−1 is

∑N
i=1 li(tc−1) = (tf − tc−1)S(tc−1) and it decreases by

M × ± at tc as M tokens move diagonally. Therefore,

(tf − tc)S(tc) = (tf − tc−1)S(tc−1)− ±M.

Note that when event-C occurs, M tokens move diagonally from tc−1 to tc
according to (GLS.1).

Since lM+1(tc−1) = tf − tc,

lM+1(tc−1)× S(tc) = (tf − tc−1)S(tc−1)− (tf − tc−1 − lM+1(tc−1))M.

Thus,

S(tc) =
1

rM+1(tc−1)
S(tc−1) + (1− 1

rM+1(tc−1)
)M. (1)

13

Equation 1 is a linear equation as shown in Figure 7.

Fig. 7. Linear Equation for event-C

According to Corollary 9, when event-C occurs, S(tc−1) is more than M ⋅ (1−
rM+1(tc−1)). Since we also assume S(tc−1) ≤ M , we only consider the range
fromM ⋅(1−rM+1(tc−1)) toM on the x-axis in Figure 7. Therefore, S(tc) ≤ M .
□

3.3 Event-B

Event-B happens when a selected token reaches the bottom side of the T-L
plane. Note that non-selected tokens never reach the bottom. Event-B indi-
cates that the task has no local remaining execution time so it would be better
to give the processor time to another task for execution.

Event-B is illustrated in Figure 8, where it happens at time tb when the token of
TM reaches the bottom. As we do for the analysis of event-C, we suppose that
an LSA selects M tasks from T1 to TM and we give indices i to tokens inversely
according to their local utilization—i.e., ri(tj) ≥ ri+1(tj) where 1 ≤ i < M . It
also implies that ri(tj) ≥ ri+1(tj) where M + 1 ≤ i < N and ∀j.

Fig. 8. Event-B

Lemma 11 (Sufficient and Necessary Condition for Event-B) Event-
B occurs at time tb, if and only if 1− rM+1(tb−1) ≥ rM(tb−1), where ri(tb−1) ≥
ri+1(tb−1), (1 ≤ i < M) or (M ≤ i < N).

14

PROOF. The time when TM reaches the bottom and the time when TM+1

reaches the NLLD are respectively tb−1 + lM(tb−1) and tb−1 + (tf − tb−1 −
lM+1(tb−1)). We prove both sufficient and necessary conditions.
If part. We assume rM(tb−1) ≤ 1− rM+1(tb−1).

lM(tb−1)

tf − tb−1

≤ 1− lM+1(tb−1)

tf − tb−1

lM(tb−1) ≤ tf − tb−1 − lM+1(tb−1).

When adding tb−1 to both sides, we confirm that the time when TM reaches the
bottom is prior to the time when TM+1 reaches the NLLD, which is event-B.
Only-if part. If the secondary event at time tb is event-B, then token TM must
reach the bottom earlier than when token TM+1 reaches the NLLD.

tb−1 + lM(tb−1) ≤ tb−1 + (tf − tb−1 − lM+1(tb−1)).

lM(tb−1)

tf − tb−1

≤ 1− lM+1(tb−1)

tf − tb−1

.

Thus, rM(tb−1) ≤ 1− rM+1(tb−1). □

Corollary 12 (Necessary Condition for Event-B) Event-B occurs at time
tb only if S(tb−1) > M ⋅ rM(tb−1), where ri(tb−1) ≥ ri+1(tb−1), (1 ≤ i < M) or
(M + 1 ≤ i < N).

PROOF.

S(tb−1) =
M∑

i=1

ri(tb−1) +
N∑

i=M+1

ri(tb−1) >
M∑

i=1

ri(tb−1) ≥ M ⋅ rM(tb−1).

□

Theorem 13 (Total Local Utilization for Event-B) When event-B occurs
at time tb and S(tb−1) ≤ M , then S(tb) ≤ M , ∀b where 0 < b ≤ f .

PROOF. tb − tb−1 is lM(tb−1). The total local remaining execution time at
tb−1 is

∑N
i=1 li(tb−1) = (tf − tb−1)S(tb−1), and this decreases by M ⋅ lM(tb−1) at

tb as M tokens move diagonally. Therefore:

(tf − tb)S(tb) = (tf − tb−1)S(tb−1)−M ⋅ lM(tb−1).

15

Since tf − tb = tf − tb−1 − lM(tb−1),

(tf − tb−1 − lM(tb−1))S(tb) = (tf − tb−1)S(tb−1)−M ⋅ lM(tb−1).

