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Abstract
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1 Introduction

1.1 Utility Accrual Real-Time Scheduling

There are embedded real-time systems in many domains, such as robotic sys-
tems in the space domain (e.g., NASA/JPL’s Mars Rover [1]) and control
systems in the defense domain (e.g., airborne trackers [2]), which are funda-
mentally distinguished by the fact that they operate in environments with dy-
namically uncertain properties. These uncertainties include transient and sus-
tained resource overloads due to context-dependent activity execution times
and arbitrary activity arrival patterns. Nevertheless, such systems desire the
strongest possible assurances on activity timeliness behavior. Another impor-
tant distinguishing feature of almost all of these systems is their relatively long
task execution time magnitudes—e.g., in the order of milliseconds to minutes.

When resource overloads occur, meeting deadlines of all activities is impossible
as the demand exceeds the supply. The urgency of an activity is typically or-
thogonal to its relative importance—e.g., the most urgent activity can be the
least important, and vice versa; the most urgent can be the most important,
and vice versa. Hence when overloads occur, completing the most important
activities irrespective of activity urgency is often desirable. Thus, a clear dis-
tinction has to be made between urgency and importance during overloads.
During under-loads, such a distinction need not be made, because deadline-
based scheduling algorithms such as EDF are optimal (on one processor) [3].

Deadlines by themselves cannot express both urgency and importance. Thus,
we consider the abstraction of time/utility functions (or TUFs) [4] that express
the utility of completing an application activity as a function of that activity’s
completion time. We specify a deadline as a binary-valued, downward “step”
shaped TUF; Figure 1(a) shows examples. Note that a TUF decouples impor-
tance and urgency—i.e., urgency is measured as a deadline on the X-axis, and
importance is denoted by utility on the Y-axis.
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Fig. 1. Example TUF Time Constraints: (a) Step TUFs; (b) AWACS TUF [2]; and
(c) Coastal Air defense TUFs [5]

Many embedded real-time systems also have activities that are subject to non-
deadline time constraints, such as those where the utility attained for activity
completion varies (e.g., decreases, increases) with completion time. This is in
contrast to deadlines, where a positive utility is attained for completing the ac-
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tivity anytime before the deadline, after which zero, or infinitely negative util-
ity is attained. Figures 1(a)-1(c) show examples of such time constraints from
two real applications (see [2] and references therein for application details).
For example, in [2], Clark at. al. discuss an AWACS tracker application which
collects radar sensor reports, identifies airborne objects (or “track objects”)
in them, and associates those objects to track states that are maintained in
a track database. Here, each job of a track association task has a TUF time
constraint, and all jobs of the same task have the same time constraint. The
tracker is routinely overloaded, so the collective timeliness optimality criterion
is to meet as many job deadlines (or termination times) as possible, and to
maximize the total utility obtained from the completion of as many jobs as
possible. Another example timeliness requirement is found in a NASA/JPL
Mars Science Lab Rover application—scheduling of processor cycles for the
Mission Data System (MDS) [1]. Additional key features of this application
include transient and permanent processor cycle overloads, and activity time
scales (e.g., frequency of constructing MDS schedules) that are of the order of
minutes.

When activity time constraints are specified using TUFs, which subsume dead-
lines, the scheduling criteria are based on accrued utility, such as maximizing
sum of the activities’ attained utilities. We call such criteria, utility accrual
(or UA) criteria, and scheduling algorithms that optimize them UA scheduling
algorithms.

On single processors, UA algorithms that maximize accrued utility for down-
ward step TUFs (see algorithms in [6]) default to EDF during under-loads,
since EDF satisfies all deadlines during under-loads. Consequently, they obtain
the maximum possible accrued utility during under-loads. During overloads,
they favor more important activities (since more utility can be attained from
them), irrespective of urgency. Thus, deadline scheduling’s optimal timeliness
behavior is a special case of UA scheduling.

1.2 Real-time Scheduling on Multiprocessors

Multiprocessor architectures—e.g., Symmetric Multi-Processors (SMPs), Sin-
gle Chip Heterogeneous Multiprocessors (SCHMs)—are recently becoming
more attractive for embedded systems because they are significantly decreas-
ing in price. This makes them very desirable for embedded system applications
with high computational workloads, where additional, cost-effective process-
ing capacity is often needed. Responding to this trend, (real-time operat-
ing system) RTOS vendors are increasingly providing multiprocessor platform
support—e.g., QNX Neutrino is now available for a variety of SMP chips [7].
But this exposes the critical need for real-time scheduling for multiprocessors—
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a comparatively undeveloped area of real-time scheduling which has recently
received significant research attention, but is not yet well supported by the
RTOS products. Consequently, the impact of cost-effective multiprocessor
platforms for embedded systems remains nascent.

One highly developed class of multiprocessor scheduling algorithms is static
scheduling of a program represented by a directed task graph on a multiproces-
sor system to minimize the program completion time [8]. In contrast to that,
the class of multiprocessor scheduling algorithms our work is in seeks to satisfy
tasks’ completion time constraints (such as deadlines) by performing dynamic
(i.e., run-time) task assignment to processors and dynamic scheduling of the
tasks on each processor.

One unique aspect of multiprocessor scheduling is the degree of run-time mi-
gration that is allowed for job instances of a task across processors (at schedul-
ing events). Example migration models include: (1) full migration, where
jobs are allowed to arbitrarily migrate across processors during their execu-
tion. This usually implies a global scheduling strategy, where a single shared
scheduling queue is maintained for all processors and a system-wide scheduling
decision is made by a single (global) scheduling algorithm; (2) no migration,
where tasks are statically (off-line) partitioned and allocated to processors. At
run-time, job instances of tasks are scheduled on their respective processors
by processors’ local scheduling algorithm, like single processor scheduling; and
(3) restricted migration, where some form of migration is allowed—e.g., at job
boundaries.

