
Remote Invalidation: Optimizing the Critical Path of Memory Transactions

Ahmed Hassan, Roberto Palmieri, Binoy Ravindran
Electrical and Computer Engineering Department

Virginia Tech
Blacksburg, Virginia, USA

hassan84@vt.edu, robertop@vt.edu, binoy@vt.edu

Abstract—Software Transactional Memory (STM) systems
are increasingly emerging as a promising alternative to tra-
ditional locking algorithms for implementing generic concur-
rent applications. To achieve generality, STM systems incur
overheads to the normal sequential execution path, including
those due to spin locking, validation (or invalidation), and
commit/abort routines. We propose a new STM algorithm
called Remote Invalidation (or RInval) that reduces these
overheads and improves STM performance. RInval’s main
idea is to execute commit and invalidation routines on remote
server threads that run on dedicated cores, and use cache-
aligned communication between application’s transactional
threads and the server routines. By remote execution of
commit and invalidation routines and cache-aligned communi-
cation, RInval reduces the overhead of spin locking and cache
misses on shared locks. By running commit and invalidation
on separate cores, they become independent of each other,
increasing commit concurrency. We implemented RInval in
the Rochester STM framework. Our experimental studies on
micro-benchmarks and the STAMP benchmark reveal that
RInval outperforms InvalSTM, the corresponding non-remote
invalidation algorithm, by as much as an order of magni-
tude. Additionally, RInval obtains competitive performance to
validation-based STM algorithms such as NOrec, yielding up
to 2x performance improvement.

Keywords-Software Transactional Memory; Remote Invali-
dation; Synchronization;

I. INTRODUCTION

Software Transactional Memory (STM) [1] is a concur-
rency control paradigm that replaces traditional lock-based
synchronization with a complete framework for synchro-
nizing concurrent threads. STM hides the synchronization
complexity from programmers, which vastly increases pro-
grammability, enabling more complex and generic concur-
rent applications, while ensuring correctness properties such
as opacity [2]. To achieve this, STM algorithms perform a
number of additional operations during transactional execu-
tion, besides the necessary memory reads and writes, such as
in-memory logging of transactional metadata, lock acquisi-
tion, validation, commit, and abort. Each of these operations
incur an overhead, often at different levels of intensity, and
taken together, they degrade STM performance [1].

An STM transaction can be viewed as being composed of
a set of operations that must execute sequentially – i.e., the
transaction’s critical path. Reducing any STM operation’s
overhead on the critical path, without violating correctness

properties, will reduce the critical path’s execution time, and
thereby significantly enhance overall STM performance.

One of the major overheads on the transaction critical
path is that of the memory-level locking mechanism used.
Unlike lock-free and fine-grained locking algorithms, which
optimize locking mechanisms according to the application
logic (e.g., lazy and lock-free data structures [3]), STM
algorithms may acquire more redundant memory-level locks,
because they are not aware of the application logic. A clear
example is linked-list traversal. In a lazy linked-list [4],
traversal is done without any locking, because the logic
guarantees that consistency is not violated. However, most
STM algorithms are unaware of this logic and hence have
to monitor all traversed nodes.

The overhead of locking has been previously mitigated
in the literature, largely by using different granularity levels
for locking. Fine-grained locking algorithms [5], [6] reduce
false conflicts, potentially enabling greater scalability, but at
the expense of significantly decreased programmability and
sometimes higher cost. In contrast, coarse-grained locking
algorithms [7], [8] are easy to implement and debug, have
minimal meta-data to manage, but may suffer from false
conflicts (so they may serialize code blocks that can safely
run in parallel), resulting in poor performance. Moreover,
if locks are lazily acquired at commit time, scalability
will not be significantly affected by coarse-grained locking.
NOrec [7] is an example of an efficient coarse-grained
locking algorithm, which gathers reduced meta-data, uses
the minimum number of locks (i.e., one global lock), and
yields competitive scalability with respect to fine-grained
locking algorithms such as TL2 [5].

Another issue in locking is the mechanism of spin
locking, which overloads the hardware interconnect with
cache-coherency traffic and CAS operations, causing high
cache misses, and degrading lock performance. As argued
by [9], hardware overheads such as CAS operations and
cache misses are critical bottlenecks to scalability in multi-
core infrastructures. Although STM algorithms proposed in
the literature cover a wide range of locking granularity
alternatives, they do not focus on the locking mechanism
(which is one of our focuses).

Another overhead is that of the validation/commit rou-
tines. In most STM algorithms, validation should not only



guarantee correct encounter-time reads, but also must ensure
opacity [2]. To support opacity, transactions must ensure
that their read-sets remain consistent during execution so
that all committed and aborted transactions always observe
a consistent state of the accessed objects. Incremental val-
idation is a typical way to guarantee opacity and is used
in several well-known STM algorithms [5], [7]. However,
incremental validation suffers from quadratic time complex-
ity. Before each new read, transactions must validate that
all previous reads are still consistent. This drawback has led
to the development of commit-time invalidation [10], which
obligates commit executors to detect conflicting transactions
and invalidate them. Accordingly, transactions will only
check if they have been invalidated by an earlier transaction
before each new read. This way, commit-time invalidation
reduces the overhead of validation to linear-time (in terms
of read-set sizes), because each transaction checks only
one variable per read (which is the invalidation flag). In
memory-intensive workloads (i.e., workloads with massive
reads and writes), this reduction in validation time improves
performance. However, the overhead of invalidation is now
added to commit time, which significantly affects a number
of workloads. Our work focuses on balancing this overhead,
instead of overloading commit routines with all of the work.