Thus,

S(tb) =
1

1− rM(tb−1)
S(tb−1)− rM(tb−1)

1− rM(tb−1)
M. (2)

Equation 2 is a linear equation as shown in Figure 9.

Fig. 9. Linear Equation for Event-B

According to Corollary 12, when event-B occurs, S(tb−1) is more than M ⋅
rM(tb−1). Since we also assume S(tb−1) ≤ M , we only consider the range from
M ⋅ rM(tb−1) to M on the x-axis in Figure 9. Therefore, S(tb) ≤ M . □

3.4 Local Feasibility

We now establish LSAs’ local feasibility on the T-L plane based on our previous
results.

In Section 3.3 and 3.2, we suppose that N > M . When less than or equal to
M tokens only exist, they are always locally feasible by an LSA on the T-L
plane.

Theorem 14 (Local Feasibility with Small Number of Tokens) When
N ≤ M , tokens are always locally feasible by an LSA.

PROOF. We assume that if N ≤ M , then tokens are not locally feasible by
an LSA. If there is not local feasibility, then there should exist at least one
critical moment on the T-L plane by Theorem 5. Critical moment implies at
least one non-selected token, which contradicts our assumption since all tokens
are selectable according to (GLS.1). □

16

Fig. 10. Token Flow when N ≤ M

Theorem 14 is illustrated in Figure 10. When the number of tasks is less than
the number of processors, an LSA can select all tasks and execute them until
their local remaining execution times become zero.

We also observe that at every event-B, the number of active tokens is decreas-
ing. In addition, the number of event-B’s in this case is at most N , since it
cannot exceed the number of tokens. Another observation is that event-C never
happens when N ≤ M since all tokens are selectable and move diagonally.

Now, we discuss the local feasibility when N > M .

Theorem 15 (Local Feasibility with Large Number of Tokens) When
N > M , tokens are locally feasible by an LSA when S(t0) ≤ M .

PROOF. We prove this by induction, based on Theorems 10 and 13. Those
theorems show that if S(tj−1) ≤ M , then S(tj) ≤ M , where j is the moment
when secondary events occur. Since we assume that S(t0) ≤ M , S(tj) for all
j never exceeds M at any secondary event including event-C’s and event-B’s.
When S(tj) is at most M for all j, there should be no critical moment on
the T-L plane, according to the contraposition of Corollary 7. By Theorem 5,
there being no critical moment implies that they are locally feasible. □

When N(> M) number of tokens are on the T-L plane and their S(t0) is at
most M , event-C and B occur without any critical moment according to The-
orem 15. Whenever event-B happens, the number of active tokens decreases
until there are M remaining active tokens. Then, according to Theorem 14, all
tokens are selectable so that they arrive at the bottom line of the T-L plane
with consecutive event-B’s.

Figure 11 shows one example of T-L plane-based schedules. Six tasks and two
processors are assumed for the example, and the local remaining execution

17

Fig. 11. An Example Schedule by T-L Plane-based Approaches

time of each task within the time interval (0, 5) is given by the table. When-
ever a scheduling decision should be made, we assume that a T-L scheduling
algorithm selects tasks to execute according to the GLS. If there is no task
that ought to be selected by the GLS, the scheduler selects any task randomly.
Note that the GLS is sufficient to provide local feasibility even with this re-
stricted random selection. The T-L plane shows the flow of each token. The
figure also shows when event-B and event-C occur over time as denoted by
the small filled squares.

At time 0, we assume T3 and T5 are selected. At time 1, T3 generates an event-
B by reaching the bottom line and then, we assume T1 is selected, based on
(GLS.1). At time 3, T1 and T5 invoke event-B while T4 invokes an event-C.
According to (GLS.2), T4 should be selected immediately. Simultaneously, one
more task should be selected by (GLS.1). We assume T2 is selected. At time
4, T2 and T6 generate an event-B and event-C respectively. Thus, T6 should
be immediately selected according to (GLS.2).

4 T-L Plane-based Scheduling Algorithm

Recall that T-L plane-based scheduling consists of two phases: LD-P where
each task’s local remaining execution time within a single T-L plane is de-
termined and LS-P where all tasks’ local remaining execution times within a
single T-L plane are consumed.