Carpentar et al. [9] have catalogued multiprocessor real-time scheduling al-
gorithms considering the degree of job migration. The Pfair class of algo-
rithms [10] that allow full migration have been shown to achieve a schedu-
lable utilization bound (below which all tasks meet their deadlines) that
equals the total capacity of all processors—thus, they are theoretically optimal.
However, Pfair algorithms incur significant overhead due to their quantum-
based scheduling approach [11]. Thus, scheduling algorithms other than Pfair
(e.g., global EDF) have also been studied though their schedulable utilization
bounds are lower.

Global EDF scheduling on multiprocessors is subject to the “Dhall effect” [12],
where a task set with total utilization demand arbitrarily close to one can-
not be scheduled so as to satisfy all deadlines. To overcome this, researchers
have studied global EDF’s behavior under restricted individual task utiliza-
tions. For example, on M processors, Srinivasan and Baruah show that when
the maximum individual task utilization, umax, is bounded by M/ (2M − 1),
EDF’s utilization bound is M2/ (2M − 1) [13]. In [14], Goossens et. al show
that EDF’s utilization bound is M − (M − 1) umax. This work was later ex-
tended by Baker for the more general case of deadlines less than or equal to
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periods in [15]. In [16], Bertogna et al. show that Baker’s utilization bound
does not dominate the bound of Goossens et. al, and vice versa.

While most of these past works focus on the hard real-time objective of al-
ways meeting all deadlines, recently there have been efforts that consider the
soft real-time objective of bounding the tardiness of tasks. In [17], Srinivasan
and Anderson derive a tardiness bound for a suboptimal Pfair scheduling algo-
rithm. In [25], for a restricted migration model where migration is allowed only
at job boundaries, Andersen et. al present an EDF-based partitioning scheme
and scheduling algorithm that ensures bounded tardiness. In [11], Devi and
Anderson derive the tardiness bounds for global EDF when the total utiliza-
tion demand of tasks may equal the number of available processors.

1.3 Contributions

In this paper, we consider the problem of global UA scheduling on an SMP
system with M number of identical processors in environments with dynam-
ically uncertain properties. By dynamic uncertainty, we mean operating in
environments where arrival and execution behaviors of tasks are subject to
run-time uncertainties, causing resource overloads. Nonetheless, such systems
desire the strongest possible assurances on task timing behaviors—both that
of individual activities behavior and that of collective, system-wide behavior.
Statistical assurances are appropriate for these systems.

Multiprocessor scheduling should determine which processor each task should
be assigned to for execution (the allocation problem) and in which order
tasks should start execution at each processor (the scheduling problem). Our
scheduling algorithm does both.

Real-time scheduling for multiprocessors is categorized into: global scheduling,
where all jobs are scheduled together based on a single queue for all proces-
sors; partitioned scheduling, where tasks are assigned to processors, and each
processor is scheduled separately. We consider global multiprocessor schedul-
ing (that allows full migration as opposed to partitioned scheduling) because
of its improved schedulability and flexibility [18]. Further, in many embedded
architectures (e.g., those with no cache), its migration overhead has a lower
impact on performance [16]. Moreover, applications of interest to us [1,2] are
often subject to resource overloads, during when the total application utiliza-
tion demand exceeds the total processing capacity of all processors. When
that happens, we hypothesize that global scheduling has greater scheduling
flexibility, resulting in greater accrued activity utility, than does partitioned
scheduling.

We consider repeatedly occurring application activities (e.g., tasks) that are
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subject to TUF time constraints, variable execution times, and overloads. To
account for uncertainties in activity execution behaviors, we employ a stochas-
tic model for activity demand and execution. Activities repeatedly arrive with
a known minimum inter-arrival time. For such a model, our objective is to:
(1) provide statistical assurances on individual activity timeliness behavior
including probabilistically-satisfied lower bounds on each activity’s maximum
utility; (2) provide assurances on system-level timeliness behavior including
an assured lower bound on the sum of the activities’ attained utilities; and
(3) maximize the sum of activities’ attained utilities.

This problem has not been studied in the past and is NP-hard. We present
a polynomial-time, heuristic algorithm for the problem called the global Mul-
tiprocessor Utility Accrual (gMUA) scheduling algorithm. We establish sev-
eral properties of gMUA including optimal total utility for the special case
of downward step TUFs and application utilization demand not exceeding
global EDF’s utilization bound—conditions under which individual activity
utility lower bounds are satisfied, and a lower bound is established on system-
wide total accrued utility. We also show that the algorithm’s assurances have
bounded sensitivity to variations in execution time demand estimates, in the
sense that the assurances hold as long as the variations satisfy a sufficient con-
dition that we present. Further, we show that the algorithm is robust against
a variant of the Dhall effect.

Thus, the contribution of this paper is the gMUA algorithm. We are not aware
of any other efforts that solve the problem solved by gMUA.

The rest of the paper is organized as follows: Section 2 describes our models
and scheduling objective. In Section 3, we discuss the rationale behind gMUA
and present the algorithm. We describe the algorithm’s properties in Section 4.
We report our simulation-based experimental studies in Section 5. The paper
concludes in Section 6.

2 Models and Objective

2.1 Activity Model

We consider the application to consist of a set of tasks, denoted T={T1, T2, ...,
Tn}. Each task Ti has a number of instances, called jobs, and these jobs may
be released either periodically or sporadically with a known minimal inter-
arrival time. The jth job of task Ti is denoted as Ji,j. The period or minimal
inter-arrival time of a task Ti is denoted as pi.
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We initially assume that all tasks are independent—i.e., they do not share any
resource or have any precedences.