In this paper, we propose Remote Invalidation (or RInval),
an STM algorithm that significantly optimizes the transac-
tion critical path. As previously discussed, one of the main
problems of commit-time invalidation is that it shifts the
overhead from the validation routine to the commit routine.
As both routines are on the critical path of transactions,
this can significantly reduce the performance improvement
due to invalidation. RInval separates commit and invalidation
into two independent routines, and remotely executes them
in parallel, on dedicated hardware threads. Thus, we gain
the same improvement as commit-time invalidation, without
adding more overhead to commit. With coarse-grained lock-
ing, this improvement becomes more significant, because
commit executors are a bottleneck in the system and must
execute as fast as possible to reduce the blocking time of
the other transactions.

RInval also parallelizes the invalidation process. The pro-
cess of traversing all running transactions and invalidating
them can be parallelized more, because invalidating each
single transaction is independent from invalidating another
transaction. Using remote servers1 to invalidate transactions
allows us to exploit this parallelism by dedicating more than
one server to invalidate conflicting transactions.

Specifically, in RInval, when client transactions reach the
commit phase, they send a commit request to the commit-
server, and then they keep looping on a local status variable
until they receive a response from the server. A transaction’s

1We will call hardware threads that execute either commit or invalidation
remotely as servers, and application threads that execute transactions as
clients.

write-set is passed as a parameter of the commit request to
enable the server to execute the commit operation on behalf
of the clients. The commit-server then passes this write-set to
invalidating servers and then starts publishing the write-set
in the main memory. In parallel, invalidating servers check
all running transactions to detect conflicting ones and signal
them as invalidated.

Instead of competing on spin locks, in RInval, commu-
nication between the commit-server and the clients, as well
as communication between the commit-server and the inval-
idating servers, are done through a cache-aligned requests
array. This approach therefore reduces cache misses (which
are often due to spinning on locks), and reduces the number
of CAS operations during commit2. Additionally, dedicating
CPU cores for servers reduces the probability of interleaving
the execution of different tasks on those cores due to OS
scheduling.

Some similar work exists in the literature [11]–[13], but
none of them has been specifically tailored for STM commit
and invalidation. In particular, RCL [13] uses a similar idea
of executing lock-based critical sections in remote threads.
RCL performs better than well-known locking mechanisms
[14], [15] due to the same reasons that we mentioned
(i.e., reducing cache misses, CAS operations, and blocking).
Applying the same idea to STM is appealing, because it
makes use of the increasing number of cores in current
multi-core architectures, and at the same time, allows more
complex applications than lock-based approaches.

Gottschlich et. al’s commit-time invalidation algo-
rithm [10] is effective only in memory-intensive cases, where
the reduction of validation time from quadratic- to linear-
time is significant. In other cases, the overhead added to
commit can significantly affect performance. RInval almost
keeps the commit routine as is, which improves performance
in both memory-intensive and non-memory-intensive work-
loads. Our implementation and experimental studies confirm
this claim: RInval is better than commit-time invalidation
in almost all cases, sometimes by an order of magnitude,
and better than NOrec [7] in a significant number of non-
memory-intensive cases by as much as 2x faster.

The paper makes the following contributions:
- We analyze the parameters that affect the critical path

of STM transaction execution (Section III), and summa-
rize the earlier attempts in the literature to reduce their
effects (Section II). We propose remote invalidation, a
new STM algorithm, which alleviates the overhead on
the critical path (Section IV).

- RInval optimizes both validation and commit. The
execution-time complexity of validation is reduced to
linear-time from quadratic-time. The commit routine
only publishes write-sets, while invalidation is dele-

2Spinning on locks and increased usage of CAS operations can seriously
hamper performance [3], especially in multicore architectures.



gated to other dedicated servers, running in parallel,
thereby improving performance.

- RInval optimizes locking overhead. All spin locks and
CAS operations are replaced with optimized cache-
aligned communication.

- Through experimentation, we show that RInval
outperforms past validation-based (NOrec) and
invalidation-based (InvalSTM) algorithms, on both
micro-benchmarks and the STAMP benchmark [16],
yielding performance improvement up to 2x faster
than NOrec and an order of magnitude faster than
InvalSTM.

RInval is publicly available as an open-source project at
http://www.ssrg.ece.vt.edu/rinval/.

II. BACKGROUND: COMMIT-TIME INVALIDATION

The invalidation approach has been presented and in-
vestigated in earlier works [10], [17], [18]. Among these
approaches, Gottschlich et. al proposed commit-time in-
validation, (or InvalSTM) [10], an invalidation algorithm
that completely replaces version-based validation without
violating opacity.

The basic idea of InvalSTM is to let the committing
transaction invalidate all active transactions that conflict with
it before it executes the commit routine. More complex
implementation involves the contention manager deciding if
the conflicting transactions should abort, or the committing
transaction itself should wait and/or abort, according to
how many transactions will be doomed if the committing
transaction proceeds.

RInval is based on the basic idea of commit-time inval-
idation – i.e., conflicts will always be solved by aborting
conflicting transactions rather than the committing transac-
tion. Although this may result in reducing the efficiency
of the contention manager, it opens the door for more
significant improvements, such as parallelizing commit with
invalidation, as we will show later in Section IV.

Algorithm 1 shows how InvalSTM works. When a trans-
action Ti attempts to commit, it tries to atomically increment
a global timestamp, and keeps spinning until the timestamp
is successfully incremented (line 13). If timestamp is odd,
this means that some transaction is executing its commit.
When Ti attempts to read a new memory location, it takes
a snapshot of the timestamp, reads the location, and then
validates that timestamp does not change while it reads (lines
3 – 6). Then, Ti checks a status flag to test if it has been
invalidated by another transaction in an earlier step (lines 7
– 10). This flag is only changed by the commit executor if it
finds that Ti’s read-set conflicts with the commit executor’s
write-set. Conflict detection is done by comparing the write
bloom filters [19] of the committing transaction with the read
bloom filters of all in-flight transactions (line 18). Bloom
filters are used because they are accessed in constant time,
independent of the read-set size. However, they increase the

Algorithm 1 Commit-time Invalidation
1: procedure READ(address)
2: while true do
3: x1 = timestamp
4: val = read(address)
5: if x1 is odd and x1 = timestamp then
6: OK
7: if OK and tx status = ALIVE then
8: return val
9: else if tx status = ABORTED then

10: TM-ABORT
11: end procedure

12: procedure COMMIT
13: while timestamp is odd or ¬CAS(timestamp, timestamp+1) do

14: LOOP
15: if tx status = ABORTED then
16: TM-ABORT
17: for All in-flight transactions t do
18: if me.write bf intersects t.read bf then
19: t.tx status = ABORTED
20: WriteInMemory(req.Tx.writes)
21: timestamp++

22: end procedure

probability of false conflicts because bloom filters are only
compact bit-wise representations of the memory.

