
On collaborative scheduling of distributable real-time threads in
dynamic, networked embedded systems

Sherif Fahmy?, Binoy Ravindran?, and E. D. Jensen‡
?ECE Dept., Virginia Tech
Blacksburg, VA 24061, USA

{fahmy,binoy}@vt.edu

‡The MITRE Corporation
Bedford, MA 01730, USA

jensen@mitre.org

Abstract

Some emerging networked embedded real-time
applications have relatively long reaction time
magnitudes—e.g., milliseconds to minutes. These
longer execution time magnitudes allow opportuni-
ties for more computationally expensive schedul-
ing algorithms than what is traditionally consid-
ered for device-level real-time control sub-systems.
In this paper, we review recent research conducted
on collaborative scheduling algorithms in such sys-
tems that are subject to dynamic behavior such
as transient and sustained resource overloads, ar-
bitrary activity arrivals, and arbitrary node fail-
ures and message loss. We show that collabora-
tive scheduling algorithms have an advantage over
non-collaborative scheduling algorithms.

1 Introduction

In distributed systems, action and information
timeliness is often end-to-end—e.g., a causally de-
pendent, multi-node, sensor to actuator sequential
flow of execution in networked embedded systems
that control physical processes. Such a causal flow
of execution can be caused by a series of nested, re-
mote method invocations. It can also be caused by
a series of chained, publication and subscription
events, caused due to topical data dependencies—
e.g., publication of topic A depends on subscrip-
tion of topic B; publication of B, in turn, depends
on subscription of topic C, and so on. Designers
and users of distributed systems, networked em-
bedded real-time systems in particular, often need
to dependably reason about — i.e., specify, man-
age, and predict — end-to-end timeliness.

Some emerging networked embedded systems
are dynamic in the sense that they operate in en-
vironments with dynamically uncertain properties
(e.g., [1]). These uncertainties include transient
and sustained resource overloads (due to context-
dependent activity execution times), arbitrary ac-
tivity arrivals, arbitrary node failures and message

loss. Reasoning about end-to-end timeliness is a
very difficult and unsolved problem in such dy-
namic uncertain systems. Another distinguishing
feature of motivating applications for this model
(e.g., [1]) is their relatively long system reaction
time magnitudes—e.g., milliseconds to minutes.
Despite the uncertainties, such applications de-
sire the strongest possible assurances on end-to-
end activity timeliness behavior.

Maintaining end-to-end properties (e.g., time-
liness, connectivity) of a control or information
flow requires a model of the flow’s locus in space
and time that can be reasoned about. Such a
model facilitates reasoning about the contention
for resources that occur along the flow’s locus and
resolving those contentions to optimize system-
wide end-to-end timeliness. The distributable
thread programming abstraction which first ap-
peared in the Alpha OS [3] and subsequently in
Mach 3.0 [10], and Real-Time CORBA 1.2 [18]
provides such a model as their first-class program-
ming and scheduling abstraction. A distributable
thread is a single thread of execution with a glob-
ally unique identity that transparently extends
and retracts through local and remote objects.

Deadlines cannot express both urgency and im-
portance. Thus, we consider the time/utility func-
tion (or TUF) timeliness model [15] that specifies
the utility of completing a thread as a function of
that thread’s completion time. We specify a dead-
line as a binary-valued, downward “step” shaped
TUF. When thread time constraints are expressed
with TUFs, the scheduling optimality criteria are
based on maximizing accrued thread utility—e.g.,
maximizing the total thread accrued utility. Such
criteria are called utility accrual (or UA) crite-
ria, and sequencing (scheduling, dispatching) al-
gorithms that optimize UA criteria are called UA
sequencing algorithms (e.g., [4, 16]).

UA algorithms that maximize total utility un-
der downward step TUFs (e.g., [4, 16]) default
to EDF during underloads, since EDF satisfies
all deadlines during underloads. Consequently,
they obtain the optimum total utility during un-

derloads. During overloads, they inherently fa-
vor more important threads over less important
ones (since more utility can be attained from the
former), irrespective of thread urgency, and thus
exhibit adaptive behavior and graceful timeliness
degradation. This behavior of UA algorithms is
called “best-effort” [16] in the sense that the al-
gorithms strive their best to feasibly complete as
many high importance threads — as specified by
the application through TUFs — as possible.1

Consequently, high importance threads that arrive
at any time always have a very high likelihood for
feasible completion (irrespective of their urgency).
Note also that EDF’s optimal timeliness behavior
is a special-case of UA scheduling.