The basic scheduling entity that we consider is the job abstraction. Thus, we
use J to denote a job without being task specific, as seen by the scheduler at
any scheduling event.

A job’s time constraint is specified using a TUF. Jobs of the same task have
the same TUF. We use Ui() to denote the TUF of task Ti. Thus, completion
of the job Ji,j at time t will yield an utility of Ui(t).

TUFs can be classified into unimodal and multimodal functions. Unimodal
TUFs are those for which any decrease in utility cannot be followed by an
increase. Figure 1 shows examples. TUFs which are not umimodal are mul-
timodal. In this paper, we focus on non-increasing unimodal TUFs, as they
encompass majority of the time constraints in our motivating applications.

Each TUF Ui of Ji,j has an initial time tIi,j and a termination time tXi,j. Initial
and termination times are the earliest and the latest times for which the TUF
is defined, respectively. We assume that tIi,j is the arrival time of job Ji,j, and
tXi,j − tIi,j is the period or minimal inter-arrival time pi of the task Ti. If Ji,j’s
tXi,j is reached and execution of the corresponding job has not been completed,
an exception is raised, and the job is aborted.

2.2 Job Execution Time Demands

We estimate the statistical properties, e.g., distribution, mean, variance, of job
execution time demand rather than the worst-case demand because: (1) appli-
cations of interest to us [1,2] exhibit a large variation in their actual workload.
Thus, the statistical estimation of the demand is much more stable and hence
more predictable than the actual workload; (2) worst-case workload is usually
a very conservative prediction of the actual workload [19], resulting in resource
over-supply; and(3) allocating execution times based on the statistical estima-
tion of tasks’ demands can provide statistical performance assurances, which
is sufficient for our motivating applications.

Let Yi be the random variable of a task Ti’s execution time demand. Esti-
mating the execution time demand distribution of the task involves two steps:
(1) profiling its execution time usage, and (2) deriving the probability dis-
tribution of that usage. A number of measurement-based, off-line and online
profiling mechanisms exist (e.g., [20]). We assume that the mean and variance
of Yi are finite and determined through either online or off-line profiling.

We denote the expected execution time demand of a task Ti as E(Yi), and the
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variance on the demand as V ar(Yi).

2.3 Statistical Timeliness Requirement

We consider a task-level statistical timeliness requirement—each task must
attain some percentage of its maximum possible utility with a certain prob-
ability. For a task Ti, this requirement is specified as {νi, ρi}, which implies
that Ti must attain at least νi percentage of its maximum possible utility with
the probability ρi. This is also the requirement for each job of Ti. Thus, for
example, if {νi, ρi} = {0.7, 0.93}, then Ti must attain at least 70% of its max-
imum possible utility with a probability no less than 93%. For step TUFs, ν
can only take the value 0 or 1. Note that the objective of always satisfying all
task deadlines is the special case of {νi, ρi} = {1.0, 1.0}.

This statistical timeliness requirement on the utility of a task implies a corre-
sponding requirement on the range of its job sojourn times. 1 Since we focus on
non-increasing unimodal TUFs, upper-bounding job sojourn times will lower-
bound job and task utilities.

2.4 Scheduling Objective

We consider a two-fold scheduling criterion: (1) assure that each task Ti at-
tains the specified percentage νi of its maximum possible utility with at least
the specified probability ρi; and (2) maximize the system-level total accrued
utility. We also desire to obtain a lower bound on the system-level total ac-
crued utility. When it is not possible to satisfy ρi for each task (e.g., due to
overloads), our objective is to maximize the system-level total accrued utility.

This problem is NP-hard because it subsumes the NP-hard problem of
scheduling dependent tasks with step TUFs on one processor [21].

1 A job’s sojourn time is defined as the time interval from the job’s release to its
completion.
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3 The gMUA Algorithm

3.1 Bounding Accrued Utility

Let si,j be the sojourn time of the jth job of task Ti. Task Ti’s statistical
timeliness requirement can be represented as Pr(Ui(si,j) ≥ νi × Umax

i ) ≥ ρi,
where Umax

i is the maximum value of Ui(). Since TUFs are assumed to be non-
increasing, it is sufficient to have Pr(si,j ≤ Di) ≥ ρi, where Di is the upper
bound on the sojourn time of task Ti. We call Di the “critical time” hereafter,
and it is calculated as Di = U−1

i (νi×Umax
i ), where U−1

i (x) denotes the inverse
function of TUF Ui(). Thus, Ti is (probabilistically) assured to attain at least
the utility percentage νi = Ui(Di)/U

max
i , with the probability ρi.

3.2 Bounding Utility Accrual Probability

Since task execution time demands are stochastically specified (through means
and variances), we need to determine the actual execution time that must be
allocated to each task, such that the desired utility attained probability ρi is
satisfied. Further, this execution time allocation must account for the uncer-
tainty in the execution time demand specification (i.e., the variance factor).

Given the mean and the variance of a task Ti’s execution time demand Yi, by
a one-tailed version of the Chebyshev’s inequality, when y ≥ E(Yi), we have:

Pr[Yi < y] ≥ (y − E(Yi))
2

V ar(Yi) + (y − E(Yi))2
(1)

From a probabilistic point of view, Equation 1 is the direct result of the
cumulative distribution function of task Ti’s execution time demands—i.e.,
Fi(y) = Pr[Yi ≤ y]. Recall that each job of task Ti must attain νi percentage of
its maximum possible utility with a probability ρi. To satisfy this requirement,

we let ρ′i = Pr[Yi < Ci] = (Ci−E(Yi))
2

V ar(Yi)+(Ci−E(Yi))2 ≥ ρi and obtain the minimum

required execution time Ci = E(Yi) +
√

ρ′i×V ar(Yi)
1−ρ′i

.