18

As long as S(t0) is less than or equal to M as in Theorem 15, any LSA
designed under the GLS’s is applicable to LS-P. For LD-P, on the other hand,
Figure 2 illustrates that the local remaining execution time at time t0(= 0)
for each task, li(t0), is determined from the fluid schedule line of each task.
Thus, li(t0) is either an integer or a real number. However, due to the hardware
characteristics of actual processors, li(t0) should be an integral multiple of the
resolution of the highest precision timer, which makes LD-P more difficult.
Besides, in LD-P, we should ensure that all S(t0) of continuous T-L planes
are at most M while we determine li(t0) of each task to be an integer. Since
li(t0) of each token is an integer and only diagonal and horizontal moves are
permitted, all li(tj) (where 0 ≤ j ≤ f) are also integers.

We present T-L plane-based scheduling algorithms that use a part of Zhu’s
algorithm in [7] for LD-P and use an LSA for LS-P. The design objective here
is to make the computational complexity of the algorithms as low as possible.
To do so, we suppose that the run-time (e.g., an operating system kernel)
offers the scheduler the list of tasks that are in the ready state. In addition,
the kernel notifies the scheduler of the task’s identifier (or its pointer) when
the event-C or B occurs. More details are provided in this section.

4.1 A Non-Work-Conserving Scheduling Algorithm

A T-L plane-based scheduling algorithm is shown in Algorithm 1. The key
idea of the algorithm is to use two linked lists—e.g., ³ and Qrun. ³ is for tasks
on the T-L plane and Qrun is a list of running tasks.

All tasks causing an event-C by reaching the NLLD are inserted (or pushed)
into the front of Qrun, as in line 9 to 14, and the other running tasks are
inserted (or pushed) into the back of Qrun. Thus, the tasks on NLLD are
stacked from the front of Qrun, as illustrated in Figure 12. This ensures that
at an event-C, the task at the back is not on NLLD and should be removed
first, which simply takes O(1) computational cost. Note that the number of
tasks on the NLLD does not exceed M according to Theorem 15 and thus, the
size of Qrun never exceeds M . The replaced task t2 is inserted into the front
of ³ as in line 13, since t2 is still active.

The task causing an event-B turns into the inactive state, and it is removed
from Qrun and inserted into the back of ³. Then, if the task from the front of
³ is active (or has non-zero local remaining execution time), it is inserted into
the front of Qrun. If the task from the front of ³ is inactive (or has zero local
remaining execution time), it is inserted into the back of ³.

At the period boundary of each task, all tasks’ local remaining execution
times, li, are determined by calling decideLocalParameters(), which is the

