
Scheduling Closed-Nested Transactions in Distributed Transactional Memory

Junwhan Kim

ECE Dept., Virginia Tech
Blacksburg, VA, 24061

Email: junwhan@vt.edu

Binoy Ravindran

ECE Dept., Virginia Tech
Blacksburg, VA, 24061
Email: binoy@vt.edu

Abstract—Distributed software transactional memory (D-
STM) is an emerging, alternative concurrency control model
for distributed systems that promises to alleviate the difficulties
of lock-based distributed synchronization—e.g., distributed
deadlocks, livelocks, and lock convoying. We consider Her-
lihy and Sun’s dataflow D-STM model, where objects are
migrated to invoking transactions, and the closed nesting model
of managing inner (distributed) transactions. We present a
transactional scheduler called, reactive transactional scheduler
(or RTS) to boost the throughput of closed-nested transactions.
RTS determines whether a conflicting parent transaction must
be aborted or enqueued according to the level of contention.
If a transaction is enqueued, its nested inner transactions do
not have to retrieve objects again, resulting in reduced com-
munication delays. Our implementation of RTS in the HyFlow
D-STM framework and experimental evaluations reveal that
RTS improves throughput over D-STM without RTS, by as
much as 88%.

Keywords-Software Transactional Memory, Closed-Nested
Transactions, Transactional Scheduling, Distributed Systems

I. INTRODUCTION

Lock-based concurrency control suffers from scalabil-

ity, programmability, and composability challenges [14].

These difficulties are exacerbated in distributed systems with

nodes, possibly multicore, interconnected using message

passing links, due to additional, distributed versions of their

centralized problem counterparts [16].

Transactional memory (TM) promises to alleviate the

difficulties with lock-based concurrency control. With TM,

programmers organize code that read/write shared memory

objects as transactions, which appear to execute atomi-

cally. Two transactions conflict if they access the same

object and one access is a write. When that happens, a

contention manager [15] resolves the conflict by aborting

one and allowing the other to proceed to commit, yielding

(the illusion of) atomicity. Aborted transactions are re-

started, often immediately. Thus, a transaction ends by either

committing (i.e., its operations take effect), or by aborting

(i.e., its operations have no effect). In addition to a simple

programming model, TM provides performance comparable

to highly concurrent, fine-grained locking, especially during

high contention situations [23]. Multiprocessor TM has been

proposed in hardware, called HTM (e.g., [13]), in software,

called STM (e.g., [8]), and in a combination, called Hybrid

TM (e.g., [7]).

Distributed STM (D-STM) has built upon these results, as

an alternative to distributed lock-based concurrency control.

In Herlihy and Sun’s dataflow D-STM model [16], transac-

tions are immobile and objects are dynamically migrated to

invoking transactions. The model requires a cache-coherence

protocol, which locates an object’s latest cached copy, and

moves a copy to the requesting transaction, while guaran-

teeing one writable copy. Contention management is also

needed. When an object is attempted to be migrated, it

may be in use. Thus, a contention manager mediates object

access conflicts, while avoiding deadlocks and livelocks.

Similar to multiprocessor STM, D-STM provides a simple

distributed programming model (e.g., locks are precluded in

the interface), and effective performance (e.g., [18]).

Support for nesting transactions is essential for D-

STM, for the same reasons that they are so for multi-

processor TM –i.e., composability, performance, and fault-

management [20]. Composability is the ability to group

atomic operations into larger atomic operations. Many li-

braries or third-party software contain atomic code, and

application developers often desire to group such code, with

user, other library, or third-party (atomic) code into larger

atomic code blocks. This can be accomplished by nesting

all atomic code within their enclosing code, as permitted by

the inherent composability of TM and D-STM. But doing

so — i.e., flat nesting — results in large monolithic trans-

actions, which limits concurrency: when a large monolithic

transaction is aborted, all nested transactions are also aborted

and rolled back, even if they don’t conflict with the outer

transaction. Further, in many nested settings, programmers

desire to respond to the failure of each nested action with

an action-specific response. This is particularly the case in

distributed systems—e.g., if a remote device is unreachable

or unavailable, one would want to try an alternate remote

device, all as part of a top-level atomic action. Furthermore,

inadequate performance of a nested third-party or library

code must often be circumvented (e.g., by trying another

nested code block) to boost overall application performance.

In these cases, one would want to abort a nested action and

try an alternative, without aborting the work accomplished

so far (i.e., aborting the top-level action).

Three types of nesting have been studied in multiprocessor

STM: flat, closed, and open. If an inner transaction I is flat-
nested inside its outer transaction A, A executes as if the

code for I is inlined inside A. Thus, if I aborts, it causes A
to abort. If I is closed-nested inside A [19], the operations

of I only become part of A when I commits. Thus, an abort

of I does not abort A, but I aborts when A aborts. Finally,

if I is open-nested inside A, then the operations of I are

not considered as part of A. Thus, an abort of I does not

abort A, and vice versa.

A complimentary approach for dealing with transactional

conflicts is transactional scheduling. Broadly, a transactional

scheduler determines the ordering of concurrent transactions

so that conflicts are either avoided altogether or minimized.

Two kinds of transactional schedulers have been studied

in the past: reactive [8], [3], [17] and proactive [25], [4].

These schedulers cannot directly be used to schedule nested

distributed transactions.