Thus, the gMUA algorithm allocates Ci execution time units to each job Ji,j
of task Ti, so that the probability that job Ji,j requires no more than the
allocated Ci execution time units is at least ρi—i.e., Pr[Yi < Ci] ≥ ρ′i ≥ ρi.

We set ρ′i = (max {ρi}) 1
n , ∀i to satisfy requirements given by ρi. Supposing

that each task is allocated Ci time within its pi, the actual demand of each
task often varies. Some jobs of the task may complete their execution before
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using up their allocated time, and the others may not. gMUA probabilistically
schedules the jobs of a task Ti to provide assurance probability ρ′i (≥ ρi) as
long as they are satisfying a certain feasibility test.

Fig. 2. Transformation Array and gMUA

Figure 2 shows our method of transforming the stochastic execution time
demand (E(Yi) and V ar(Yi)) into execution time allocation Ci. The values
after the transformation are utilized as reference parameters by gMUA, the
following scheduling algorithm. Note that this transformation is independent
of our proposed scheduling algorithm.

3.3 Algorithm Description

gMUA’s scheduling events include job arrival and job completion. To describe
gMUA, we define the following variables and auxiliary functions:

• ζr: current job set in the system, including running jobs and unscheduled
jobs.
• σtmp, σa: a temporary schedule; σm: schedule for processor m, where m ≤M .
• Jk.C(t): Jk’s remaining allocated execution time.
• offlineComputing() is computed at time t = 0 once. For a task Ti, it

computes Ci as Ci = E(Yi) +
√

ρi×V ar(Yi)
1−ρi .

• UpdateRAET(ζr) updates the remaining allocated execution time of all jobs
in the set ζr.
• feasible(σ) returns a boolean value denoting schedule σ’s feasibility; feasible(Jk)
denotes job Jk’s feasibility. For σ (or Jk) to be feasible, the predicted com-
pletion time of each job in σ (or Jk), must not exceed its critical time.
• sortByECF(σ) sorts jobs of σ in the order of earliest critical time first.
• findProcessor() returns the ID of the processor on which the currently
assigned tasks have the shortest sum of allocated execution times.
• append(Jk,σ) appends job Jk at the end of schedule σ.
• remove(Jk,σ) removes job Jk from schedule σ.
• removeLeastPUDJob(σ) removes job with the least potential utility density
(PUD) from schedule σ. PUD is the ratio of the expected job utility (ob-
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tained when job is immediately executed to completion) to the remaining

job allocated execution time—i.e., the PUD of a job Jk is Uk(t+Jk.C(t))
Jk.C(t)

. Thus,
PUD measures the job’s “return on investment.” This function returns the
removed job.
• headOf(σm) returns the set of jobs that are at the head of schedule σm,
1 ≤ m ≤M .

Algorithm 1: gMUA

Input : T={T1,...,TN}, ζr={J1,...,Jn}, M:# of processors1

Output : array of dispatched jobs to processor p, Jobp2

Data: {σ1, ..., σM}, σtmp, σa3

offlineComputing(T);4

Initialization: {σ1, ..., σM} = {0, ..., 0};5

UpdateRAET(ζr);6

for ∀Jk ∈ ζr do7

Jk.PUD = Uk(t+Jk.C(t))
Jk.C(t) ;8

σtmp = sortByECF( ζr );9

for ∀Jk ∈ σtmp from head to tail do10

if Jk.PUD > 0 then11

m = findProcessor();12

append(Jk, σm);13

for m = 1 to M do14

σa = null;15

while !feasible( σm) and !IsEmpty( σm ) do16

t = removeleastPUD( σm );17

append( t, σa );18

sortByECF( σa );19

σm += σa;20

{Job1, ..., JobM} = headOf( {σ1, ..., σM} );21

return {Job1, ..., JobM};22

A description of gMUA at a high level of abstraction is shown in Algorithm 1.
The procedure offlineComputing() is included in line 4, although it is exe-
cuted only once at t = 0. When gMUA is invoked, it updates the remaining
allocated execution time of each job. The remaining allocated execution times
of running jobs are decreasing, while those of unscheduled jobs remain con-
stant. The algorithm then computes the PUDs of all jobs.

The jobs are then sorted in the order of earliest critical time first (or ECF),
in line 9. In each step of the for loop from line 10 to line 13, the job with the
earliest critical time is selected to be assigned to a processor. The processor
that yields the shortest sum of allocated execution times of all jobs in its
local schedule is selected for assignment (procedure findProcessor()). The
rationale for this choice is that the shortest summed execution time processor
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results in the nearest scheduling event after assigning each job, and therefore,
it establishes the same schedule as global EDF does. Then, the job Jk with
the earliest critical time is inserted into the local schedule σm of the selected
processor m.

In the for-loop from line 14 to line 20, gMUA attempts to make each local
schedule feasible by removing the lowest PUD job. In line 16, if σm is not
feasible, then gMUA removes the job with the least PUD from σm until σm
becomes feasible. All removed jobs are temporarily stored in a schedule σa
and then appended to each σm in ECF order. Note that simply aborting the
removed jobs may result in decreased accrued utility. This is because the
algorithm may decide to remove a job which is estimated to have a longer
allocated execution time than its actual one, even though it may be able to
attain utility. For this case, gMUA gives the job another chance to be scheduled
instead of aborting it, which eventually makes the algorithm more robust.
Finally, each job at the head of σm, 1 ≤ m ≤ M is selected for execution on
the respective processor.

gMUA’s time cost depends upon that of procedures sortByECF(), findprocessor(),
append(), feasible(), and removeLeastPUDJob(). With n tasks, sortByECF()
costsO(nlogn). For SMPs with a restricted number of processors, findprocessor()’s
costsO(M). While append() costsO(1) time, both feasible() and removeLeastPUDJob()

cost O(n). The while-loop in line 16 iterates at most n times, for an entire
loop cost of O(n2). Thus, the algorithm costs O(Mn2). However, M of con-
temporary SMPs is usually small (e.g., 16) and bounded with respect to the
problem size of number of tasks. Thus, gMUA costs O(n2).

gMUA’s O(n2) cost is similar to that of many past UA algorithms [6]. Our
prior implementation experience with UA scheduling at the middleware level
has shown that the overhead is in the magnitude of sub-milliseconds [22] (sub-
microsecond overheads may be possible at the kernel level). We anticipate a
similar overhead magnitude for gMUA. Though this cost is higher than that of
many traditional algorithms, the cost is justified for applications with longer
execution time magnitudes such as those that we focus on here.