This procedure replaces incremental validation, which is
used in a number of STM algorithms [5], [7]. In incremental
validation, the entire read-set has to be validated before
reading any new memory location. Thus, the overhead of
read-validation is a quadratic function of the read-set size
in the case of incremental validation, and a linear function
in the case of commit-time invalidation. This reduction in
validation time enhances the performance, especially for
memory-intensive workloads. It is worth noting that both
incremental validation and commit-time invalidation have
been shown to guarantee the same correctness property,
which is opacity [1].

One of the main disadvantages of commit-time inval-
idation is that it burdens the commit routine with the
mechanism of invalidation. In a number of cases, this
overhead may offset the performance gain due to reduced
validation time. Moreover, InvalSTM uses a conservative
coarse-grained locking mechanism, which of course makes
its implementation easier, but at the expense of reduced
commit concurrency (i.e., only one commit routine is ex-
ecuted at a time). The coarse-grained locking mechanism
increases the potential of commit “over validation”, because
the commit executor will block all other transactions that
attempt to read or commit. Other committing transactions
will therefore be blocked, spinning on the global lock and
waiting until they acquire it. Transactions that attempt to
read will also be blocked because they cannot perform
validation while another transaction is executing its commit
routine (to guarantee opacity).

InvalSTM is not the only work that targets reducing the
cost of incremental validation. DSTM [18] is an example of
partial invalidation which eagerly detects and resolves write-

http://www.ssrg.ece.vt.edu/rinval/


write conflicts. STM2 [11] proposes executing validation in
parallel with the main flow of transactions. However, it does
not decrease the time complexity of incremental validation
(like InvalSTM). Moreover, it does not guarantee opacity
and needs a sand-boxing mechanism to be consistent [20].

III. TRANSACTION CRITICAL PATH

As described in Section II, InvalSTM serializes commit
and invalidation in the same commit routine, which signifi-
cantly affects invalidation in a number of cases and degrades
performance (we show this later in this section). Motivated
by this observation, we study the overheads that affect the
critical path of transaction execution to understand how to
balance the overheads and reduce their effect on the critical
path.

First, we define the critical path of a transaction as the
sequence of steps that the transaction takes (including both
shared memory and meta-data accesses) to complete its
execution. Figure 1 shows this path in STM, and compares it
with that in sequential execution and coarse-grained locking.

(a) Sequential code

(b) Coarse-grained locking

(c) STM

Figure 1. Critical path of execution for: (a) sequential, (b) lock-based,
and (c) STM-based code

In Figure 1(a), the sequential code contains only shared-
memory reads and writes without any overhead. Coarse-
grained locking, in Figure 1(b), adds only the overhead
of acquiring and releasing a global lock at the begin-
ning and at the end of execution, respectively. However,
coarse-grained locking does not scale and ends up with a
performance similar to sequential code. It is important to
note that fine-grained locking and lock-free synchronization
have been proposed in the literature to overcome coarse-
grained locking’s scalability limitation [3]. However, these
synchronization techniques must be custom-designed for a
given application situation. In contrast, STM is a general
purpose framework that is completely transparent to appli-
cation logic. In application-specific approaches, the critical
path cannot be easily identified because it depends on the
logic of the application at hand.

Figure 1(c) shows how STM algorithms3 add significant
overheads on the critical path in order to combine the two

3Here, we sketch the critical path of NOrec [7]. However, the same idea
can be applied to any other STM algorithm.

benefits of i) being as generic as possible and ii) exploiting
as much concurrency as possible. We can classify these
overheads as follows:

Logging. Each read and write operation must be logged in
local (memory) structures, usually called read-sets and write-
sets. This overhead cannot be avoided, but can be minimized
by efficient implementation of the structures [3].

Locking. In most STM algorithms, locks are lazily ac-
quired at commit time to increase concurrency. However,
for an STM algorithm to be generic, the memory-level locks
that transactions acquire cannot be as optimal as those for
application-specific implementations. Thus, a trade-off exists
between coarse-grained and fine-grained STM algorithms,
which has been thoroughly studied in the literature. Al-
though fine-grained algorithms such as TL2 [5] reduce false
conflicts and increase concurrency, they are not as simple as
coarse-grained algorithms such as NOrec [7] and InvalSTM
[10]. Since locks are only acquired at commit time in both
[7] and [10], the overhead of lock granularity is minimized,
and other considerations such as minimizing the meta-
data (saved locally in transactions) become as important as
performance. NOrec, for example, uses only one global lock
at commit time, which minimizes the meta-data that must be
managed. This meta-data minimization opens the door for
more enhancements, such as easy integration with hardware
transactions [21].

Another important overhead is the locking mechanism.
Most STM frameworks use spin locks and CAS operations
to synchronize memory accesses. One of the main sources
of STM’s performance degradation is that all transactions
compete and spin on the same shared lock when they are
trying to read, write, or commit. This is because spinning
on a shared object increases cache misses, and also because
CASes are costly operations [9]. In the case of global
locking, like in NOrec and InvalSTM, this overhead becomes
more significant because spinning in these algorithms is only
on one global lock.

Validation. As mentioned before, the validation overhead
becomes significant when higher levels of correctness guar-
antees are required (e.g., opacity). Most STM algorithms use
either incremental validation or commit-time invalidation
to guarantee opacity. In the case of invalidation, the time
complexity is reduced, but with an additional overhead on
commit, as we discuss in the next point.