In this paper, we consider the problem of
scheduling threads in the presence of the afore-
mentioned uncertainties. Thread scheduling ap-
proaches can be broadly classified into two major
categories, collaborative and independent schedul-
ing. In the independent scheduling approach,
(e.g., [3,5,20]), threads are scheduled at nodes us-
ing propagated thread scheduling parameters and
without any interaction with other nodes (thereby
not considering node failures during scheduling).

Fault-management is separately addressed by
thread integrity protocols [11] that run concur-
rent to thread execution. Thread integrity proto-
cols employ failure detectors (abbreviated here as
FDs), and use them to detect failures of the thread
abstraction, and to deliver failure-exception no-
tifications [3, 5]. In the collaborative scheduling
approach (e.g., [19]), nodes explicitly cooperate to
construct system-wide thread schedules, anticipat-
ing and detecting node failures using FDs.

FDs that are employed in both paradigms in
some past efforts have assumed a totally syn-
chronous computational model—e.g., determinis-
tically bounded message delay. While the syn-
chronous model is easily adapted for real-time ap-
plications due to the presence of a notion of time,
as pointed out in [13], this results in systems with
low coverage. However, it is difficult to design
real-time algorithms for the asynchronous model
due to its total disregard for timing assumptions.
Thus, there have been several (recent) attempts
to reconcile these extremes. For example, in [14],
Hermant and Widder describe the Theta-model,
where only the ratio, Θ, between the fastest and
slowest message in transit is known. This increases
the coverage of algorithms as less assumptions are
made about the underlying system. While Θ is
sufficient for proving the correctness of such algo-
rithms, an upper bound on communication delay
is needed to establish timeliness properties.

In this paper, we consider a partially syn-

1Note that the term “best effort” as used in the context
of networks actually is intended to mean “least effort.”

chronous computational model. In particular, we
consider the partially synchronous model in [2],
where message delay and message loss are prob-
abilistically described. We compare the behav-
ior of three collaborative scheduling algorithms
that do not take thread dependencies (that arise
due to synchronization, for example) into account
(QBUA [7], ACUA [9] and CUA [19]) against
an independent scheduling algorithm that also
does not consider dependencies (HUA [20]). We
also compare the performance of a collaborative
scheduling algorithm that considers dependencies
(DQBUA [8]) to an independent approach that
also does so (RTG-DS [12]).

2. Models

Distributable Thread Abstraction. Dis-
tributable threads execute in local and remote
objects by location-independent invocations and
returns. The portion of a thread executing an
object operation is called a thread segment. A
thread can be viewed as being composed of a
concatenation of thread segments. It can also
be viewed as being composed of a sequence of
sections, where a section is a maximal length
sequence of contiguous thread segments on a
node. We assume that execution time estimates
of sections of a thread are known when it arrives
into the system. The sequence of remote invoca-
tions and returns made by a thread can typically
be estimated by analyzing the thread code. The
total number of sections of a thread is thus
assumed to be known a-priori. The application
is thus comprised of a set of threads, denoted
T = {T1, T2, . . .} and the set of sections of a
thread Ti is denoted as [Si

1, S
i
2, . . . , S

i
k].

Timeliness Model. A thread’s time con-
straint is expressed using a Time/Utility Func-
tion (TUF) [15]. A TUF decouples the urgency
of a thread from its importance. This is useful
since the urgency of a thread may be orthogonal
to its importance. A thread Ti’s TUF is denoted
as Ui (t). A classical deadline is unit-valued—i.e.,
Ui(t) = {0, 1}, since importance is not considered.
Downward step TUFs generalize classical dead-
lines where Ui(t) = {0, {m}}. We focus on down-
ward step TUFs, and denote the maximum, con-
stant utility of a TUF Ui (t), simply as Ui. Each
TUF has an initial time Ii, which is the earliest
time for which the TUF is defined, and a termi-
nation time Xi, which, for a downward step TUF,
is its discontinuity point. Ui (t) > 0, ∀t ∈ [Ii, Xi]
and Ui (t) = 0, ∀t /∈ [Ii, Xi] , ∀i.

System Model. There are actually two system
models we consider in this paper. The first makes
a distinction between client and server nodes,
while the second makes no such distinction. Here

we state the properties of the first model, taking
into account the fact that the second model is ex-
actly the same, but has no server nodes.