In traditional small scale static hard real-time subsystems, the task time scales
are usually microseconds to milliseconds to even a few seconds. For those time
scales, the time overhead of a scheduling algorithm must be proportionately
low. The time overhead of our many TUF/UA algorithms precludes software
implementations of them from being used in systems with mS-S time scales—
although hardware (e.g., gate array) implementations can be used even down
there.

But our TUF/UA scheduling algorithms are intended for the many important
time-critical applications in the gap between: classical real-time’s mS-S time
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scales; and the classical logistics, job shop, etc. systems’ many minutes to
many hours time scales where proportionately higher cost general scheduling
theory, evolutionary algorithms, and linear programming are used.

The systems in that gap have time scales in the 1 S to few minutes range but
their timeliness requirements are no less–and often more (cf. military combat
systems)—challenging and mission-critical than those of classical real-time
subsystems. These systems have adequate time for TUF/UA scheduling, and
those of interest to us need the benefits of it. 2

4 Algorithm Properties

4.1 Timeliness Assurances

We establish gMUA’s timeliness assurances under the conditions of (1) inde-
pendent tasks that arrive periodically, and (2) task utilization demand satis-
fies any of the feasible utilization bounds for global EDF (GFB, BAK, BCL)
in [16].

Theorem 1 (Optimal Performance with Downward Step Shaped TUFs)
Suppose that only downward step shaped TUFs are allowed under conditions
(1) and (2). Then, a schedule produced by global EDF is also produced by
gMUA, yielding equal accrued utilities. This is a critical time-ordered sched-
ule.

PROOF. We prove this by examining Algorithm 1. In line 9, the queue
σtmp is sorted in a non-decreasing critical time order. In line 12, the function
findProcessor() returns the index of the processor on which the summed
execution time of assigned tasks is the shortest among all processors. Assume
that there are n tasks in the current ready queue. We consider two cases: (1)
n ≤M and (2) n > M . When n ≤M , the result is trivial—gMUA’s schedule
of tasks on each processor is identical to that produced by EDF (every proces-
sor has a single task or none assigned). When n > M , task Ti (M < i ≤ n) will
be assigned to the processor whose tasks have the shortest summed execution
time. This implies that this processor will have the earliest completion for all
assigned tasks up to Ti−1, so that the event that will assign Ti will occur by

2 When UA scheduling is desired with lower overhead, solutions and tradeoffs ex-
ist. Examples include linear-time stochastic UA scheduling [26], and using special-
purpose hardware accelerators for UA scheduling (analogous to floating-point co-
processors) [23].
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this completion. Note that tasks in σtmp are selected to be assigned to pro-
cessors according to ECF. This is precisely the global EDF schedule, as we
consider a TUFs critical time in UA scheduling to be the same as a deadline
in traditional hard real-time scheduling. Under conditions (1) and (2), EDF
meets all deadlines. Thus, each processor always has a feasible schedule, and
the while-block from line 16 to line 18 will never be executed. Thus, gMUA
produces the same schedule as global EDF.

Some important corollaries about gMUA’s timeliness behavior can be deduced
from EDF’s behavior under conditions (1) and (2).

Corollary 2 Under conditions (1) and (2), gMUA always completes the al-
located execution time of all tasks before their critical times.

Theorem 3 (Statistical Task-Level Assurance) Under conditions (1) and
(2), gMUA meets the statistical timeliness requirement {νi, ρi} for each task
Ti.

PROOF. From Corollary 2, all allocated execution times of tasks can be
completed before their critical times. Further, based on the results of Equa-
tion 1, among the actual processor time of task Ti’s jobs, at least ρ′i (≥ ρi)
of them have lesser actual execution time than the allocated execution time.
Thus, gMUA can satisfy at least ρi critical times—i.e., the algorithm attains
νi utility with a probability of at least ρi.

Theorem 4 (System-Level Utility Assurance) Under conditions (1) and
(2), if a task Ti’s TUF has the highest height Umax

i , then the system-level util-
ity ratio, defined as the utility accrued by gMUA with respect to the system’s

maximum possible utility, is at least
ρ1ν1Umax1 /P1+...+ρnνnUmaxn /Pn

Umax1 /P1+...+Umaxn /Pn
.

PROOF. We denote the number of jobs released by task Ti as mi. Each
mi is computed as ∆t

pi
, where ∆t is a time interval. Task Ti can attain at

least νi percentage of its maximum possible utility with the probability ρi.
Thus, the ratio of the system-level accrued utility to the system’s maxi-
mum possible utility is

ρ1ν1Umax1 m1+...+ρnνnUmaxn mn
Umax1 m1+...+Umaxn mn

. Thus, the formula comes

to
ρ1ν1Umax1 /P1+...+ρnνnUmaxn /Pn

Umax1 /P1+...+Umaxn /Pn
.