Commit. Commit routines handle a number of issues
in addition to publishing write-sets on shared memory.
One of these issues is lock acquisition, which, in most
STM algorithms, is delayed until commit. Also, most STM
algorithms require commit-time validation after lock acqui-
sition to ensure that nothing happened when the locks were
acquired. In case of commit-time invalidation, the entire
invalidation overhead is added to the commit routines. This
means that a committing transaction has to traverse all active
transactions to detect which of them is conflicting. As a



consequence, the lock holding time is increased. Moreover,
if the committing transaction is blocked for any reason (e.g.,
due to OS scheduling), all other transactions must wait.
The probability of such blocking increases if the time of
holding the lock increases. Therefore, optimizing the commit
routines has a significant impact on overall performance.

Abort. If there is a conflict between two transactions,
one of them has to abort. Transaction abort is a significant
overhead on the transaction’s critical path. The contention
manager is usually responsible for decreasing the abort
overhead by selecting the best candidate transaction to abort.
The greater the information that is given to the contention
manager from the transactions, the greater the effectiveness
on reducing the abort overhead. However, involving the
contention manager to make complex decisions adds more
overhead to the transaction critical path.

Figure 2. Percentage of validation, commit, and other (non-transactional)
overheads on a red-black tree. The y-axis is the normalized (to NOrec)
execution time

Figure 2 shows how the trade-off between invalidation
and commit affects the performance in a red-black tree
benchmark for different numbers of threads (8, 16, 32,
and 48). Here, transactions are represented by three main
blocks: read (including validation), commit (including lock
acquisition, and also invalidation in the case of InvalSTM),
and other overhead. The last overhead is mainly the non-
transactional processing. Although some transactional work
is also included in the later block, such as beginning a
new transaction and logging writes, all of these overheads
are negligible compared to validation, commit, and non-
transactional overheads. Figure 2 shows the percentage of
these blocks in both NOrec and InvalSTM (normalized to
NOrec).

The figure provides several key insights. When the num-
ber of threads increases, the percentage of non-transactional
work decreases, which means that the overhead of contention
starts to dominate and becomes the most important to miti-
gate. It is clear also from the figure that InvalSTM adds more
overhead on commit so that the percentage of execution
time consumed by the commit routine is higher than NOrec.
Moreover, this degradation in commit performance affects

read operations as well, because readers have to wait for
any running commit to finish execution.

Figure 3. Percentage of validation, commit, and other (non-transactional)
overheads on STAMP benchmark. The y-axis is the normalized (to NOrec)
execution time

The same conclusion is given in the STAMP benchmark4.
In Figure 3, the percentage of commit in intruder, kmeans,
and ssca2, is higher in InvalSTM than NOrec, leading to the
same performance degradation as red-black tree. In genome
and vacation, degradation in InvalSTM read performance is
much higher than before. This is because these workloads
are biased to generate more read operations than writes.
When a committing transaction invalidates many read trans-
actions, all of these aborted transactions will retry execut-
ing all of their reads again. Thus, in these read-intensive
benchmarks, abort is a dominating overhead. In labyrinth
and bayes, almost all of the work is non-transactional, which
implies that using any STM algorithm will result in almost
the same performance.

Based on this analysis, it is clear that each overhead
cannot be completely avoided. Different STM algorithms
differ on how they control these overheads. It is also clear
that some overheads contradict each other, such as validation
and commit overheads. The goal in such cases should be
finding the best trade-off between them. This is why each
STM algorithm is more effective in some specific workloads
than others.

We design and implement RInval to minimize the effect of
most of the previously mentioned overheads. Basically, we
alleviate the effect of i) locking overhead, ii) the tradeoff
between validation and commit overheads, and iii) abort
overhead. The overhead of meta-data logging usually cannot
be avoided in lazy algorithms. For locking, we select coarse-
grained locking to obtain the advantage of minimal meta-
data, and to minimize the synchronization overhead. We
also use the remote core locking mechanism [13], instead
of spin locking, to reduce the overhead of locks. Validation
and commit are improved by using invalidation outside, and

4We excluded yada applications of STAMP as it evidenced errors
(segmentation faults) when we tested it on RSTM.



in parallel with, the main commit routine. Finally, we use a
simple contention manager to reduce the abort overhead.

IV. REMOTE INVALIDATION

As described in Section III, Remote Invalidation reduces
the overhead of the transaction critical path. To simplify
the presentation, we describe the idea incrementally, by
presenting three versions of RInval5. In the first version,
called RInval-V1, we show how spin locks are replaced
by the more efficient remote core locks. Then, in RInval-
V2, we show how commit and invalidation are parallelized.
Finally, in RInval-V3, we further optimize the algorithm by
allowing the commit-server to start a new commit routine
before invalidation-servers finish their work.

A. Version 1: Managing the locking overhead

Spin locks are not usually the best locking mechanism to
synchronize critical sections. More efficient locking mecha-
nisms have been proposed in the literature such as MCS [15],
Flat Combining [14], and Remote Core Locking (or RCL)
[13]. However, not all of these lock algorithms can easily
replace spin locking in STM algorithms, because most STM
algorithms use sequence locks (not just spin locks) by adding
versions to each lock. The versions are used in many STM
algorithms to ensure that transactions always see a consistent
snapshot of the memory. Sequence locks cannot be directly
converted to more complex locks such as MCS or Flat
Combining.

RCL, one of the most recent locking mechanisms, targets
the same goal that we discussed in Section III, which is to
reduce CAS operations and cache misses. RCL dedicates
servers to execute critical sections on behalf of application
threads. Applications send commit requests to servers us-
ing cache-aligned arrays to minimize cache misses. RCL’s
performance has been shown to be better than MCS and
Flat Combining. However, in generic lock-based workloads,
RCL’s usage is complicated, as it needs some mechanism
(e.g., compile-time code re-engineering) to define critical
sections and how they are overlapped or nested. Such
complex mechanisms may nullify some of RCL’s benefits
by adding new CAS operations or by causing new cache
misses.