When a conflict between two transactions occurs, the

contention manager determines which transaction wins or

loses, and then the losing transaction aborts. Since aborted

transactions might abort again in the future, reactive sched-

ulers enqueue aborted transactions, serializing their future

execution [8], [3], [17]. Past studies show that, such sched-

ulers often causes only small number of aborts and reduces

the total communication delay in D-STM [17]. However,

aborts may increase when scheduling nested transactions. In

the flat and closed nesting models, if an outer transaction,

which has multiple nested transactions, aborts due to a con-

flict, the outer and inner transactions will restart and request

all objects regardless of which object caused the conflict.

Even though the aborted transactions are enqueued to avoid

conflicts, the scheduler serializes the aborted transactions to

reduce the contention on only the object that caused the

conflict. With nested transactions, this may lead to heavy

contention because all objects have to be retrieved again.

Proactive schedulers take a different strategy. Since

aborted transactions should not abort again when re-issued,

proactive schedulers abort the losing transaction with a

backoff time, which determines how long the transaction is

stalled before it is re-started [25], [4]. Determining backoff

times for aborted transactions is generally difficult in D-

STM. For example, the winning transaction may commit

before the aborted transaction is restarted due to commu-

nication delays. This can cause the aborted transaction to

conflict with another transaction. If the aborted transaction

is a nested transaction, this will increase the total execution

time of its parent transaction. Thus, the backoff strategy may

not avoid or reduce aborts in D-STM.

We consider closed-nested transactions in D-STM, which

is more efficient than flat nesting and guarantees serializa-
tion [1]. (Open nesting is similar to closed nesting, but may

need different semantics for concurrency control [19].) We

present a transactional scheduler for closed-nested transac-

tions, called the reactive transactional scheduler (or RTS),

which considers both aborting or enqueuing a parent trans-

action including closed-nested transactions. RTS decides

which transaction is aborted or enqueued to protect its

nested transactions according to a contention level, and

assign the enqueued transaction with a backoff time to

boost transactional throughput. We implement RTS in a

Java D-STM framework, called HyFlow [22], and conduct

experimental studies. Our results reveal that transactional

throughput is improved by up to 88% over D-STM without

RTS. To the best of our knowledge, RTS is the first ever

transactional scheduler for nested transactions in D-STM.

The rest of the paper is organized as follows. We present

preliminaries of the D-STM model and state our assumptions

in Section II. We describe RTS and analyze its properties in

Section III. Section IV describes our experimental studies.

We overview past and related efforts in Section V, and

conclude in Section VI.

II. PRELIMINARIES

We consider a distributed system that consists of a set of

nodes that communicate with each other by message-passing

links over a communication network. A set of distributed
transactions T = {T1, T2, · · ·} is assumed that share objects

O = {o1, o2, . . .}, which are distributed in the network. A

transaction contains a sequence of requests, each of which is

a read or write operation request to an individual object. An

execution of a transaction is a sequence of timed operations.

An execution ends by either a commit (success) or an abort

(failure). A transaction is in one of three possible states:

live, aborted, or committed. Each transaction has a unique

identifier, and is invoked by a node in the system.

We consider Herlihy and Sun’s dataflow D-STM

model [16], where transactions are immobile, and objects

move from node to node to invoking transactions. In this

model, each node has a TM proxy that provides interfaces

to the local application and to proxies at other nodes. When a

transaction Ti at node ni requests object oj , the TM proxy

of ni first checks whether oj is in its local cache. If the

object is not present, the proxy invokes a distributed cache

coherence protocol (CC) to fetch oj in the network. Node

nk holding oj checks whether the object is in use by a local

transaction Tk when it receives the request for oj from ni.

If so, the proxy invokes a contention manager to mediate

the conflict between Ti and Tk for oj .

We consider two properties of the CC protocol. First,

when the TM proxy of Ti requests oj , the CC protocol is

invoked to send Ti’s read/write request to a node holding

a valid copy of oj in a finite time period. (A read (write)

request indicates the request for Ti to conduct a read (write)

operation on oj .) Second, at any given time, the CC protocol

must locate only one copy of oj in the network, and only

one transaction is allowed to eventually write to oj .

Figure 1 shows a code example that illustrates a nested

transaction. The tx begin and tx end delimiters mark the

Figure 1. A code example where transaction T1−1 is nested inside T1.

beginning and end of a transaction, respectively. T1 is a

parent transaction of its first nested transaction T1−1. When

T1 starts, the CC protocol locates objects x and y to conduct

the ++ operation. The CC protocol independently locates

the object i for T1−1. After T1−1 commits, the protocol

requests object z for T1. Objects x and y are still in use

unless T1 commits or aborts.

We use the Transactional Forwarding Algorithm (or

TFA) [22] to provide early validation of remote objects,

guarantee a consistent view of shared objects between

distributed transactions, and ensure atomicity for object

operations in the presence of asynchronous clocks.

Figure 2. An Example of TFA

For completeness, we illustrate TFA with an example

(See [22], [24] for detailed examples). In Figure 2, suppose

that six transactions (i.e., T1, T2, T3, T4, T5, and T6) request

object o1 from the object holder. Assume that T2 validates

o1 from t1 to t2. Write transaction T1 that has requested o1
before T2 starts validation will abort when T1 validates at t3.