19

Algorithm 1: A Non-Work-Conserving Approach

Input : T={T1,...,TN}, tasks in ready state1

Output : Array of dispatched tasks to processors2

M-# of processors3

³ - Ready queue,4

Qrun - Queue for running tasks,5

- Maximal size of Qrun is M ,6

li - Local remaining execution time of Ti,7

t1, t2 - Temporary variables for tasks8

if event-C then9

t1 = getTaskOfThisEvent();10

erase(t1, ³);—————————; remove a task t1 from ³11

t2 = pop-back(Qrun);—————-; take a task out from the back of Qrun12

push-front(t2, ³);——————; push a task t2 into the front of ³13

push-front(t1, Qrun);————-; push a task t1 into the front of Qrun14

else if event-B then15

t1 = getTaskOfThisEvent();16

erase(t1, Qrun);———————-; remove a task t1 from Qrun17

push-back(t1, ³);——————–; push a task t1 into the back of ³18

t2 = pop-front(³);——————; take a task out from the front of ³19

if t2 is not NULL then20

if t2 has li greater than zero then21

push-back(t2, Qrun);——; push a task t2 into the back of Qrun22

else23

push-front(t2, ³);———–; push a task t2 into the front of ³24

else if period of each task then25

decideLocalParameters(³); ——; set all li’s26

clear(Qrun);27

for i Ã 1 to M do28

Ti = pop-front(³);————; take a task out from the front of ³29

push-back(Ti, Qrun);———–; push a task Ti into the back of Qrun30

return Qrun;31

Fig. 12. Operations of Algorithm 1

20

LD-P step. As proved in Theorem 15, LD-P should determine li of all tasks to
satisfy the inequality, S(t0) ≤ M . We adopt a part of Zhu’s algorithm (or BF
algorithm) in [7] for LD-P. The BF algorithm allocates some mandatory time
units to each task, and one optional time unit to the eligible tasks at each
boundary time (i.e., for each period of the task). Here, each task’s li is defined
as the sum of the mandatory time unit and the optional time unit by the BF
algorithm. For an example, suppose there are six tasks and two processors.
Each task is characterized by its execution time and deadline, T1 = (2, 5),
T2 = (3, 15), T1 = (3, 15), T1 = (2, 6), T1 = (20, 30), and T1 = (6, 30). Their
hyper-period, obtained as LCM (least common multiple), is 30. After time 0,
the next task period occurs at 5. Based on Zhu’s algorithm, each task’s local
remaining execution time from time 0 to 5 is computed as 2, 1, 1, 2, 3, and
1. On the first T-L plane, these local remaining execution times should be
consumed. The next task period is at time 6. From time 5 to 6, each task’s
local remaining execution time is determined to be 1, 0, 0, 0, 1, and 0, all of
which should be consumed during time 5 to 6. This is the same example in [7].
A more detailed description of the BF algorithm is found in [7]. After calling
decideLocalParameters(), Qrun and ³ are initialized as shown in line 25 to
28.

In implementation, events C and B are invoked by timer expiration. At the
period boundary of each task, algorithm 1 determines li of the ith task by
calling decideLocalParameters(). As li is determined, the local laxity, (tf −
li), can be easily obtained. Then the selected tasks start consuming li, and
simultaneously the non-selected tasks start consuming their local laxities, (tc−
li), where tc is the current time. Thus, the subsequent scheduling event occurs
at min{mini{li},minj{tc − lj}}, where i is the index for selected tasks and j
is the index for non-selected tasks. Every time the secondary event occurs, the
next secondary event time can be determined in the same way after updating
each task’s li and (tc− li). The update computational complexity is O(N). We
assume that li and (tc − li), two of the states of tasks, are contained in data
structures in the kernel, e.g., process control blocks in Real-time Linux, for
the kernel to easily maintain.

Since a token remains on the bottom line after event-B though its remaining
execution time (not its local remaining execution time) is not zero, the algo-
rithm is a non-work conserving scheduling one, which implies that processors
may be idle even when tasks are present in the ready queue and some proces-
sors are available. We consider a work-conserving scheduling algorithm in the
following section.

The time complexity of this algorithm depends on the operations on Qrun

and ³ as well as on the function decideLocalParameters(). If these are
implemented as linked lists, the time complexities of all insert (push) and
delete (pop) operations are O(1). The operation erase() also costs O(1) since

21

we assume that the kernel notifies the scheduler of the task’s identifier (or its
pointer) when the event-C or B occurs. Thus, the time complexities of the
algorithm are O(1) when event-C or event-B occurs. At period boundaries of
all tasks, on the other hand, the time complexity is determined by the time
complexity of decideLocalParameters() and the for-loop in line 26. The
time complexity of the BF algorithm is known to be O(N) in [7] and therefore
O(max{N,M}) is the time complexity of the entire algorithm.

4.2 A Work-Conserving Scheduling Algorithm

Given the fact that obeying the GLS’s is sufficient for a scheduling algorithm
to provide local feasibility in a T-L plane, algorithm 1 can be modified to be
work-conserving as shown in Algorithm 2. Note that it is an example of the
locally feasible scheduling algorithms. As long as it obeys GLS’s, any priority
assignment can be used.

Algorithm 2 uses three linked lists—e.g., ³k, ³k+1, and Qrun. ³k is for tasks on
the current T-L plane and ³k+1 is for tasks on the next T-L plane. ³k and ³k+1

are switched at the period boundaries of all tasks. Qrun is a list for running
tasks.

In Algorithm 2, we add ei to represent the actual remaining execution time of
Ti. ei is compared with ci that is updated after LD-P in line 26. ci represents
the remaining execution time after Ti consumes its allocated time by LD-P.
The work-conserving policy that allows no processor idle time implies that ei
and ci could be different. If ei is greater than ci, the token of Ti is active so
the task should be inserted into the front of ³k+1 as in line 32. Otherwise, it is
inserted into the back of ³k+1. Therefore, after every task’s period, all active
tasks are collected at the front of ³k and all inactive tasks are collected at the
back. Even after all tokens in ³k become inactive, a task can be moved into
Qrun to run if some processors are available, as shown in line 23, which makes
it work-conserving. The time complexity of Algorithm 2 is O(max{N,M}),
the same as that of Algorithm 1. Table 1 is the summary of time complexities
of the scheduling algorithms described in this paper.