RCL can be adopted to replace internal spin locks in
STM frameworks, which is more appealing than replacing
coarse-grained and generic locks (with RCL) in lock-based
applications as described in [13]. Unlike generic critical
sections in lock-based applications, in STM, commit routines
are well defined, and can easily be executed remotely at
dedicated server cores (without the need to re-engineer
legacy applications).

5We only present the basic idea in the pseudo code given in this section.
The source code provides the full implementation details.

RInval-V1 uses this idea: commit routines are executed
remotely to replace spin locks. Figure 4 shows how RInval-
V1 works. When a client reaches a commit phase, it sends
a commit request to the commit-server by modifying a
local request state variable to be PENDING. The client
then keeps spinning on request state until it is changed by
the server to be either ABORTED or COMMITTED. This
way, each transaction spins on its own variable instead of
competing with other transactions on a shared lock.

Figure 4. Flow of commit execution in both InvalSTM and RInval-V1

Figure 5. Cache-aligned requests array

Figure 5 shows the structure of the cache-aligned requests
array. In addition to request state, the commit-server only
needs to know two values: tx status, which is used to check
if the transaction has been invalidated in an earlier step,
and write set, which is used for publishing writes on shared
memory and for invalidation. In addition, padding bits are
added to cache-align the request.

Remote execution of commit has three main advantages.
First, it removes all CAS operations and replaces them with
cache-aligned requests. Second, cache misses due to spin
locking are minimized, because each client spins on its
own variable. Third, commit-server blocking is minimized,
because it is executed on a dedicated core (this is evident in
Figure 4). In InvalSTM, if the commit executor is blocked
(which is more likely to be blocked than the commit-server),
all other transactions must wait until it resumes its execution
and releases the lock.

Since we use a coarse-grained approach, only one
commit-server is needed. Adding more than one commit-
server will cause several overheads: i) the design will



become more complex, ii) more cores have to be dedicated
for servers, iii) more CAS operations must be added to
synchronize the servers, and iv) cache misses may occur
among servers. Since we minimize the work done by the
commit-server, the overhead of serializing commit on one
server is expected to be less than these overheads.

Algorithm 2 Remote Invalidation - Version 1
1: procedure CLIENT COMMIT
2: if read only then
3: ...
4: else
5: if tx status = INVALIDATED then
6: TxAbort()
7: request state = PENDING
8: loop while request state /∈ (COMMITTED, ABORTED)
9: end procedure

10: procedure COMMIT-SERVER LOOP
11: while true do
12: for i← 1, num transactions do
13: req ← requests array[i]
14: if req.request state = PENDING then
15: if req.tx status = INVALIDATED then
16: req.request state = ABORTED
17: else
18: timestamp++
19: for All in-flight transactions t do
20: if me.write bf intersects t.read bf then
21: t.tx status = INVALIDATED
22: WriteInMemory(req.writes)
23: timestamp++
24: req.request state = COMMITTED

25: end procedure

Algorithm 2 shows the pseudo code of RInval-V16. This
version modifies the InvalSTM algorithm shown in Algo-
rithm 1.

The read procedure is the same in both InvalSTM and
RInval, because we only shift execution of commit from
the application thread to the commit-server. In the commit
procedure, if the transaction is read-only, the commit routine
consists of only clearing the local variables. In write transac-
tions, the client transaction checks whether it was invalidated
by an earlier commit routine (line 5). If validation succeeds,
the client changes its state to PENDING (line 7). The
client then loops until the commit-server handles its commit
request and changes the state to either COMMITTED or
ABORTED (line 8). The client will either commit or roll-
back according to the reply.

On the server side, the commit-server keeps looping on
client requests until it reaches a PENDING request (line
14). The server then checks the client’s request state to see
if the client has been invalidated (line 15). This check has
to be repeated at the server, because some commit routines
may take place after sending the commit request and before
the commit-server handles that request. If validation fails,

6We assume that instructions are executed in the same order as shown,
i.e., sequential consistency is assumed. We ensure this in our C/C++
implementation by using memory fence instructions when necessary (to
prevent out-of-order execution), and by using volatile variables when
necessary (to prevent compiler re-ordering).

the server changes the state to ABORTED and continues
searching for another request. If validation succeeds, it starts
the commit operation (like InvalSTM). At this point, there
are two main differences between InvalSTM and RInval-
V1. First, incrementing the timestamp does not use the CAS
operation (line 18), because only the main server changes the
timestamp. Second, the server checks request state before
increasing the timestamp (line 15), and not after it, like in
InvalSTM, which saves the overhead of increasing the shared
timestamp for a doomed transaction. Since only the commit-
server can invalidate transactions, there is no need to check
request state again after increasing the timestamp.

B. Version 2: Managing the tradeoff between validation and
commit

In RInval-V1, we minimized the overhead of locking on
the critical path of transactions. However, invalidation is still
executed in the same routine of commit (in serial order with
commit itself). RInval-V2 solves this problem by dedicating
more servers to execute invalidation in parallel with commit.
Unlike the commit-server, there can be more than one
invalidation-server, because their procedures are indepen-
dent. Each invalidation-server is responsible for invalidating
a subset of the running transactions. The only data that needs
to be transferred from the commit-server to an invalidation-
server is the client’s write-set. Figure 6 shows RInval-V2
with one commit-server and two invalidation-servers. When
the commit-server selects a new commit request, it sends the
write bloom filter of that request to the invalidation-servers,
and then starts execution. When the commit-server finishes,
it waits for the response from all invalidation-servers, and
then proceeds to search for the new commit request.