We consider a networked embedded system to
consist of a set of client nodes Πc = {1, 2, · · · , N}
and a set of server nodes Π = {1, 2, · · · , n}
(server and client are logical designations given
to nodes to describe the algorithm’s behavior).
Bi-directional logical communication channels are
assumed to exist between every client-server and
client-client pair. We also assume that these ba-
sic communication channels may lose messages
with probability p, and communication delay is
described by some probability distribution.

On top of this basic communication channel, we
consider a reliable communication protocol that
delivers a message to its destination in probabilis-
tically bounded time provided that the sender and
receiver both remain correct, using the standard
technique of sequence numbers and retransmis-
sions. We assume that each node is equipped with
two processors (a processor that executes thread
sections on the node and a scheduling co-processor
as in [3]), have access to GPS clocks that provides
each node with a UTC time-source with nanosec-
ond accuracy (e.g., [21]) and are equipped with
appropriately tuned QoS failure detectors [2]

Exceptions and Abort Model. Each section of a
thread has an associated exception handler. We
consider a termination model for thread failures
including time-constraint violations and node fail-
ures. If either of these events occur, exception
handlers are triggered to restore the system to a
safe state. The exception handlers considered have
time constraints expressed as relative deadlines.

Failure Model. Nodes are subject to crash fail-
ures. When a process crashes, it loses its state
memory — i.e., there is no persistent storage. If
a crashed client node recovers at a later time, we
consider it a new node since it has already lost all
of its former execution context. A client node is
correct if it does not crash; it is faulty if it is not
correct. In the case of a server crash, it may either
recover or be replaced by a new server assuming
the same server name (using DNS or DHT — e.g,
[6] — technology). We model both cases as server
recovery. Since crashes are associated with mem-
ory loss, recovered servers start from their initial
state. A server is correct if it does not fail; it is
faulty if it is not correct. DQBUA tolerates up to
N − 1 client failures and up to fs

max ≤ n/3 server
failures (see [7]). The actual number of failures is
denoted as fs ≤ fs

max for servers and f ≤ fmax

where fmax ≤ N − 1 for clients. Note that for the
second system model we consider (the one with no
server nodes) the discussion above still holds with
the exception of the material on servers.

Resource Model. As mentioned before, we

overview algorithms that do not consider resource
dependencies as well as ones that do. This section
only pertains to the latter. Threads can access se-
rially reusable non-CPU resources located at their
nodes during their execution. We consider the sin-
gle resource model — i.e., a thread cannot have
more than one outstanding request at any given
instance of time. Resources are shared under mu-
tual exclusion constrains and a thread explicitly
releases all granted resources before termination.
Threads are assumed to access their resources in
arbitrary order — i.e., which resources are needed
by which threads is not known a priori. Thus we
employ deadlock detection and resolution methods
instead of prevention and avoidance techniques.

Resource request/release pairs are assumed to
be confined within one node, however it is possi-
ble for a thread to lock a resource on a node and
then make a remote invocation to another node
carrying the lock with it. Such a lock is released
when the thread’s head returns back to the node
on which the resource was acquired.

3. Rationale for Collaboration

The main feature of independent scheduling is
that each node constructs its local schedule using
only local information. This lack of global infor-
mation makes it impossible for a node to make a
globally optimal decision. Thus it is possible for a
node to make a scheduling decision that is locally
optimal in terms of the utility that can be accrued
to the node, but compromises global optimality.

Thus we believe that collaborative scheduling is
a better paradigm for systems that can withstand
its larger overhead. It should be noted that this is
only an issue when the system is overloaded. As
explained above, UA algorithms usually default
to EDF during underloads. Therefore, both col-
laborative and independent scheduling algorithms
should schedule all threads to completion in this
case. During overlaods, however, decisions need
to be made about which threads to exclude from
the schedule (since, by definition, not all threads
can execute to completion). These decisions need
to be made consistently on all nodes in a way that
minimizes the loss of utility to the system. In
addition, if we consider thread dependencies then
some sort of collaboration is also needed to resolve
the remote dependencies that may occur.