4.3 Algorithm Overhead

One of the main concerns against global scheduling algorithms for multipro-
cessors is their overhead caused by frequent scheduler invocations. In [6], Srini-
vasan et al. identify three specific overheads:

(1) Scheduling overhead, which accounts for the time spent by the schedul-

22

Algorithm 2: A Work-Conserving Algorithm

Input : T={T1,...,TN}, tasks in ready state1

Output : Array of dispatched tasks to processors2

M-# of processors3

³k, ³k+1 - Ready queues,4

Qrun - Queue for running tasks,5

- Maximal size of Qrun is M ,6

li - Local remaining execution time of Ti,7

ci - Remaining execution time of Ti,8

ei - Actual remaining execution time of Ti,9

t1, t2 - Temporary variables for tasks10

if event-C then11

t1 = getTaskOfThisEvent();12

erase(t1, ³
k);————————–; remove a task t1 from ³k13

t2 = pop-back(Qrun);—————–; take a task out from the back of Qrun14

push-front(t2, ³
k);——————; push a task t2 into the front of ³k15

push-front(t1, Qrun);—————; push a task t1 into the front of Qrun16

else if event-B then17

t1 = getTaskOfThisEvent();18

erase(t1, Qrun);———————-; remove a task t1 from Qrun19

push-back(t1, ³
k);——————–; push a task t1 into the back of ³k20

t2 = pop-front(³k);—————–; take a task out from the front of ³k21

if t2 is not NULL then22

push-back(t2, Qrun);———-; push a task t2 into the back of Qrun23

else if periods of each task then24

attach(Qrun, ³
k); –; attach Qrun to ³k25

decideLocalParameters(³k); —–; set all li’s26

for i Ã 1 to N do ci=ci-li;27

for i Ã 1 to N do update(ei);28

for i Ã 1 to N do29

t1 = pop-front(³k);————–; take a task out from the front of ³k30

if ei of t1 is greater than its ci then31

push-front(t1,³
k+1);——–; push a task t1 into the front of ³k+132

else push-back(t1,³
k+1);——–; push a task t1 into the back of ³k+133

switchReadyQueue(³k,³k+1);34

clear(Qrun);35

for i Ã 1 to M do36

Ti = pop-front(³k);————; take a task out from the front of ³k37

push-back(Ti, Qrun);———–; push a task Ti into the back of Qrun38

return Qrun;39

23

Table 1
Time Complexity

Scheduling algorithms Time complexity

Zhu’s algorithm [7] O(N)

Non-work-conserving algorithm 1 O(max{N,M})
Work-conserving algorithm 2 O(max{N,M})

ing algorithm, including that for constructing schedules and ready-queue
operations;

(2) Context-switching overhead, which accounts for the time spent in storing
the preempted task’s context and loading the selected task’s context; and

(3) Cache-related preemption delay, which accounts for the time incurred in
recovering from cache misses that a task may suffer when it resumes after
a preemption.

Note that when a scheduler is invoked, the context-switching overhead and
cache-related preemption delay may not happen. Srinivasan et al. also show
that the number of task preemptions can be bounded by observing that when
a task is scheduled (selected) consecutively for execution, it can be allowed
to continue its execution on the same processor. This reduces the number of
context-switches and possibility of cache misses. They bound the number of
task preemptions under Pfair, illustrating how much a task’s execution time
inflates due to the aforementioned overhead. They show that for Pfair, the
overhead depends on the time quantum size.

In contrast to Pfair, T-L plane-based scheduling is free from time quanta.
We here use the number of scheduler invocations as a metric for overhead
measurement, since it is the scheduler invocation that contributes to all three
of the overheads previously discussed. We now derive an upper bound for the
scheduler invocations under T-L plane-based scheduling.

Theorem 16 (Upper-bound on Number of Secondary Events in T-L plane)
When tokens are locally feasible on the T-L plane by Algorithm 1, the number
of events on the plane is bounded within min{N +1, tf/tsys}, where tsys is the
system clock tick.

PROOF. We consider two possible cases, when a token Ti reaches the NLLD,
and when it reaches the bottom. After Ti reaches the NLLD, it will move along
the diagonal to the rightmost vertex of the T-L plane, because we assume that
the tasks are locally feasible. In this case, Ti raises one secondary event, event-
C. Note that its final event-B at the rightmost vertex occurs together with the
next event of another task’s period (i.e., beginning of the new T-L plane).
If Ti reaches the bottom, then the token becomes inactive and will arrive

24

at the right vertex after a while. In this case, it raises one secondary event,
event-B. Therefore, each Ti can cause one secondary event on the T-L plane.
Thus, N number of tokens can cause N + 1 number of events, which includes
N secondary events and a task’s period boundary at the rightmost vertex,
when the system clock tick allows it. When N +1 is greater than tf/tsys, only
tf/tsys number of secondary events can occur since the li’s of all tokens are
determined as integers by LD-P. □

The overhead of Algorithm 2 has a corresponding property except that early
task completions should be considered in a work-conserving scheduling algo-
rithm. However, it is still true that the number of secondary events linearly
depends on N because the number of task completions in a T-L plane cannot
exceed the number of N .