Figure 6. Flow of commit execution in RInval-V2

Selecting the number of invalidation-servers involves a
trade-off. According to Amdahl’s law, concurrency decreases
as the number of parallel executions increases. At some
point, adding more invalidation-servers may not have a no-
ticeable impact on performance. At the same time, increasing
the number of invalidation-servers requires dedicating more
cores for servers, and adds the overhead of servers commu-
nication. In our experiments, we found that, on a 64-core



machine, it is sufficient to use 4 to 8 invalidation-servers to
achieve the maximum performance.

Adding invalidation-servers does not change the fact that
no CAS operations are needed. It also ensures that all
communication messages (either between the commit-server
and the clients, or between the commit-server and the
invalidation-servers) are sent/received using cache-aligned
requests. Thus, RInval-V2 inherits the benefits of optimized
locking and parallelizing commit-invalidation routines.

Algorithm 3 Remote Invalidation - Version 2
1: procedure COMMIT-SERVER LOOP
2: while true do
3: for i← 1, num transactions do
4: req ← requests array[i]
5: if req.request state = PENDING then
6: for i← 1, num invalidators do
7: while timestamp > inval timestamp do
8: LOOP
9: if req.tx status = INVALIDATED then

10: req.request state = ABORTED
11: else
12: commit bf ← req.write bf
13: timestamp++
14: WriteInMemory(req.writes)
15: timestamp++
16: req.request state = COMMITTED
17: end procedure

18: procedure INVALIDATION-SERVER LOOP
19: while true do
20: if timestamp > inval timestamp then
21: for All in-flight transactions t in my set do
22: if commit bf intersects t.read bf then
23: t.tx status = INVALIDATED
24: inval timestamp += 2
25: end procedure

26: procedure CLIENT READ
27: ...
28: if x1 = timestamp and timestamp = my inval timestamp then

29: ...

30: end procedure

Algorithm 3 shows RInval-V2’s pseudo code. The client’s
commit procedure is exactly the same as in RInval-V1, so
we skip it for brevity. Each invalidation-server has its local
timestamp, which must be synchronized with the commit-
server. The commit-server checks that the timestamp of all
invalidation-servers is greater than or equal to the global
timestamp (line 7). It then copies the write bloom filter of
the request into a shared commit bf variable to be accessed
by the invalidation-servers (line 12).

The remaining part of RInval-V2 is the same as in
RInval-V1, except that the commit-server does not make
any invalidation. If an invalidation-server finds that its local
timestamp has become less than the global timestamp (line
20), it means that the commit-server has started handling
a new commit request. Thus, it checks a subset of the
running transactions (which are evenly assigned to servers)
to invalidate them if necessary (lines 21-23). Finally, it
increments its local timestamp by 2 to catch up with the
commit-server’s timestamp (line 24). It is worth noting that

the invalidation-server’s timestamp may be greater than the
commit-server’s global timestamp, depending upon who will
finish first.

The client validation is different from RInval-V1. The
clients have to check if their invalidation-servers’ timestamps
are up-to-date (line 28). The invalidation-servers’ times-
tamps are always increased by 2. This means that when they
are equal to the global timestamp, it is guaranteed that the
commit-server is idle (because its timestamp is even).

C. Version 3: Accelerating Commit

In RInval-V2, commit and invalidation are efficiently
executed in parallel. However, in order to be able to select a
new commit request, the commit-server must wait for all
invalidation-servers to finish their execution. This part is
optimized in RInval-V3. Basically, if there is a new commit
request whose invalidation-server has finished its work, then
the commit-server can safely execute its commit routine
without waiting for the completion of the other invalidation-
servers. RInval-V3 exploits this idea, and thereby allows
the commit-server to be n steps ahead of the invalidation-
servers (excluding the invalidation-server of the new commit
request).

Algorithm 4 Remote Invalidation - Version 3
1: procedure COMMIT-SERVER LOOP
2: if req.request state = PENDING and req.inval timestamp ≥

timestamp then
3: ...
4: ...
5: while timestamp > inval timestamp + num steps ahead do
6: LOOP
7: ...
8: commit bf [my index + +]← req.write bf
9: ...

10: end procedure

11: procedure INVALIDATION-SERVER LOOP
12: ...
13: if commit bf [my index + +] intersects t.read bf then
14: ...
15: end procedure

Algorithm 4 shows how RInval-V3 makes few modifica-
tions to RInval-V2 to achieve its goal. In line 2, the commit-
server has to select an up-to-date request, by checking that
the timestamp of the request’s invalidation-server equals the
global timestamp. The commit-server can start accessing this
request as early as when it is n steps ahead of the other
invalidation-servers (line 5). All bloom filters of the requests
that do not finish invalidation are saved in an array (instead
of one variable as in RInval-V2). This array is accessed by
each server using a local index (lines 8 and 13). This index is
changed after each operation to keep pointing to the correct
bloom filter.

It is worth noting that, in the normal case, all invalidation-
servers will finish almost in the same time, as the clients
are evenly assigned to the invalidation-servers, and the
invalidation process takes almost constant time (because



it uses bloom filters). However, RInval-V3 is more robust
against the special cases in which one invalidation-server
may be delayed for some reason (e.g., OS scheduling, paging
delay). In these cases, RInval-V3 allows the commit-server
to proceed with the other transactions whose invalidation-
servers are not blocked.

D. Other Overheads

In the three versions of RInval, we discussed how we al-
leviate the overhead of spin locking, validation, and commit.
As discussed in Section III, there are two more overheads
that affect the critical path of transactions. The first is
logging, which cannot be avoided as we use a lazy approach.
This issue is not just limited to our algorithm. Storing reads
and writes in local read-sets and write-sets, respectively, is
necessary for validating transaction consistency. The second
overhead is due to abort. Unlike InvalSTM, we prevent the
contention manager from aborting or delaying the com-
mitting transaction even if it conflicts with many running
transactions. This is because of two reasons. First, it enables
finishing the invalidation as early as possible (in parallel with
the commit routine), which makes the abort/retry procedure
faster. Second, we shorten the time needed to complete the
contention manager’s work, which by itself is an overhead
added to the servers’ overhead, especially for the common
case (in which writers invalidate readers).