4. Algorithms Overview

We now overview the algorithms we will be
comparing in the paper. In HUA (an independent
node scheduling algorithm), thread sections are
scheduled locally at each node they arrive at us-
ing their propagated scheduling parameters. The

local scheduler is a modified version of DASA [4],
which uses the heuristic of favoring tasks with a
high utility to execution time ratio, i.e., high PUD,
when constructing the schedule. The modifica-
tions made to the node scheduler ensure that the
exception handler of any section included in the
schedule is feasible. This modification is made to
ensure that when a thread fails the system can
be brought back to a safe state. Basically, this
is done by inserting both a section and its excep-
tion handler into the schedule and then testing it
for feasibility. If the schedule is feasible, the sec-
tion is added to the waiting queue, otherwise both
the section and its handler are discarded. This
is a low overhead algorithm that guarantees all
threads meet their time constraints during under-
loads. However, we prove in [9] that HUA not
have the best effort semantics of DASA in terms
of system accrued utility since it only considers
local information while constructing the schedule.

CUA is a collaborative scheduling algorithm. It
is designed to overcome the shortcomings of in-
dependent scheduling algorithms by taking into
account global information while constructing a
schedule. In CUA, when a thread arrives, its sec-
tions are sent to all its future head nodes. Each
node constructs its schedule locally according to
a modified version of DASA (similar to the one
used in HUA). After each node constructs its lo-
cal schedule, it broadcasts it to all other nodes.
The nodes then select a set of threads they con-
sider eligible for execution by removing any thread
that has a missing section. Then an instance of
distributed consensus is started to reach global
agreement on the set of threads to consider for
scheduling in the system. CUA is designed for
totally synchronous systems and uses local infor-
mation to construct a local schedule which is then
used as an input to an instance of distributed con-
sensus. We prove in [9] that CUA also does not
have the same semantics as single node DASA.

In [9], ACUA is developed. ACUA is an im-
provement on CUA since it is designed for the par-
tially synchronous system model of [2] and thus
has greater coverage. In addition, ACUA uses
global potential utility density (PUD) of a sec-
tion (the ratio of the utility of the thread that the
section belongs to, to the sum of the remaining ex-
ecution times of all the thread’s sections) to make
scheduling decisions on each node. Global PUD al-
lows us to have a total order on the threads in the
system in terms of their PUD and thus prevents
us from making local decisions that can compro-
mise global optimality. In [9] we present the full
algorithm and provide proofs for the properties of
ACUA that show that it attempts to mimic the se-
mantics of single node DASA on a distributed sys-
tem as much as possible. Both CUA and ACUA

are based on distributed consensus and thus have
high overhead. In order to reduce their overhead,
we considered quorum based algorithms.

In [7], we develop QBUA, a quorum based
scheduling algorithm for distributable real-time
threads in partially synchronous systems. In
QBUA, when a node detects a distributed schedul-
ing event (the failure of a node or the arrival of a
new thread) it contacts a quorum system request-
ing permission to run an instance of QBUA (in
order to construct a global schedule). All other
scheduling events, such as section completion, are
dealt with locally.

Once permission is granted, it broadcasts a
start of algorithm message to all other nodes
requesting their scheduling information. Nodes
that receive this message reply by sending their
scheduling information. When all nodes have
sent their scheduling information to the requesting
node, it computes a system-wide schedule, which
we call a System Wide Executable Thread Set (or
SWETS), and multicasts any updates to nodes
whose schedule has been affected.

The node that computes SWETS does so by
running a modified DASA algorithm (similar to
the one used in HUA) that orders threads accord-
ing to their global PUD and then tentatively in-
serts their sections into the schedule of all the
nodes that will be hosting them. After the sections
have been inserted, the schedules are tested for
feasibility. If all schedules are feasible, the changes
are accepted, otherwise all the sections belonging
to that thread are removed from the system. We
prove in [7] that QBUA has less overhead than
ACUA and has the same best effort properties.

In [8],we develop DQBUA, a version of QBUA
that handles dependencies. The algorithm is simi-
lar to QBUA, but the node that computes SWETS
does so while taking into account resource depen-
dencies. The scheduling algorithm in DQBUA
first builds the dependency graph for each sec-
tion by following the set of resource requests and
ownership. Then the potential utility of complet-
ing both the current thread and its dependents
is computed. DQBUA then tests for deadlock
by attempting to detect cycles in the dependency
graph. Threads are ordered by their potential util-
ity (which includes the utility of the threads they
depend on if such threads exist), and DQBUA
then tentatively inserts the thread’s sections and
their dependencies into the schedule in an order
that respects dependency constraints. While do-
ing so, a least effort heuristic similar to the one
used in DASA is used to reduce the time that a
section blocks waiting for a particular resource.
We show in [8] that DQBUA has best effort se-
mantics similar to DASA.