T2 creates a new version of o1, which is different from the

version that T1 has requested, so T1 aborts. In the meantime,

while T2 validates, all other requesting transactions (i.e., T4,

T5, and T6) abort.

There are two kinds of aborts on TFA in Figure 2. First,

T1 aborts due to the early validation of T2. In this case, the

transactions may have requested multiple objects and may

have already conducted some operations on those objects.

So they must abort. Second, losing transactions T4, T5,

and T6 abort while T2 validates. A validation in distributed

systems includes global registration of object ownership,

which take a relatively long time due to communication

overhead. Transactions that request an object being vali-

dated must abort. Many existing transactional schedulers

optimize the order for re-executing aborted transactions to

avoid their repeated aborts (e.g., [8], [25], [2]). If a nested

transaction commits, its modifications become visible to its

parent transaction. These changes only become visible for

other transactions when the parent transaction commits [19].

Thus, RTS determines that parent transactions, which are

designated to abort due to the second case of aborting in

TFA, are aborted or enqueued to minimize aborts of its

nested transactions.

III. REACTIVE TRANSACTIONAL SCHEDULING

A. Overview

We consider two kinds of aborts that can occur in closed-

nested transactions when a conflict occurs: aborts of nested

transactions and aborts of parent transactions. Closed nesting

allows a nested transaction to abort without aborting its

parent transaction. If a parent transaction aborts however,

all of its closed-nested transactions are aborted. Thus, RTS

performs two actions for a losing parent transaction. First,

determining whether losing transaction is aborted or en-

queued by the length of its execution time. Second, the

losing transaction is aborted if it is a parent transaction with

a “high” contention level. A parent transaction with a “low”

contention level is enqueued with a backoff time.

The contention level (CL) of an object oj can be de-

termined in either a local or distributed manner. A simple

local detection scheme determines the local CL of oj by

how many transactions have requested oj during a given

time period. A distributed detection scheme determines the

remote CL of oj by how many transactions have requested

other objects before oj is requested. For example, assume

that a transaction Ti is validating oj , and Tk requests oj
from the object owner of oj . The local CL of oj is 1 because

only Tk has requested oj . The remote CL of oj is the local

CL of objects that Tk have requested if any. Ti’s commit

influences the remote CL because those other transactions

will wait until Tk completes validation of oj . If Tk aborts,

the objects that Tk is using will be released, and the other

transactions will obtain the objects. We define the CL of an

object as the sum of its local and remote CLs. Thus, the

CL indicates how many transactions want the objects that a

transaction is using.

If a parent transaction with a short execution time is

enqueued instead of aborted, the queuing delay may exceed

its execution time. Thus, RTS aborts a parent transaction

with a short execution time. If a parent transaction with a

high CL aborts, all closed-nested transactions will abort even

if they have committed with their parent and will have to

request the objects again. This may waste more time than a

queuing delay. As long as their waiting time elapses, their

CL may increase. Thus, RTS enqueues a parent transaction

with a low CL. We discuss how to determine backoff times

and CLs in Section III-B.

B. Illustrative Example

(a) Object-based Scenario

(b) Transaction-based Scenario

Figure 3. A Reactive Transactional Scheduling Scenario

RTS assigns different backoff times for each enqueued

transaction. A backoff time is computed as a percentage of

estimated execution time. Figure 3 shows a example of RTS.

Three write transactions T1, T2, and T3 request o1 from the

owner of o1, and T2 validates o1 first at t3. T1 and T3 abort

due to the early validation of T2. We consider two types

of conflicts in RTS while T2 validates o1. First, a conflict

between two write transactions can occur. Let us assume that

write transactions T4, T5, and T6 request o1 at t4, t5, and

t6, respectively. T4 is enqueued because the execution time

| t4 − t1 | of T4 exceeds | t7 − t4 | of T2 — the expected

commit time t7 of T2. At this time, the local CL of o1 is 1

and the CL will be 2 (i.e., the CLs of o3 + o2 + o1), which is

a low CL. Thus, | t7−t4 | is assigned to T4 as a backoff time.

When T5 requests o1 at t5, even if | t5 − t2 | exceeds | t5 -

expected commit time of T4 |, T5 is not enqueued because

the CL is 4 (i.e., the local CL of o1 is 2 and the CL of o4
is 2), which is a high CL. Due to the short execution time

of T6, T6 aborts. Second, a conflict between read and write

transactions can occur. Let us assume that read transactions

T4, T5, and T6 request o1. As backoff times, | t7 − t4 |,
| t7 − t5 |, and | t7 − t6 | will be assigned to T4, T5 and T6,

respectively. o1 updated by T2 will simultaneously be sent

to T4, T5 and T6, increasing the concurrency of the read

transactions.
Given a fixed number of transactions and nodes, object

contention will increase if these transactions simultaneously

try to access a small number of objects. The threshold of a

low or high CL relies on the number of nodes, transactions,

and shared objects. Thus, the CL’s threshold is adaptively

determined. Assume that the CL’s threshold in Figure 3 is

decided as 3. When T4 requests o1, the CL for objects o1, o2,

and o3 is 2, meaning that two transactions want the objects

that T4 has requested, so T4 is enqueued. On the other hand,

when T5 requests o1, the CL of objects o1 and o4 is 4,

representing that four transactions (i.e., more than the CL’s

threshold) want o1 or o4 that T5 has requested, so T5 aborts.