Theorem 17 (Upper bound of the Number of T-L Planes over Time)
When tasks can be feasibly scheduled by Algorithm 1, an upper bound of the
number of the T-L planes in a time interval [ts, te] is:

1 +
N∑

i=1

⌈te − ts
pi

⌉
,

where pi is the period of Ti.

PROOF. Each T-L plane is constructed between two consecutive occurrences
of task period boundaries, as shown in Section 2.2. The number of task period
boundaries during the time between ts and te is

∑N
i=1

⌈
te−ts
pi

⌉
. The number

of the T-L planes in a time interval is at most one more than the number of
task period boundary occurrences. Thus, there can be at most 1+

∑N
i=1

⌈
te−ts
pi

⌉

number of T-L planes between ts and te. □

Theorem 16 and 17 shows that the number of scheduler invocations of Al-
gorithm 1 is primarily dependent on N and pi—i.e., more tasks or shorter
periods of tasks result in increased overhead. In other words, T-L plane-based
approaches have overhead similar to that of many other traditional real-time
scheduling algorithms. The overhead of EDF, for example, also increases as
the number of tasks grows or the periods of tasks become shorter.

The number of scheduler invocations of the Pfair algorithm depends upon the
time quantum size Q. In a time interval [ts, te], the number of Pfair scheduler
invocations is ⌊ te−ts

Q
⌋. Thus, the overhead of Pfair does not depend on N

or each pi. When the time quantum becomes shorter, the overhead of Pfair
increases as opposed to T-L plane-based approaches.

25

4.4 Comparison

T-L plane-based scheduling consists of two phases, LD-P and LS-P. We pro-
pose LSA’s for LS-P and adopt a part of Zhu’s algorithm for LD-P. Zhu’s algo-
rithm utilizes McNaughton’s rule for LS-P. Therefore, we first compare LSA’s
to McNaughton’s rule for LS-P. Subsequently, we describe several properties
of Zhu’s algorithm for LD-P, which our algorithms partly inherit for LD-P.

McNaughton’s rule that Zhu et al. uses for local scheduling was originally pro-
posed to minimize the schedule length [14]. This scheduling problem is denoted
as R∣pmtn∣Cmax. The minimal schedule lengthD is given asmax{∑N

i=1 li(0)/M,maxi{li(0)}}
within a local schedule by McNaughton’s rule, where N is the number of tasks
and M is the number of processors. After ordering tasks arbitrarily, tasks are
assigned to a processor to fill up to time D before tasks start being assigned
to another processor.

Whereas McNaughton’s rule provides the minimal schedule length, it may
cause unnecessary migration for some cases. For example, when three proces-
sors and three tasks are given and each task’s li(0) is {3, 2, 2} within a time
interval [0, 3], D is calculated as 3. McNaughton’s rule assigns T1 to processor
1. Then, it assigns T2 to processor 2 and assigns T3 to processor 2 to fill up
processor 2 to time 3. After filling up processor 2, it assigns the remaining
part of T3 to processor 3, which consequently causes a migration of T3 from
processor 2 to processor 3. In contrast, T-L plane-based local scheduling al-
gorithms proposed in this paper do not cause this migration for this example
since they would simply assign T3 to processor 3 at the beginning. It is because
T-L plane-based local scheduling is designed to make all tasks locally feasible.
This scheduling problem is denoted as R∣pmtn∣feasible.

Above all, the GLS for LSA’s gives significant flexibility to local scheduling
design. For instance, when resource sharing constraints would be considered,
the GLS would be a minimum requirement for a possible local scheduling
algorithm to satisfy. Again, local scheduling algorithms for a periodic task set
can be designed to follow the GLS, the sufficient condition for local feasibility.