E. Correctness and Features

RInval guarantees opacity in the same way other coarse-
grained locking algorithms do, such as NOrec [7] and
InvalSTM [10]. Both reads and writes are guaranteed to
be consistent because of lazy commit and global commit-
time locking. Before each new read, the transaction check
that i) it has not been invalidated in an earlier step, and
ii) no other transaction is currently executing its commit
phase. Writes are delayed to commit time, which are then
serialized on commit-servers. The only special case is that
of RInval-V3, which allows the commit-server to be several
steps ahead of invalidation. However, opacity is not violated
here, because this step-ahead is only allowed for transactions
whose servers have finished invalidation.

RInval also inherits all of the advantages of coarse-grained
locking STM algorithms, including simple global locking,
minimal meta-data usage, privatization safety [22], and
easy integration with hardware transactions [21]. Hardware
transactions need only synchronize with the commit-server,
because it is the only thread that writes to shared memory.

V. EXPERIMENTAL EVALUATION

We implemented RInval in C/C++ (compiled with gcc 4.6)
and ported to the RSTM framework [23] (compiled using
default configurations) to be tested using its interface. Our
experiments were performed on a 64-core AMD Opteron
machine (128GB RAM, 2.2 GHz).

To assess RInval, we compared its performance against
other coarse-grained STM algorithms, which have the same
strong properties as RInval, like minimal meta-data, easy
integration with HTM, and privatization safety. We com-
pared RInval with InvalSTM [10], the corresponding non-
remote invalidation-based algorithm, and NOrec [7], the
corresponding validation-based algorithm. For both algo-
rithms, we used their implementation in RSTM with the
default configuration. We present the results of both RInval-
V1 and RInval-V2 with 4 invalidation-servers. For clarity,
we withheld the results of RInval-V3 as it resulted very
close to RInval-V2. This is expected because we dedicate
separate cores for invalidation-servers, which means that
the probability of blocking servers is minimal (recall that
blocking servers is the only case that differentiate RInval-
V2 from RInval-V3)

We show results in red-black tree micro-benchmark and
the STAMP benchmark [16]. In these experiments, we show
how RInval solves the problem of InvalSTM and becomes
better than NOrec in most of the cases. All of the data points
shown are averaged over 5 runs.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  10  20  30  40  50  60T
h
ro

u
g
h
p
u
t 
(K

 T
ra

n
s
a
c
ti
o
n
s
/s

e
c
)

Threads

Inval
NOrec

RIV1
RIV2

(a) 50% reads

 0

 500

 1000

 1500

 2000

 2500

 0  10  20  30  40  50  60T
h
ro

u
g
h
p
u
t 
(K

 T
ra

n
s
a
c
ti
o
n
s
/s

e
c
)

Threads

Inval
NOrec

RIV1
RIV2

(b) 80% reads

Figure 7. Throughput (K Transactions per second) on red-black tree with
64K elements

Red-Black Tree. Figure 7 shows the throughput of
RInval and its competitors for a red-black tree with 64K
nodes and a delay of 100 no-ops between transactions, for



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Threads

Inval
NOrec

RIV1
RIV2

(a) kmeans

 0

 50

 100

 150

 200

 250

 300

 350

 0  10  20  30  40  50  60

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Threads

Inval
NOrec

RIV1
RIV2

(b) ssca2

 0

 5

 10

 15

 20

 25

 30

 35

 0  10  20  30  40  50  60

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Threads

Inval
NOrec

RIV1
RIV2

(c) labyrinth

 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50  60

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Threads

Inval
NOrec

RIV1
RIV2

(d) intruder

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  10  20  30  40  50  60

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Threads

Inval
NOrec

RIV1
RIV2

(e) genome

 0

 20

 40

 60

 80

 100

 120

 0  10  20  30  40  50  60

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Threads

Inval
NOrec

RIV1
RIV2

(f) vacation

Figure 8. Execution time on STAMP benchmark

two different workloads (percentage of reads is 50% and
80%, respectively). Both workloads execute a series of red-
black tree operations, one per transaction, in one second,
and compute the overall throughput. In both cases, when
contention is low (less than 16 threads), NOrec performs
better than all other algorithms, which is expected because
invalidation benefits take place only in higher contention
levels. However, RInval-V1 and RInval-V2 are closer to
NOrec than InvalSTM, even in these low contention cases.
As contention increases (more than 16 threads), performance
of both NOrec and InvalSTM degrades notably, while both
RInval-V1 and RInval-V2 sustain their performance. This
is mainly because NOrec and InvalSTM use spin locks
and suffer from massive cache misses and CAS operations,
while RInval isolates commit and invalidation in server
cores and uses cache-aligned communication. RInval-V2
performs even better than RInval-V1 because it separates
and parallelizes commit and invalidation routines. RInval-
V2 enhances performance as much as 2x better than NOrec
and 4x better than InvalSTM.

STAMP. Figure 8 shows the results of the STAMP
benchmark, which represents more realistic workloads. In
three benchmarks (kmeans, ssca2, and intruder), RInval-
V2 has the best performance starting from 24 threads, up
to an order of magnitude better than InvalSTM and 2x
better than NOrec. These results confirm how RInval solves
the problem of serializing commit and invalidation, which
we showed in Figure 3. In genome and vacation, NOrec
is better than all invalidation algorithms. This is mainly

because they are read-intensive benchmarks, as we also
showed in Figure 3. However, RInval is still better and
closer to NOrec than InvalSTM. For future work, we can
make further enhancements to make these specific cases even
better. One of these enhancements is to bias the contention
manager to readers, and allow it to abort the committing
transaction if it is conflicting with many readers (instead of
the classical winning commit mechanism, currently used). In
labyrinth, all algorithms perform the same, which confirms
the claim made in Section III, because their main overhead
is non-transactional. For brevity, we did not show bayes as
it behaves the same as labyrinth.