As long as the waiting time elapses, their CL may increase.

Thus, RTS enqueues a parent transaction with a low CL,

which is defined as less than the CL’s threshold.

To compute a backoff time, we use a transaction stats
table that stores the average historical validation time of

a transaction. Each table entry holds a bloom filter [5]

representation of the most current successful commit times

of write transactions. Whenever a transaction starts, an

expected commit time is picked up from the table. The

requesting message for each transaction includes three times-

tamps: the starting, requesting, and expected commit time of

a transaction. In Figure 3, if T5 is enqueued, its backoff time

will be | t7 − t5 | + the expected execution time (i.e., the

expected commit - requesting time) of T4.

If the backoff time expires before an object is received, the

corresponding transaction will abort. Two possible cases ex-

ist in this situation. First, the transaction requests the object

and is enqueued again as a new transaction. The duplicated

transaction (i.e., the previously enqueued transaction) will be

removed from a queue. Second, the object may be received

before the transaction restarts. In this case, the object will

be sent to the next enqueued transaction.

C. Algorithm Description

We now present the algorithms for RTS. There are

three algorithms: Algorithm 2 for Open Object, Algo-

rithm 3 for Retrieve Request, and Algorithm 4 for

Retrieve Response. The procedure Open Object is in-

voked whenever a new object needs to be requested.

Open Object returns the requested object if the object

is received. The second procedure, Retrieve Request, is

invoked whenever an object holder receives a new request

from Open Object. Finally, Retrieve Response is in-

voked whenever the requester receives a response from

Retrieve Request. Open Object has to wait for a re-

sponse and Retrieve Request notifies Open Object of the

response.

The data structures depicted in Algorithm 1 is used in Al-

gorithms 3 and 4. The data structure of Requester consists

of the address of the transaction identifier of a requester.

Requester List maintains a linked list for Requester and

a contention level. getContention() gives the total con-

tention level of objects representing how many transactions

have requested. scheduling List is a hash table to hold

a Requester List including requesters for an object with

Object ID.

Algorithm 2 describes the procedure of Open Object.
After finding the owner of the object, a requester sends

oid, txid, myCL, and ETS to the owner. myCL is set

when an object is received. myCL indicates the number of

transactions needing the objects that the requester is using.

Algorithm 1: Structure of Scheduling Table

1 Class Requester {
2 Address address;
3 Transaction ID txid;
4 }
5 Class Requester List {
6 List<Requester> Requesters = new LinkedList<Requester>();
7 Integer Contention Level;
8 void addRequester(Contention Level, Requester);
9 void removeDuplicate(Address);

10 Integer getContention();
11 }
12 Map<Object ID, Requester List> scheduling List
13 = new ConcurrentHashMap<Object ID, Requester List>();

The structure of an execution time (ETS) consists of the

start time s, the requesting time r, and the expected commit

time c of the requester. If the received object is null and the

assigned backoff time is not 0, the requester waits for the

backoff time. If it expires, Open Object returns null and

corresponding transaction retries. Otherwise, the requester

wakes up and receives the object. The TransactionQueue
holding live transactions is used to check the status of the

transactions. If a transaction aborts, it is removed from

the TransactionQueue. In this case, even if an object is

received, there is no transaction that needs the object, and

therefore it is forwarded to the next transaction.

Algorithm 2: Algorithm of Open Object

1 Procedure Open Object
Input: Transaction ID txid, Object ID oid
Output: null, object

2 owner = Find owner(oid);
3 Send oid, txid, myCL, and ETS to owner;
4 Wait until that Retrieve Response is invoked;
5 Read object, backoff , and remoteCL from Retrieve Response;
6 if object is null then
7 if backoff is not 0 then
8 TransactionQueue.put(txid);
9 Wait for backoff ;

10 Read object and backoff from Retrieve Response;
11 if object is not null then
12 return object;

13 else
14 TransactionQueue.remove(txid);

15 return null;

16 else
17 return object;

Algorithm 3 describes Retrieve Request, which is

invoked when an object owner receives a request. If

get Object gives null, it is not the owner of oid. Thus,

0 is assigned as the backoff and the requester must retry to

find a new owner. If the corresponding object is locked,

the object is being validated, so Retrieve Request has

to decide whether the requester is aborted or enqueued

on ETS and Contention Threshold. Static variables bks

represent backoff times for each object. An object owner

holds as many bks as holding objects and updates corre-

sponding bks whenever a transaction is enqueued. Unless

the contention level of the requester and the object owner

exceeds Contention Threshold, the requester is added to

scheduling List. As soon as the object is unlocked, it is

sent to the first element of scheduling List.

Algorithm 3: Algorithm of Retrieve Request

1 Procedure Retrieve Request
Input: oid. txid, Contention Level, ETS

2 object = get Object(oid);
3 address = get Requester Address();
4 Integer backoff = 0;
5 if object is not null and in use then
6 Requester List reqlist = scheduling List.get(oid);
7 if reqlist is null then
8 reqlist = new Requester List();

9 else
10 reqlist.removeDuplicate(address);

11 if bk < | ETS.r - ETS.s | then
12 Integer contention =

reqlist.getContention()+Contention Level;
13 if contention < CL Threshold then
14 bk += | ETS.c - ETS.r |; backoff = bk;
15 reqlist.addReqeuster(contention, new

Requester(address, txid));
16 scheduling List.put(oid, reqlist);

17 Send object and backoff to address;

In Algorithm 4, Retrieve Response sends

Object Open a signal to wake up if a transaction

waits for an object. If any transaction needing the

object is not located in TransactionQueue, let the

object’s owner send the object to the next element of

scheduling List. If a transaction completes the validation

of objects (i.e., commit), the node invoking the transaction

receives Requster Lists of each committed object. The

newly updated object will be sent to the first element of

scheduling List.