In [12], an independent scheduling algorithm,

RTG-DS, is presented that schedules dependent
threads. RTG-DS is an independent scheduling
algorithm in the sense that the scheduling parame-
ters of each section is propagated to each node and
the node then constructs a local schedule accord-
ingly. The propagation of section scheduling pa-
rameters is accomplished using a gossip based in-
formation dissemination algorithm that increases
the reliability of the underlying communication
layer. The gossip protocol is also used as a method
of service discovery to identify the node that will
be hosting the next head of the thread. RTG-DS
utilizes the slack of each section when construct-
ing a schedule in order to ensure that all other
sections have sufficient slack time to gossip in or-
der to find the next head node. Deadlocks are de-
tected by finding cycles in the dependency graph
and remote dependencies are resolved by propa-
gating the PUD of local sections to their remote
dependents. See [12] for the full algorithm.

5. Experimental Results

We performed a series of simulation experi-
ments on ns-2 [17] to compare the performance of
the algorithms summarized in Section 4 in terms
of Accrued Utility Ratio (AUR) and Deadline
Satisfaction Ratio (DSR). We define AUR as the
ratio of the accrued utility (the sum of Ui for all
completed threads) to the utility available (the
sum of Ui for all available jobs) and DSR as the
ratio of the number of threads that meet their ter-
mination time to the total number of threads in
the system. We considered threads with three seg-
ments. Each thread starts at its origin node with
its first segment. The second segment is a result of
a remote invocation to some node in the system,
and the third segment occurs when the thread re-
turns to its origin node to complete its execution.

The periods of these threads are fixed, and we
vary their execution times to obtain a range of uti-
lization ranging from 0 to 200%. In order to make
the comparison fair, all the algorithms were sim-
ulated using a synchronous system model, where
communication delay varied according to an expo-
nential distribution with mean and standard devi-
ation 0.02 seconds but could not exceed an upper
bound of 0.5 seconds. Our system consisted of fifty
client nodes and five servers (and only fifty clients
for the algorithms that do not need servers). In
all the experiments we perform, the utilization of
the system is considered the maximum utilization
experienced by any node. While conducting our
experiments, our thread set parameters — i.e.,
section execution times, thread termination times,
and thread utility — are chosen to highlight the
better distributed best-effort properties of QBUA.
The strength of QBUA lies in its ability to give

priority to threads that will result in the most
system-wide accrued utility. Therefore, the thread
set that highlights this property is one that con-
tains threads that would be given low priority on a
node if local scheduling is performed but should be
assigned high priority due to the system-wide util-
ity that they accrue to the system. Therefore, our
thread set contains high utility threads that have
one section with above average execution time (re-
sulting in low PUD for that section) and other sec-
tions with below average execution times (result-
ing in high PUD for those section). Such thread
sets test the ability of the algorithm to take ad-
vantage of collaboration to avoid making locally
optimal decisions that would compromise global
optimality. In [7], we consider other thread sets
which produce similar results.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

A
U

R

Utilization

AUR vs Utilization

QBUA
HUA
CUA

ACUA

Figure 1. AUR vs. Utilization (no failures)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

D
S

R

Utilization

DSR vs Utilization

QBUA
HUA
CUA

ACUA

Figure 2. DSR vs. Utilization (no failures)

Figures 1 and 2 show the result of our AUR
and DSR experiments in the absence of node fail-
ure for the algorithms that do not consider de-
pendencies (HUA, CUA, ACUA and QBUA). As
Figures 1 and 2 show, the performance of QBUA
during underloads is similar to that of other dis-
tributed real-time scheduling algorithms. How-
ever, during overloads, QBUA begins to outper-
form other algorithms due to its better best ef-
fort property. During overloads, QBUA accrues,
on average, 17% more utility that CUA, 14%
more utility than HUA and 8% more utility than