[7] characterizes the BF algorithm against the Pfair algorithm with several
experimental results. Experimentally, BF has fewer scheduling events than
Pfair does, especially when the maximum period of tasks becomes longer or
the number of tasks becomes smaller. In addition, BF uses less processing
time to generate the whole schedule than Pfair when the number of tasks is
less than 100 because of fewer events. Our algorithms use BF for LD-P and
the comparison against Pfair does not deviate much from [7]. Thus, in the
following section, we focus on evaluating our algorithms against BF’s local
schedule experimentally, rather than comparing with Pfair.

26

5 Experimental Evaluation

We conducted simulation-based experimental studies to compare T-L plane-
based scheduling algorithms to some existing algorithms, and to validate our
analytical results on overhead.

Comparison with McNaughton’s rule [14]. Zhu’s algorithm in [7] uses
McNaughton’s rule for local scheduling. We compare Algorithm 1 to Mc-
Naughton’s rule for local scheduling. We first consider four processors and
local scheduling within a time interval [0, 10]. We randomly generate tasks
to be subject to D that is given as {2, 4, 6, 8, 10}. Several experiments are
repeated and we show the results with a 95% confidence interval.

Figure 13(a) shows the number of migrations over varying D. Over all D,
our algorithm generates fewer migrations than McNaughton’s rule. However,
we observe that McNaughton’s rule always produces the minimum schedule
lengths D, while our algorithm’s schedule lengths are a little longer (but never
exceed the time interval, 10) in Figure 13(b). This implies that McNaughton’s
rule may incur unnecessary migrations in order to minimize the schedule
length, which is its original scheduling objective, as discussed in Section 4.4.
We observe the similar results for the case of eight processors in Figure 14(a)
and 14(b). However, the objective of our scheduling approach is different from
McNaughton’s—it is to complete all the tasks by their deadlines.

2 4 6 8 10
0

1

2

3

4

N
um

be
r o

f M
ig

ra
to

in
s

D

 McNaughton's Rule
 Algorithm under GLS

(a) Number of Migration

2 4 6 8 10

2

4

6

8

10

M
ax

im
um

 S
ch

ed
ul

e
Le

ng
th

D

 McNaughton's Rule
 Algorithm under GLS

(b) Maximum Schedule Length

Fig. 13. Comparison with Four Processors

Overhead. To validate our analytical results on overhead, we considered an
SMP machine with two processors, and several tasks running on the system.
To evaluate the overhead in terms of the number of scheduler invocations, we
define the scheduler invocation frequency as the number of scheduler invoca-
tions during a time interval [ts, te] divided by [ts, te]. We set [ts, te] as 30 and
we also set the system clock tick tsys as 1. The total utilization is at most 2,
the capacity of processors.

27

2 4 6 8 10
0

1

2

3

4

5

6

7

8

N
um

be
r o

f M
ig

ra
tio

ns

D

 McNaughton's Rule
 Algorithm under GLS

(a) Number of Migration

2 4 6 8 10

2

4

6

8

10

M
ax

im
um

 S
ch

ed
ul

e
Le

ng
th

D

 McNaughton's Rule
 Algorithm under GLS

(b) Maximum Schedule Length

Fig. 14. Comparison with Eight Processors

5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

fre
qu

en
cy

 (p
er

 ti
ck

)

pmin

(a)

4 6 8 10 12 14 16
0.2

0.3

0.4

0.5

0.6

fre
qu

en
cy

 (p
er

 ti
ck

)

The Number of Tasks (N)

(b)

Fig. 15. Scheduler Invocation Frequency

First, we randomly select task periods between 5 and 30 and the number of
tasks around 5. Figure 15(a) shows that the actual frequency increases when
the minimum task period pmin (= min{p1, ..., pN}) becomes shorter. Second,
we increase the number of tasks and Figure 15(b) shows that more running
tasks leads to more scheduler invocations. In Figure 15, the error bar around
each data point represents 95% confidence interval of that data point.

As Theorems 16 and 17 indicates, we observe that the smaller pmin and N
proportionally affect the overhead. Thus, our experimental results validate
our analytical results.

6 Conclusions

We introduce a novel abstraction for reasoning about timeliness of independent
periodic task execution behavior on multiprocessors, called T-L plane. The

28

abstraction allows viewing multiprocessor scheduling as scheduling on repeat-
edly occurring T-L planes, and correct scheduling on a single T-L plane leads
to an optimal solution for all times. For a single T-L plane, we analytically
show a sufficient condition, called GLS, to provide a locally feasible schedule.
Based on these, we propose two examples of T-L plane-based real-time schedul-
ing algorithms, which include non-work-conserving and work-conserving ap-
proaches. We also establish that the algorithm overhead is bounded in terms
of the number of scheduler invocations, which is validated by our experimental
(simulation) results. We experimentally show that our T-L plane-based local
scheduling approach outperforms an existing approach in terms of the number
of task migrations.