4.2 Dhall Effect

The Dhall effect [12] shows that there exists a task set that requires nearly
one total utilization demand, but cannot be scheduled to meet all deadlines
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using global EDF even with infinite number of processors. Prior research has
revealed that this is caused by the poor performance of global EDF when the
task set contains both high utilization tasks and low utilization tasks together.
This phenomenon, in general, can also affect UA scheduling algorithms’ per-
formance, and impede such algorithms’ ability to maximize the total accrued
utility. We discuss this with an example inspired from [24]. We consider the
case when the execution time demands of all tasks are constant with no vari-
ance, and gMUA estimates them accurately.

Example A. Consider M + 1 periodic tasks that are scheduled on M pro-
cessors using global EDF. Let task Ti, where 1 ≤ i ≤ M , have pi = Di =
1, Ci = 2ε, and task TM+1 have PM+1 = DM+1 = 1 + ε, CM+1 = 1. We assume
that each task Ti has a downward step shaped TUF with height hi and task
TM+1 has a downward step shaped TUF with height HM+1. When all tasks
arrive at the same time, tasks Ti will execute immediately and complete their
execution 2ε time units later. Task TM+1 then executes from time 2ε to time
1 + 2ε. Since task TM+1’s critical time—we assume here it is the same as its
period—is 1 + ε, it begins to miss its critical time. By letting M →∞, ε→ 0,
hi → 0 and HM+1 → ∞, we have a task set whose total utilization demand
is near one and the maximum possible accrued utility is infinite, but which
finally accrues zero utility even with infinite number of processors.

We call this phenomenon the UA Dhall effect. Conclusively, one of the reasons
why global EDF is inappropriate as a UA scheduling algorithm is that it suffers
this effect. However, gMUA overcomes this phenomenon.

Example B. Consider the same scenario as in Example A, but now, let the
task set be scheduled by gMUA. In Algorithm 1, gMUA first tries to schedule
tasks like global EDF, but it will fail to do so as we saw in Example A.
When gMUA finds that TM+1 will miss its critical time on processor m (where
1 ≤ m ≤M), the algorithm will select a task with lower PUD on processor m
for removal. On processor m, there should be two tasks, Tm and TM+1. Tm is
one of Ti where 1 ≤ i ≤ M . When letting hi → 0 and HM+1 → ∞, the PUD
of task Tm is almost zero and that of task TM+1 is infinite. Therefore, gMUA
removes Tm and eventually accrues infinite utility as expected.

In the case when the Dhall effect occurs, we can establish the UA Dhall effect
by assigning extremely high utility to the task that will be selected and miss
its deadline using global EDF. This implies that the scheduling algorithm
suffering from the Dhall effect will likely suffer from UA Dhall effect, when it
schedules the tasks that are subject to TUF time constraints.

The fact that gMUA is more robust against the UA Dhall effect than is global
EDF can be observed in our simulation experiments (see Section 5).
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4.3 Sensitivity of Assurances

gMUA is designed under the assumption that tasks’ expected execution time
demands and the variances of the demands—i.e., the algorithm inputs E(Yi)
and V ar(Yi)—are correct. However, it is possible that these inputs may have
been miscalculated (e.g., due to errors in application profiling) or that the
input values may change over time (e.g., due to changes in the application’s
execution context). To understand gMUA’s behavior when this happens, we
assume that the expected execution time demands, E(Yi)’s, and their vari-
ances, V ar(Yi)’s, are erroneous, and develop the sufficient condition under
which the algorithm is still able to meet {νi, ρi} for all tasks Ti.

Let a task Ti’s correct expected execution time demand be E(Yi) and its
correct variance be V ar(Yi), and let an erroneous expected demand E ′(Yi)
and an erroneous variance V ar′(Yi) be specified as the input to gMUA. Let
the task’s statistical timeliness requirement be {νi, ρi}. We show that if gMUA
can satisfy {νi, ρi} with the correct expectation E(Yi) and the correct variance
V ar(Yi), then there exists a sufficient condition under which the algorithm can
still satisfy {νi, ρi} even with the incorrect expectation E ′(Yi) and incorrect
variance V ar′(Yi).

Theorem 5 () Assume that gMUA satisfies {νi, ρi},∀i, under correct, ex-
pected execution time demand estimates, E(Yi)’s, and their correct variances,
V ar(Yi)’s. When incorrect expected values, E ′(Yi)’s, and variances, V ar′(Yi)’s,
are given as inputs instead of E(Yi)’s and V ar(Yi)’s, gMUA satisfies {νi, ρi}, ∀i,
if E ′(Yi) + (Ci − E(Yi))

√
V ar′(Yi)
V ar(Yi)

≥ Ci, ∀i, and the task execution time al-

locations, computed using E ′(Yi)’s and V ar′(Yi), satisfy any of the feasible
utilization bounds for global EDF.

PROOF. We assume that if gMUA has correct E(Yi)’s and V ar(Yi)’s as
inputs, then it satisfies {νi, ρi},∀i. This implies that the Ci’s determined by
Equation 1 are feasibly scheduled by gMUA satisfying all task critical times:

ρi =
(Ci − E(Yi))

2

V ar(Yi) + (Ci − E(Yi))2
. (2)

However, gMUA has incorrect inputs, E ′(Yi)’s and V ar′(Yi), and based on
those, it determines C ′is by Equation 1 to obtain the probability ρi,∀i:

ρi =
(C ′i − E ′(Yi))2

V ar′(Yi) + (C ′i − E ′(Yi))2
. (3)
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Unfortunately, C ′i that is calculated from the erroneous E ′(Yi) and V ar′(Yi)
leads gMUA to another probability ρ′i by Equation 1. Thus, although we ex-
pect assurance with the probability ρi, we can only obtain assurance with the
probability ρ′i because of the error. ρ′ is given by:

ρ′i =
(C ′i − E(Yi))

2

V ar(Yi) + (C ′i − E(Yi))2
. (4)

Note that we also assume that tasks with C ′i satisfy the global EDF’s uti-
lization bound; otherwise gMUA cannot provide the assurances. To satisfy
{νi, ρi}, ∀i, the actual probability ρ′i must be greater than the desired proba-
bility ρi. Since ρ′i ≥ ρi,

(C ′i − E(Yi))
2

V ar(Yi) + (C ′i − E(Yi))2
≥ (Ci − E(Yi))

2

V ar(Yi) + (Ci − E(Yi))2
.