ACUA. The maximum difference between the per-
formance of QBUA and the other algorithms in
our experiment was the 22% difference between
ABUA’s and CUA’s AUR at the 1.88 system load
point. Throughout our experiment, the perfor-
mance of ACUA was the closest to QBUA with the
difference in performance between these two algo-
rithms getting more pronounced as system load
increases (the largest difference in performance is
11.7% and occurs at about 2.0 system load). The
reason for this behavior is that QBUA has a sim-
ilar best-effort property to ACUA (see [7]). In
addition, we believe that the difference between
these two algorithms becomes more pronounced as
system load increases because the delay caused by
the scheduling overhead has greater consequences
on the schedulability of the system due to the
decreased system slack during overloads. Thus
QBUA’s lower overhead allows it to scale better
with system load. Another interesting aspect of
the experiment is that QBUA does not accrue
100% utility during all cases of underload. As
the load on the system approaches 1.0 some dead-
lines are missed because the overhead of QBUA
becomes more significant at this point. This is also
true for other collaborative scheduling algorithms
such as CUA and ACUA, and is true to a lesser
extent for non-collaborative scheduling algorithms
such as HUA due to their lower overhead.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

A
U

R

Utilization

AUR vs Utilization

QBUA
HUA
CUA

ACUA

Figure 3. AUR vs. Utilization (failures)
Figure 3 shows the effect of failures on QBUA.

In this experiment we programmatically fail
fmax = 0.2N nodes — i.e., we fail 20% of the client
nodes. From Figure 3, we see that failures do not
degrade the performance of QBUA compared to
other scheduling algorithms — i.e., the relation-
ship between the utility accrued by QBUA to the
utility accrued by other scheduling algorithms re-
mains relatively the same in the presence of fail-
ures. However, now QBUA accrues, on average,
18.5% more utility than CUA, 13.6% more util-
ity than HUA and 9.9% more utility than ACUA.
Thus both ACUA and CUA suffer a further loss
in performance relative to QBUA in the presence
of failures. This occurs because both these algo-
rithms’ time complexity is a function of the num-

ber of node failures, therefore they have higher
overheads in the presence of failures.

We also performed experiments to compare the
performance of the algorithms that consider de-
pendencies (RTG-DS and DQBUA). As can be
seen in Figures 4 and 5, the performance of
DQBUA is better than that of DTG-DS dur-
ing overloads. This occurs because DQBUA per-
forms collaborative scheduling, thus maximizing,
as much as possible, system-wide accrued utility.
On the other hand, RTG-DS does not perform col-
laborative scheduling (but uses gossip to identify
the next head node of a thread and to improve the
reliability of the communication layer) and there-
fore performs worse during overloads.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

A
U

R

Utilization

AUR vs Utilization

DQBUA
RTG-DS

Figure 4. AUR vs. Utilization (consider-
ing dependencies)

6. Conclusions and Ongoing Research

In this paper, we presented an overview of re-
cent research on collaborative scheduling in dy-
namic, networked embedded systems. The result
of our study indicates that collaborative schedul-
ing is more beneficial than independent schedul-
ing in systems with relatively large response time
magnitudes. Such systems can tolerate the larger
overhead involved with collaborative scheduling
and thus are in a better position to benefit from
their better best effort properties. In addition,
since remote dependencies among threads can oc-
cur when there are dependency relations among
distributable threads, some sort of collaboration
is also necessary. This collaboration can be part
of the scheduling process (as in [8]) or can occur
when resolving resource dependencies (as in [12]).

For systems without remote dependencies, both
collaborative and independent scheduling algo-
rithms provide optimal system utility during un-
derloads. Thus, it is better to consider indepen-
dent scheduling algorithms for such systems since
the higher overhead of collaborative scheduling
may reduce the amount of user code that can be
executed before the system becomes overloaded.
During overloads, however, collaborative schedul-
ing provides a considerable advantage over in-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

D
S

R

Utilization

DSR vs Utilization

DQBUA
RTG-DS

Figure 5. DSR vs. Utilization (consider-
ing dependencies)

dependent scheduling for systems with large re-
sponse times as the experiments above indicate.
Theoretical properties of the algorithms compare
above can be found in the appropriate references.

Ongoing research involves studying more com-
plex programming abstractions. In particular,
enriching the distributable thread abstraction to
include information about which threads should
never be aborted, which threads should have their
orphaned sections continue execution despite node
failures etc, is a direction of ongoing research. We
also envision developing more sophisticated meth-
ods of event notification and studying the effect of
different thread call semantics.

Other directions for research include designing
algorithms for the fail-recover model, where failed
nodes can recover and continue execution. Such
failure models pose interesting questions in terms
of designing, among other things, real-time per-
sistent storage mechanisms and determining the
semantics of orphaned sections when it is possi-
ble for failed nodes to recover and hence recon-
nect the thread. In addition, developing collab-
orative scheduling algorithms for more dynamic
infrastructures such as those that use ad hoc net-
work architectures is a challenging problem.