Algorithm 4: Algorithm of Retrieve Response

1 Procedure Retreive Response
Input: object, txid, and backoff

2 if txid is found in TransactionQueue then
3 TransactionQueue.remove(txid);
4 Send a signal to wake up and give object and backoff ;

5 else
6 Send a message to the object owner;

Whenever an object is requested, RTS performs Algo-

rithms 2, 3, and 4. We use a hash table for objects

and a linked list for transactions. The transactions will be

enqueued as many as CL threshold. The time complexity is

O(1) to enqueue a transaction. To check duplicated trans-

actions in all enqueued transactions, the time complexity is

O(CL threshold). Thus, the total time complexity of RTS

is O(CL threshold).

D. Analysis

We now show that RTS outperforms another scheduler in

speed. Recall that RTS uses TFA to guarantee a consistent

view of shared objects between distributed transactions, and

ensure atomicity for object operations. In [22], TFA is shown

to exhibit opacity (i.e., its correctness property) [11] and

strong progressiveness (i.e., its progress property [10]). For

the purpose of analysis, we consider a symmetric network

of N nodes scattered in a metric space. The metric d(ni, nj)
is the distance between nodes i and j. Transactions Ti and

Tj are invoked at nodes ni and nj , respectively. The local

execution time of Ti is defined as γi.

Definition 1: Given a scheduler A and N transactions

in D-STM, makespanA(N) is the time that A needs to

complete N transactions.

If only a transaction Ti exists and Ti requests ok from nj ,

it will commit without any contention. Thus, makespanA(1)

is 2×d(ni, nj)+γi under any scheduler A.

Definition 2: The relative competitive ratio (RCR) of

schedulers A and B for N transactions in D-STM is
makespanA(N)
makespanB(N) .

Given schedulers A and B for N transactions, if RCR

(i.e.,
makespanA(N)
makespanB(N)) < 1, A outperforms B. Thus, RCR

of A and B indicates a relative improvement between

schedulers A and B if makespanA(N) < makespanB(N).
In the worst case, N transactions are simultaneously invoked

to update an object. Whenever a conflict occurs between

two transactions, let scheduler B abort one of these and

enqueue the aborted transaction (to avoid repeated aborts)

in a distributed queue. The aborted transaction is dequeued

and restarts after a backoff time. Let the number of aborts

of Ti be denoted as λi. We have the following lemma.

Lemma 3.1: Given scheduler B and N transactions,∑N
i=1 λi ≤ N − 1.

Proof: Given a set of transactions T =
{T1, T2, · · ·TN}, let Ti abort. When Ti is enqueued,

there are δi transactions in the queue. Ti can only commit

after δi transactions commit if δi transactions have been

scheduled. Hence, if a transaction is enqueued, it does not

abort. Thus, one of N transactions does not abort. The

lemma follows.

Let node n0 hold an object. We have the following two

lemmas.

Lemma 3.2: Given scheduler B and N transactions,

makespanB(N) ≤ 2(N − 1)
∑N

i=1 d(n0, ni) +
∑N

i=1 γi.

Proof: Lemma 3.1 gives the total number of aborts

on N transactions under scheduler B. If a transaction

Ti requests an object, the communication delay will be

2×d(n0, ni). Once Ti aborts, this delay is incurred again.

To complete N transactions using scheduler B, the total

communication delay will be 2(N − 1)
∑N

i=1 d(n0, ni) and

the total local execution time will be
∑N

i=1 γi.
Lemma 3.3: Given scheduler RTS and N transactions,

makespanRTS(N) ≤ ∑N
i=1 d(n0, ni)+

∑N
i=1 d(ni−1, ni)+∑N

i=1 γi.
Proof: Given a set of transactions T =

{T1, T2, · · ·TN}, which is ordered in the queue of

node n0, if ∀Ti ∈ T requests an object, the communication

delay of requesting an object will be
∑N

i=1 d(n0, ni). The

total communication delay to complete N transactions will

be
∑N

i=1 d(n0, ni) +
∑N

i=1 d(ni−1, ni) and the total local

execution time will be
∑N

i=1 γi.
We have so far assumed that all N transactions share an

object to study the worst-case contention. We now consider

contention of N transactions with M objects. We have the

following theorem.

Theorem 3.4: Given N transactions and M objects, the

RCR of schedulers RTS and B is less than 1, where N ≥ 2.

Proof: Consider a transaction that includes multiple

nested-transactions and accesses multiple shared objects. In

the worst case, the transaction has to update all shared

objects. makespanRTS(N) < makespanB(N) because
∑N

i=1 d(ni−1,ni)∑N
i=1 d(n0,ni)

< 2N −3. The best case of scheduler B for

aborted transactions is that its communication delays for M
objects to visit all nodes invoking N transactions is incurred

on shortest paths. Thus,
∑N

i=1 d(ni−1,ni)∑N
i=1 d(n0,ni)

< logN [21].