We believe that T-L plane-based algorithms are flexible to accommodate more
relaxed task models having different aspects of our task model such as arrival
pattern, time constraint, execution time, and dependency properties.

Since the scheduling in this paper is under an assumption that the next period
time is known beforehand at the current period time, which allows a T-L plane
to be established between those two adjacent events, it is not directly appli-
cable to a sporadic task model, for example. For the sporadic task model, the
T-L plane can be established between the current period time and the earliest
possible time of the next period, and then the T-L plane scheduling algorithm
can be applied within the time interval. After the earliest possible time of the
next period, a different scheduling algorithm may be needed up to the time
when the task actually arrives. Ascertaining the validity of that speculation,
and making such a scheduling algorithm simple and efficient enough is an
important future research direction.

7 Acknowledgements

This work was supported by the U.S. Office of Naval Research under Grant
N00014-00-1-0549 and by The MITRE Corporation under Grant 52917. E.
Douglas Jensen’s participation was supported by the MITRE Technology Pro-
gram. A preliminary version of this paper appeared as “An Optimal Real-Time
Scheduling Algorithm for Multiprocessors,” H. Cho, B. Ravindran, and E. D.
Jensen, IEEE Real-Time Systems Symposium (RTSS), December 2006.

References

[1] QNX, ”Symmetric Multiprocessing”, http://www.qnx.com/products/rtos/

smp.html, Last accessed October 2005.

29

[2] C. L. Liu, ”Scheduling Algorithms for Multiprocessors in a Hard Real-time
Environment”, JPL Space Programs Summary, pp. 28-37, 1969.

[3] J. Carpenter, S. Funk and others, ”A categorization of real-time multiprocessor
scheduling problems and algorithms”, Handbook on Scheduling Algorithms,
Methods, and Models, pp.30.1-30.19, Chapman Hall/CRC, 2004.

[4] S. Baruah, N. Cohen, C. G. Plaxton, D. Varvel, ”Proportionate Progress: A
Notion of Fairness in Resource Allocation,” Algorithmica, vol.15, pp.600, 1996.

[5] U. C. Devi, J. Anderson, ”Tardiness Bounds for Global EDF Scheduling on a
Multiprocessor,” IEEE RTSS, pp.330-341, 2005.

[6] A. Srinivasan, P. Holman, J. H. Anderson, S. Baruah, ”The Case for Fair
Multiprocessor Scheduling”, IEEE Workshop on Parallel and Distributed Real-
Time Systems, pp.114.1, April, 2003.

[7] D. Zhu, D. Mosse, R. Melhem, ”Multiple-Resource Periodic Scheduling
Problem: how much fairness is necessary?”, ”Proceedings of the 24th IEEE
International Real-Time Systems Symposium, 2003.

[8] J. Anderson, V. Bud, U. C. Devi, ”An EDF-based Scheduling Algorithm for
Multiprocessor Soft Real-Time Systems,” IEEE ECRTS, pp.199-208, July, 2005.

[9] Philip Holman, James H. Anderson, ”Adapting Pfair Scheduilng for Symmetric
Multiprocessors”, Journal of Embedded Computing, to appear.

[10] A. Chandra, M. Adler, P. Shenoy, ”Deadline Fair Scheduling: Bridging the
Theory and Practice of Proportionate Fair Scheduling in Multiprocessor
Systems”, IEEE Real-Time Technology and Applications Symposium (RTAS),
2001.

[11] J. Goossens, S. Funk, S. Baruah, ”Priority-Driven Scheduling of Periodic Tasks
Systems on Multiprocessors,” Real-Time Systems, vol.25, no.2-3, pp.187-205,
2003.

[12] M. L. Dertouzos, A. K. Mok, ”Multiprocessor On-Line Scheduling of Hard
Real-Time Tasks”, IEEE Transactions on Software Engineering, vol.15, no.12,
pp.1497-1506, December 1989.

[13] P. Holman, J. Anderson, ”Adapting Pfair Scheduling for Symmetric
Multiprocessors”, Journal of Embedded Computing, vol.1, no.4, pp.543-564,
2005.

[14] R. McNaughton, ”Scheduling with deadlines and loss functions”, Management
Science, 6:1-12, 1959.

30