References

[1] J. R. Cares. Distributed Networked Operations:
The Foundations of Network Centric Warfare.
iUniverse, Inc., 2006.

[2] W. Chen, S. Toueg, and M. K. Aguilera. On
the quality of service of failure detectors. IEEE
Transactions on Computers, 51(1):13–32, 2002.

[3] R. Clark, E. Jensen, and F. Reynolds. An ar-
chitectural overview of the alpha real-time dis-
tributed kernel. In 1993 Winter USENIX Conf.,
pages 127–146, 1993.

[4] R. K. Clark. Scheduling Dependent Real-Time
Activities. PhD thesis, CMU, 1990. CMU-CS-
90-155.

[5] E. Curley, J. S. Anderson, B. Ravindran, and
E. D. Jensen. Recovering from distributable
thread failures with assured timeliness in real-

time distributed systems. In IEEE SRDS, pages
267–276, 2006.

[6] P. Druschel and A. Rowstron. PAST: A large-
scale, persistent peer-to-peer storage utility. In
HOTOS ’01, pages 75–80, 2001.

[7] S. F. Fahmy, B. Ravindran, and E. D. Jensen.
Fast scheduling of distributable real-time threads
with assured end-to-end timeliness. Technical
report, Virginia Tech, ECE Dept., November
2007. Available at: http://www.real-time.ece.
vt.edu/RST_TR.pdf.

[8] S. F. Fahmy, B. Ravindran, and E. D. Jensen.
Scheduling dependent distributable real-time
threads in dynamic networked embedded sys-
tems, December 2007. Available at: http://

filebox.vt.edu/users/fahmy/TR-DIPES.pdf.
[9] S. F. Fahmy, B. Ravindran, and E. D. Jensen.

Scheduling distributable real-time threads in
the presence of crash failures and message
losses. In ACM SAC, Track on Real-Time
Systems, March 2008. To appear, avail-
able at: http://www.real-time.ece.vt.edu/

sac-rts2008(%20RTS-115).pdf.
[10] B. Ford and J. Lepreau. Evolving mach 3.0 to a

migrating thread model. In USENIX Technical
Conference, pages 97–114, 1994.

[11] J. Goldberg, I. Greenberg, et al. Adaptive
fault-resistant systems (chapter 5: Adpative dis-
tributed thread integrity). Technical Report csl-
95-02, SRI International, January 1995.

[12] K. Han, B. Ravindran, and E. D. Jensen. Exploit-
ing slack for scheduling dependent, distributable
real-time threads in mobile ad hoc networks. In
RTNS 2007, pages 225–234, 2007.

[13] J.-F. Hermant and G. L. Lann. Fast asyn-
chronous uniform consensus in real-time dis-
tributed systems. IEEE Transactions on Com-
puters, 51(8):931 – 944, August 2002.

[14] J.-F. Hermant and J. Widder. Implementing re-
liable distributed real-time systems with the Θ-
model. In OPODIS, pages 334–350, 2005.

[15] E. Jensen, C. Locke, and H. Tokuda. A time
driven scheduling model for real-time operating
systems, 1985. IEEE RTSS, pages 112–122, 1985.

[16] C. D. Locke. Best-Effort Decision Making for
Real-Time Scheduling. PhD thesis, CMU, 1986.
CMU-CS-86-134.

[17] S. McCanne and S. Floyd. ns-2: Network Simu-
lator. http://www.isi.edu/nsnam/ns/.

[18] OMG. Real-time corba 2.0: Dynamic scheduling
specification. Technical report, Object Manage-
ment Group, September 2001.

[19] B. Ravindran, J. S. Anderson, and E. D. Jensen.
On distributed real-time scheduling in networked
embedded systems in the presence of crash fail-
ures. In IFIP SEUS Workshop, pages 67–81,
2007.

[20] B. Ravindran, E. Curley, J. S. Anderson, and
E. D. Jensen. On best-effort real-time assurances
for recovering from distributable thread failures
in distributed real-time systems. In ISORC ’07,
pages 344–353. IEEE Computer Society, 2007.

[21] B. Sterzbach. GPS-based clock synchronization
in a mobile, distributed real-time system. Real-
Time Syst., 12(1):63–75, 1997.