Hence, M × logN < M × (2N − 3), when N ≥ 2. The

theorem follows.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

We implemented RTS in the HyFlow D-STM frame-

work [22] for experimental studies. We developed a set of six

distributed applications as benchmarks. These include dis-

tributed versions of the Vacation benchmark of the STAMP

benchmark suite [6], Bank as a monetary application [22],

and four distributed data structures including Linked-List

(LL), Binary-Search Tree (BST), Red/Black Tree (RB-Tree),

and Distributed Hash Table (DHT) [12] as microbench-

marks. We used low and high contention, which are defined

as 90% and 10% read transactions of one thousand active

concurrent transactions per node, respectively [8]. A read

transaction includes only read operations, and a write trans-

action consists of both read and write operations. Five to

ten shared objects are used at each node. Communication

delay between nodes is limited to a number between 1 and

50msec to create a static network.

Under long execution time and large CL’s threshold,

Vacation and Bank benchmarks suffer from high contention

because their queueing delay is longer than that of the other

benchmarks. In the mean time, under long execution time

and short CL’s threshold, the aborts of parent transactions

increase. At a certain point of the CL’s threshold, we observe

a peak point of transactional throughput. Thus, in this

experiment, the CL’s threshold corresponding to the peak

point is determined.

We conducted our experiments in a distributed system

testbed comprised of 80 nodes, each of which is an Intel

Xeon 1.9GHz processor, running Linux, and interconnected

by message passing links.

B. Abort Rate of Nested Transactions

RTS minimizes the number of aborts of parent transac-

tions, preventing committed nested transactions from abort-

ing. However, some parent transactions holding committed

nested transactions may abort due to early validation. Also,

anticipating an exact execution time is too optimistic. An

assigned backoff time may expire before the transaction can

obtain an object, so parent transaction may lose all commit-

ted nested transactions. Thus, there are two causes to abort

nested transactions. First, a nested transaction aborts due to

the early validations or inconsistency of objects. Second,

a nested transaction aborts due to its parent transactions’

aborts.

Table I
ABORT RATE OF NESTED TRANSACTIONS

Low Contention High Contention

RTS TFA RTS TFA

Vacation 25.6% 55.5% 29.1% 67.5%
Bank 21.5% 46.4% 23.3% 63.7%

Linked List 14.4% 37.6% 17.9% 43.2%
RB Tree 13.7% 32.2% 22.4% 45.1%

BST 11.1% 29.4% 17.5% 37.4%
DHT 12.8% 31.3% 19.9% 39.2%

We measure the number of nested transaction aborts

caused by the two aforementioned cases. Table I shows

the abort rate of nested transactions (i.e., nested transac-

tion aborts due to parent transaction’s abort / total nested

transaction aborts) under ten thousand transactions and 80

nodes. The number of nested transactions per transaction

are randomly decided. Vacation and Bank benchmarks take

longer execution time than other benchmarks, so the abort

rate of their nested transactions increases. In high contention,

the number of write transactions frequently validate, so the

abort rate increases. Under RTS, the abort rate of nested

transactions decreases approximately 60%.

C. Transactional Throughput

We measured the throughput (i.e., the number of

committed transactions per second) of RTS, TFA, and

TFA+Backoff. TFA means TFA without any transactional

scheduler supporting closed-nested transactions [24]. The

purpose of measuring the throughput of TFA is to understand

the overall performance improvement of RTS. TFA+Backoff

means TFA utilizing a transactional scheduler. With the

scheduler, a transaction aborts with a backoff time if a

conflict occurs. The purpose of measuring TFA+Backoff’s

throughput is to understand the effectiveness of enqueuing

live transactions to prevent the abort of nested transactions.

Figure 4 shows the transactional throughput at low con-

tention (i.e., 90% read transactions) for each of the six

benchmarks, running on 10 to 80 nodes. From Figure 4,

we observe that RTS outperforms TFA and TFA+Backoff.

Generally, TFA’s throughput is better than TFA+Backoff’s.

If a parent transaction including multiple nested transactions

aborts, it requests all the objects again under TFA+Backoff.

Even if the parent transaction waits for a backoff time, the

additional requests incur more contention, so the backoff

time is not effective for nested transactions. Under TFA,

an aborted transaction also requests all objects without any

backoff, also incurring more contention. From Figures 5(a)

and 5(b), we observe that Vacation and Bank benchmarks

take longer execution time than others. The improvement of

their transactional throughput is less pronounced.

Figure 5 shows the throughput at high contention (i.e.,

10% read transactions) for each of the six benchmarks.

We observe that the throughput is less than that at low

contention, but RTS’s speedup over others increases. High

contention leads to many conflicts, causing nested trans-

actions to abort. Also, we observe that a long execution

time caused by queuing live transactions incurs a high

probability of conflicts. In Figures 5(c), 5(d), 5(e), and 5(f),

the throughput is better than that of Bank and Vacation,

because LL, RB Tree, BST, and DHT have relatively short

local execution times.