Hence, C ′ ≥ Ci. From Equations 2 and 3,

C ′i = E ′(Yi) + (Ci − E(Yi))

√√√√V ar′(Yi)
V ar(YI)

≥ Ci. (5)

Corollary 6 () Assume that gMUA satisfies {νi, ρi},∀i, under correct, ex-
pected execution time demand estimates, E(Yi)’s, and their correct variances,
V ar(Yi)’s. When incorrect expected values, E ′(Yi)’s, are given as inputs instead
of E(Yi)’s but with correct variances V ar(Yi), gMUA satisfies {νi, ρi}, ∀i, if
E ′(Yi) ≥ E(Yi),∀i, and the task execution time allocations, computed using
E ′(Yi)’s, satisfy the feasible utilization bound for global EDF.

PROOF. This can be proved by replacing V ar′(Yi) with V ar(Yi) in Equa-
tion 5.

Corollary 6, a special case of Theorem 5, is intuitively straightforward. It
essentially states that if overestimated demands are feasible, then gMUA can
still satisfy {νi, ρi},∀i. Thus, it is desirable to specify larger E ′(Yi)s as input
to the algorithm when there is the possibility of errors in determining the
expected demands, or when the expected demands may vary with time.

Corollary 7 () Assume that gMUA satisfies {νi, ρi},∀i, under correct, ex-
pected execution time demand estimates, E(Yi)’s, and their correct variances,
V ar(Yi)’s. When incorrect variances, V ar′(Yi)’s, are given as inputs instead
of correct V ar(Yi)’s but with correct expectations E(Yi)’s, gMUA satisfies
{νi, ρi}, ∀i, if V ar′(Yi) ≥ V ar(Yi),∀i, and the task execution time allocations,
computed using E ′(Yi)’s, satisfy the feasible utilization bound for global EDF.
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PROOF. This can be proved by replacing E ′(Yi) with E(Yi) in Equation 5.

5 Experimental Evaluation

We conducted simulation-based experimental studies to validate our analytical
results, and to compare gMUA’s performance with global EDF. We take the
global EDF algorithm as our counterpart since it is one of the global schedul-
ing algorithms, like gMUA, that allows full migration and does not depend on
time quanta. Note that gMUA uses deadline time constraints as opposed to
gMUA which uses TUF time constraints. We consider two cases: (1) the de-
mand of all tasks is constant (i.e., zero variance) and gMUA exactly estimates
their execution time allocation, and (2) the demand of all tasks statistically
varies and gMUA probabilistically estimates the execution time allocation for
each task. The former experiment is conducted to evaluate gMUA’s generic
performance as opposed to EDF, while the latter is conducted to validate
the algorithm’s assurances. The experiments focus on the no dependency case
(i.e., each task is assumed to be independent of others).

5.1 Performance with Constant Demand

We consider an SMP machine with four processors. A task Ti’s period pi(= tXi )
and its expected execution times E(Yi) are randomly generated with uniform
distribution in the range [1,30] and [1, α·pi], respectively, where α is defined as
max{Ci

pi
|i = 1, ..., n} and V ar(Yi) are zero. According to [14], EDF’s feasible

utilization bound depends on α as well as the number of processors. It implies
that no matter how many processors the system has, there exist task sets with
total utilization demand (UD) close to one, which cannot be scheduled to sat-
isfy all deadlines using EDF. Generally, the performance of global scheduling
algorithms tends to decrease when α increases.

We consider two TUF shape patterns: (1) a homogeneous TUF class in which
all tasks have downward step shaped TUFs, and (2) a heterogeneous TUF
class, including downward step, linearly decreasing, and parabolic shapes.
Each TUF’s height is randomly generated in the range [1,100].

The number of tasks is determined depending on the given UD and the α
value. We vary the UD from 3 to 6.5, including the case where it exceeds the
number of processors. We set α to 0.4, 0.7, and 1. For each experiment, more
than 1,000,000 jobs are released. To see the generic performance of gMUA, we
assume {νi, ρi} = {0, 1}.

18



2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
0

20

40

60

80

100

 

 

A
U

R
 (%

)

Utilization Demand (UD)

 gMUA ( =0.4)
 gMUA ( =0.7)
 gMUA ( =1.0)
 EDF ( =0.4)
 EDF ( =0.7)
 EDF ( =1.0)

(a) AUR

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
0

20

40

60

80

100

 

 

C
M

R
 (%

)

Utilization Demand (UD)

 gMUA ( =0.4)
 gMUA ( =0.7)
 gMUA ( =1)
 EDF ( =0.4)
 EDF ( =0.7)
 EDF ( =1)

(b) CMR

Fig. 3. Performance Under Constant Demand, Step TUFs

Figures 3 and 4 show the accrued utility ratio (AUR) and critical-time meet
ratio (CMR) of gMUA and EDF, respectively, under increasing UD (from 3.0
to 6.5) and for the three α values. AUR is the ratio of total accrued utility
to the total maximum possible utility, and CMR is the ratio of the number
of jobs meeting their critical times to the total number of job releases. For a
task with a downward step TUF, its AUR and CMR are identical. But the
system-level AUR and CMR can be different due to the mix of different task
utilities.
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Fig. 4. Performance Under Constant Demand, Heterogeneous TUFs

When all tasks have downward step TUFs and the total UD satisfies the global
EDF’s feasible utilization bound, gMUA performs exactly the same as EDF.
This validates Theorem 1.