VI. CONCLUSIONS

There are many parameters – e.g., spin locking, validation,
commit, abort – that affect the critical execution path of
memory transactions and thereby transaction performance.
Importantly, these parameters interfere with each other.
Therefore, reducing the negative effect of one parameter
(e.g., validation) may increase the negative effect of another
(i.e., commit), resulting in an overall degradation in perfor-
mance for some workloads.

Our work shows that it is possible to mitigate the effect
of all of the critical path overheads. RInval dedicates server
cores to execute both commit and invalidation in parallel,
and replaces all spin locks and CAS operations with server-
client communication using cache-aligned messages. This
optimizes lock acquisition, incremental validation, and com-
mit/abort execution, which are the most important overheads
in the critical path of memory transactions.



REFERENCES

[1] T. Harris, J. Larus, and R. Rajwar, “Transactional memory,”
Synthesis Lectures on Computer Architecture, vol. 5, no. 1,
pp. 1–263, 2010.

[2] R. Guerraoui and M. Kapalka, “On the correctness of trans-
actional memory,” in Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel program-
ming. ACM, 2008, pp. 175–184.

[3] M. Herlihy and N. Shavit, The Art of Multiprocessor Pro-
gramming, Revised Reprint. Elsevier, 2012.

[4] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. Scherer,
and N. Shavit, “A lazy concurrent list-based set algorithm,”
Proceedings of the 9th International Conference on Principles
of Distributed Systems, pp. 3–16, 2006.

[5] D. Dice, O. Shalev, and N. Shavit, “Transactional locking
ii,” in Proceedings of the 20th international symposium on
Distributed Computing. Springer, 2006, pp. 194–208.

[6] T. Riegel, C. Fetzer, and P. Felber, “Time-based transactional
memory with scalable time bases,” in Proceedings of the
nineteenth annual ACM symposium on Parallel algorithms
and architectures. ACM, 2007, pp. 221–228.

[7] L. Dalessandro, M. Spear, and M. Scott, “Norec: streamlining
stm by abolishing ownership records,” in Proceedings of the
15th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. ACM, 2010, pp. 67–78.

[8] M. Spear, A. Shriraman, L. Dalessandro, and M. Scott,
“Transactional mutex locks,” in SIGPLAN Workshop on
Transactional Computing, 2009.

[9] T. David, R. Guerraoui, and V. Trigonakis, “Everything you
always wanted to know about synchronization but were afraid
to ask,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles. ACM, 2013, pp. 33–48.

[10] J. E. Gottschlich, M. Vachharajani, and J. G. Siek, “An
efficient software transactional memory using commit-time
invalidation,” in Proceedings of the 8th annual IEEE/ACM
international symposium on Code generation and optimiza-
tion. ACM, 2010, pp. 101–110.

[11] G. Kestor, R. Gioiosa, T. Harris, O. Unsal, A. Cristal, I. Hur,
and M. Valero, “Stm2: A parallel stm for high performance
simultaneous multithreading systems,” in 2011 International
Conference on Parallel Architectures and Compilation Tech-
niques (PACT). IEEE, 2011, pp. 221–231.

[12] V. Gramoli, R. Guerraoui, and V. Trigonakis, “Tm 2 c: a soft-
ware transactional memory for many-cores,” in Proceedings
of the 7th ACM european conference on Computer Systems.
ACM, 2012, pp. 351–364.

[13] J.-P. Lozi, F. David, G. Thomas, J. Lawall, G. Muller et al.,
“Remote core locking: migrating critical-section execution to
improve the performance of multithreaded applications,” in
Proc. Usenix Annual Technical Conf, 2012, pp. 65–76.

[14] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir, “Flat
combining and the synchronization-parallelism tradeoff,” in
Proceedings of the 22nd ACM symposium on Parallelism in
algorithms and architectures. ACM, 2010, pp. 355–364.

[15] J. Mellor-Crummey and M. Scott, “Algorithms for scalable
synchronization on shared-memory multiprocessors,” ACM
Transactions on Computer Systems (TOCS), vol. 9, no. 1,
pp. 21–65, 1991.

[16] C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp:
Stanford transactional applications for multi-processing,” in
IEEE International Symposium on Workload Characteriza-
tion, IISWC. IEEE, 2008, pp. 35–46.

[17] T. Harris and K. Fraser, “Language support for lightweight
transactions,” in ACM SIGPLAN Notices, vol. 38, no. 11.
ACM, 2003, pp. 388–402.

[18] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III,
“Software transactional memory for dynamic-sized data struc-
tures,” in Proceedings of the twenty-second annual symposium
on Principles of distributed computing. ACM, 2003, pp. 92–
101.

[19] B. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Communications of the ACM, vol. 13, no. 7, pp.
422–426, 1970.

[20] L. Dalessandro and M. L. Scott, “Sandboxing transactional
memory,” in Proceedings of the 21st international conference
on Parallel architectures and compilation techniques. ACM,
2012, pp. 171–180.

[21] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer,
“Optimizing hybrid transactional memory: The importance of
nonspeculative operations,” in Proceedings of the 23rd ACM
Symposium on Parallelism in Algorithms and Architectures.
ACM, 2011, pp. 53–64.

[22] M. Spear, V. Marathe, L. Dalessandro, and M. Scott, “Pri-
vatization techniques for software transactional memory,” in
Proceedings of the twenty-sixth annual ACM symposium on
Principles of distributed computing. ACM, 2007, pp. 338–
339.

[23] V. Marathe, M. Spear, C. Heriot, A. Acharya, D. Eisenstat,
W. Scherer III, and M. Scott, “Lowering the overhead of
nonblocking software transactional memory,” in Workshop on
Languages, Compilers, and Hardware Support for Transac-
tional Computing (TRANSACT), 2006.