Vacation Bank Linked List RB Tree BST DHT
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Benchmarks

Th
ro

ug
hp

ut
 S

pe
ed

up

Summary of Throughput Speedup

TFA(Low)
TFA+Backoff(Low)
TFA(High)
TFA+Backoff(High)

Figure 6. Summary of Throughput Speedup

We computed the throughput speedup of RTS over TFA

and TFA+Backoff – i.e., the ratio of RTS’s throughput to

that of the respective competitors. Figure 6 summarizes

the speedup. Our experimental evaluations reveal that RTS

improves throughput over D-STM without RTS by as much

as 1.53 (53%) ∼ 1.88 (88%) × speedup in low and high

contention, respectively.

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

Number of Nodes

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Vacation in Low Contention

RTS
TFA
TFA+Backoff

(a) Vacation

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
Bank in Low Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes

(b) Bank

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
Linked List in Low Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes

(c) Linked List

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
RB−Tree in Low Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes

(d) RB-Tree

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
BST in Low Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes

(e) BST

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
DHT in Low Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes

(f) DHT

Figure 4. Transactional Throughput on Low Contention

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

Number of Nodes

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Vacation in High Contention

RTS
TFA
TFA+Backoff

(a) Vacation

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
Bank in High Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes

(b) Bank

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
Linked List in High Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes

(c) Linked List

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
RB−Tree in High Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes

(d) RB-Tree

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
BST in High Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes

(e) BST

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
DHT in High Contention

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Number of Nodes

(f) DHT

Figure 5. Transactional Throughput on High Contention

V. RELATED WORK

Transactional scheduling has been explored in a num-

ber of multiprocessor STM efforts [9], [2], [25], [8], [3].

In [9], Dragojević et. al. describe an approach that schedules

transactions based on their predicted read/write access sets.

In [2], Ansari et. al. discuss the Steal-On-Abort transaction

scheduler, which queues an aborted transaction behind the

non-aborted transaction, and thereby prevents the two trans-

actions from conflicting again.

Yoo and Lee present the Adaptive Transaction Scheduler

(ATS) [25] that adaptively controls the number of concur-

rent transactions based on the contention intensity: when

the intensity is below a threshold, the transaction begins

normally; otherwise, the transaction stalls and does not begin

until dispatched by the scheduler. Dolev et. al. present the

CAR-STM scheduling approach [8], which uses per-core

transaction queues and serializes conflicting transactions by

aborting one and queueing it on the other’s queue, preventing

future conflicts. CAR-STM pre-assigns transactions with

high collision probability (application-described) to the same

core, and thereby minimizes conflicts.

Blake, Dreslinski, and Mudge propose the Proactive

Transactional Scheduler (PTS) in [4]. Their scheme detects

hot spots of contention that can degrade performance, and

proactively schedules affected transactions around the hot

spots. Evaluation on the STAMP benchmark suite [6] shows

PTS outperforming a backoff-based policy by an average of

85%.

Attiya and Milani present the BIMODAL scheduler [3],

targeting read-dominated and bimodal (i.e., those with only

early-write and read-only) workloads. BIMODAL alternates

between “writing epochs” and “reading epochs” during

which writing and reading transactions are given priority, re-

spectively, ensuring greater concurrency for reading transac-

tions. Kim and Ravindran extend the BIMODAL scheduler

for distributed STM [17]. Their scheduler, called Bi-interval,

groups concurrent requests into read and write intervals, and

exploits the tradeoff between object moving times (incurred

in dataflow distributed STM) and concurrency of reading

transactions, yielding high throughput.

Steal-On-Abort, CAR-STM, and BIMODAL enqueue

aborted transactions to minimize future conflicts. In contrast,

RTS enqueues live transactions which conflict with other

transactions. The purpose of enqueuing is to prevent closed-

nested transactions from restarting. Of course, enqueuing

live transactions may lead to deadlock or livelock. Thus,

RTS enqueues those live transactions with a low CL and

assigns different backoff times for each.

ATS and PTS determine contention intensity and use it

for contention management. Unlike ATS and PTS, which

are designed for multiprocessor STM, predicting contention

intensity will incur communication delays in D-STM. Thus,

RTS collects the CL – a history of how many transactions

have requested – to measure the contention intensity. The

purpose of the CL is not only to manage contention, but

also to reduce the retries of nested transactions. Unlike

multiprocessor STM, two communication delays will be

incurred for a retry, one for requesting an object and the

other for retrieving it.

ATS assigns backoff times to aborted transactions. The

backoff time indicates when the aborted transactions restart.

If a parent transaction aborts, the backoff times may not

be effective without considering nested transactions if they

exist. RTS focuses on whether a parent transaction is aborted

or enqueued. If it is enqueued, RTS gives the transaction a

backoff time indicating when it aborts.

VI. CONCLUSIONS

Our work illustrates the idea of enqueuing a live parent

transaction to prevent its nested transactions from aborting

due to a conflict. Doing so will boost transactional through-

put by preserving the commits of nested transactions. How-

ever, whenever a conflict occurs, enqueuing all live parent

transactions does not always improve throughput, because

the probability of conflicts also increases. Our transactional

scheduler, RTS, determines transactional contention level

(heuristically computed) to decide on whether the live parent

transaction aborts or is enqueued, and a backoff time that

determines how long the live parent transaction waits.

Our experimental evaluation validates our idea: RTS is

shown to enhance transactional throughput at high and low

contention, by as much as 1.53 (53%) ∼ 1.88 (88%) ×
speedup, respectively.

VII. ACKNOWLEDGEMENTS

This work is supported in part by NSF CNS 0915895,

NSF CNS 1116190, NSF CNS 1130180, and US NSWC

under Grant N00178-09-D-3017-0011.