EDF’s performance drops sharply after UD = 4.0 (for downward step TUFs),
which corresponds to the number of processors in our experiments. This is due
to EDF’s domino effect (originally identified for single processors) that occurs
here, when UD exceeds the number of processors. On the other hand, the
performance of gMUA gracefully degrades as UD increases and exceeds 4.0,
since gMUA selects as many feasible, higher PUD tasks as possible, instead
of simply favoring earlier deadline tasks.
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Observe that EDF begins to miss deadlines much earlier than when UD = 4.0,
as indicated in [16]. Even when UD < 4.0, gMUA outperforms EDF in both
AUR and CMR. This is because gMUA is likely to find a feasible or at least
better schedule even when EDF cannot find a feasible one, as we have seen in
Section 4.2.

We also observe that α affects the AUR and CMR of both EDF and gMUA.
Despite this effect, gMUA outperforms EDF for the same α and UD for the
reason that we describe above.

We observe similar and consistent trends for tasks with heterogeneous TUFs in
Figure 4. The figure shows that gMUA is superior to EDF with heterogeneous
TUFs and when UD exceeds the number of processors.

5.2 Performance with Statistical Demand

We now evaluate gMUA’s statistical timeliness assurances. The task settings
used in our simulation study are summarized in Table 1. The table shows the
task periods and the maximum utility (or Umax) of the TUFs. For each task
Ti’s demand Yi, we generate normally distributed execution time demands.
Task execution times are changed along with the total UD. We consider both
homogeneous and heterogeneous TUF shapes as before.

Table 1
Task Settings

Task pi Umaxi ρi E(Yi) V ar(Yi)

T1 25 400 0.96 3.15 0.01

T2 28 100 0.96 13.39 0.01

T3 49 20 0.96 18.43 0.01

T4 49 100 0.96 23.91 0.01

T5 41 30 0.96 14.98 0.01

T6 49 400 0.96 24.17 0.01

Figure 5(a) shows AUR and CMR of each task under increasing total UD of
gMUA. For a task with downward step TUFs, task-level AUR and CMR are
identical, as satisfying the critical time implies the attainment of a constant
utility. But the system-level AUR and CMR are different as satisfying the
critical time of each task does not always yield the same amount of utility.

Figure 5(a) shows that all tasks scheduled by gMUA accrue 100% AUR and
CMR within the global EDF’s bound (i.e., UD<≈2.5 here), thus satisfying
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Fig. 5. Performance Under Statistical Demand, Step TUFs

the desired {νi, ρi} = {1, 0.96},∀i. This validates Theorem 3.

Under the condition beyond what Theorem 3 indicates, gMUA achieves grace-
ful performance degradation in both AUR and CMR in Figure 5(b), as the
previous experiment in Section 5.1 implies. In Figure 5(a), gMUA achieves
100% AUR and CMR for T1 over the whole range of UD. This is because T1

has a downward step TUF with higher height. Thus, gMUA favors T1 over
others to obtain more utility when it cannot satisfy the critical time of all
tasks.

According to Theorem 4, the system-level AUR must be at least 96%. (For
each task Ti, νi = 1, because all TUFs are downward step shaped.) We observe
that AUR and CMR of gMUA under the condition of Theorem 4 are above
99.0%. This validates Theorem 4.
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A similar trend is observed in Figure 6 for heterogeneous TUFs. We as-
sign downward step TUFs for T1 and T4, linearly decreasing TUFs for T2

and T5, and parabolic TUFs for T3 and T6. For each task Ti, νi is set as
{1.0, 0.1, 0.1, 1.0, 0.1, 0.1}.

According to Theorem 4, the system-level AUR must be at least 0.96 ×
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(400/25+100×0.1/28+20×0.1/49+100/49+30×0.1/41+400×0.1/49)/(400/25+
100/28 + 20/49 + 100/49 + 30/41 + 400/49) = 62.5%. In Figure 6, we observe
that the system-level AUR under gMUA is above 62.5%. This further validates
Theorem 4 for non step-shaped TUFs. We also observe that the system-level
AUR and CMR of gMUA degrade gracefully, since gMUA favors as many
feasible, high PUD tasks as possible.

6 Conclusions and Future Work

We present a global TUF/UA scheduling algorithm for SMPs, called gMUA.
The algorithm applies to tasks that are subject to TUF time constraints,
variable execution time demands, and resource overloads. gMUA has the two-
fold scheduling objective of probabilistically satisfying utility lower bounds for
each task, and maximizing the accrued utility for all tasks.

We establish that gMUA achieves optimal accrued utility for the special case
of downward step TUFs and when the total task utilization demand does
not exceed global EDF’s feasible utilization bound. Further, we prove that
gMUA probabilistically satisfies task utility lower bounds, and lower bounds
the system-wide accrued utility. We also show that the algorithm’s utility
lower bound satisfactions have bounded sensitivity to variations in execution
time demand estimates, and that the algorithm is robust against a variant of
the Dhall effect. When task utility lower bounds cannot be satisfied (due to
increased utilization demand), gMUA maximizes the accrued utility.

Our simulation experiments validate our analytical results and confirm the
algorithm’s effectiveness. Our method of transforming task stochastic demand
into actual task execution time allocation is independent of gMUA, and can
be applied in other algorithmic contexts, where similar (stochastic scheduling)
problems arise.

Some aspects of our work lead to directions for further research. Examples
include relaxing the sporadic task arrival model to allow a stronger adversary
(e.g., the unimodal arbitrary arrival model), allowing greater task utilizations
for satisfying utility lower bounds, and reducing the algorithm overhead.
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