REFERENCES

[1] Kunal Agrawal, Charles E. Leiserson, and Jim Sukha. Mem-
ory models for open-nested transactions. In Proceedings
of the 2006 workshop on Memory system performance and
correctness, MSPC ’06, pages 70–81, New York, NY, USA,
2006. ACM.

[2] Mohammad Ansari, Mikel Lujn, Christos Kotselidis, Kim
Jarvis, Chris Kirkham, and Ian Watson. Steal-on-abort: Im-
proving transactional memory performance through dynamic
transaction reordering. In André Seznec, Joel S. Emer,
et al., editors, HiPEAC, volume 5409 of LNCS, pages 4–18.
Springer, 2009.

[3] Hagit Attiya and Alessia Milani. Transactional scheduling for
read-dominated workloads. In OPODIS, pages 3–17, Berlin,
Heidelberg, 2009. Springer-Verlag.

[4] G. Blake, R.G. Dreslinski, and T. Mudge. Proactive transac-
tion scheduling for contention management. In Microarchitec-
ture, 2009. MICRO-42. 42nd Annual IEEE/ACM International
Symposium on, pages 156 –167, dec. 2009.

[5] Burton H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13:422–426, July 1970.

[6] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and
Kunle Olukotun. STAMP: Stanford transactional applications
for multi-processing. In IISWC, September 2008.

[7] Chi Cao Minh, Martin Trautmann, JaeWoong Chung,
Austen McDonald, Nathan Bronson, Jared Casper, Christos
Kozyrakis, and Kunle Olukotun. An effective hybrid trans-
actional memory system with strong isolation guarantees. In
ISCA, Jun 2007.

[8] Shlomi Dolev, Danny Hendler, and Adi Suissa. CAR-
STM: scheduling-based collision avoidance and resolution for
software transactional memory. In PODC, pages 125–134,
New York, NY, USA, 2008. ACM.

[9] Aleksandar Dragojević, Rachid Guerraoui, et al. Preventing
versus curing: avoiding conflicts in transactional memories.
In PODC ’09, pages 7–16, 2009.

[10] Rachid Guerraoui and Michal Kapalka. Transactional mem-
ory: Glimmer of a theory. In Ahmed Bouajjani and Oded
Maler, editors, Computer Aided Verification, volume 5643 of
Lecture Notes in Computer Science, pages 1–15. Springer
Berlin / Heidelberg.

[11] Rachid Guerraoui and Michal Kapalka. On the correctness of
transactional memory. In PPoPP, pages 175–184, New York,
NY, USA, 2008. ACM.

[12] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. STM-
Bench7: a benchmark for software transactional memory.
SIGOPS Oper. Syst. Rev., 41(3):315–324, 2007.

[13] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carl-
strom, John D. Davis, Ben Hertzberg, Manohar K. Prabhu,
Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun.
Transactional memory coherence and consistency. SIGARCH
Comput. Archit. News, 32(2):102, 2004.

[14] Maurice Herlihy, Victor Luchangco, and Mark Moir. A
flexible framework for implementing software transactional
memory. In OOPSLA, pages 253–262, New York, NY, USA,
2006. ACM.

[15] Maurice Herlihy, Victor Luchangco, Mark Moir, and III
William N. Scherer. Software transactional memory for
dynamic-sized data structures. In PODC, pages 92–101, Jul
2003.

[16] Maurice Herlihy and Ye Sun. Distributed transactional
memory for metric-space networks. Distributed Computing,
20(3):195–208, 2007.

[17] Junwhan Kim and Binoy Ravindran. On transactional
scheduling in distributed transactional memory systems. In
SSS, volume 6366 of Lecture Notes in Computer Science,
pages 347–361. Springer Berlin / Heidelberg, 2010.

[18] Kaloian Manassiev, Madalin Mihailescu, and Cristiana Amza.
Exploiting distributed version concurrency in a transactional
memory cluster. In PPoPP ’06, pages 198–208. ACM Press,
Mar 2006.

[19] J. E. B. Moss. Open nested transactions: Semantics and
support. In In Workshop on Memory Performance Issues,,
2005.

[20] J. Eliot B. Moss and Antony L. Hosking. Nested transactional
memory: model and architecture sketches. Sci. Comput.
Program., 63:186–201, December 2006.

[21] Daniel J. Rosenkrantz, Richard Edwin Stearns, and Philip
M. Lewis II. An analysis of several heuristics for the traveling
salesman problem. SIAM J. Comput., 6(3):563–581, 1977.

[22] Mohamed M. Saad and Binoy Ravindran. Distributed transac-
tional locking II and hyflow: A high performance distributed
software transactional memory framework. In Sixth ACM
SIGPLAN workshop on Transactional Computing. ACM,
2011.

[23] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson,
Chi Cao Minh, and Benjamin Hertzberg. McRT-STM: a
high performance software transactional memory system for
a multi-core runtime. In PPoPP, pages 187–197, Mar 2006.

[24] Alex Turcu and Binoy Ravindran. On closed nesting in
distributed transactional memory. In Seventh ACM SIGPLAN
workshop on Transactional Computing. ACM, 2012.

[25] Richard M. Yoo and Hsien-Hsin S. Lee. Adaptive transaction
scheduling for transactional memory systems. In SPAA, pages
169–178, 2008.

