
Completely Distributed Particle Filters for Target Tracking in Sensor Networks

Bo Jiang, Binoy Ravindran
Department of Electrical and Computer Engineering

Virginia Tech, Blacksburg, VA 24061
Email: {bjiang,binoy}@vt.edu

Abstract—Particle filters (or PFs) are widely used for the
tracking problem in dynamic systems. Despite their remark-
able tracking performance and flexibility, PFs require in-
tensive computation and communication, which are strictly
constrained in wireless sensor networks (or WSNs). Thus,
distributed particle filters (or DPFs) have been studied to
distribute the computational workload onto multiple nodes
while minimizing the communication among them. However,
weight normalization and resampling in generic PFs cause
significant challenges in the distributed implementation. Few
existing efforts on DPF could be implemented in a completely
distributed manner. In this paper, we design a completely
distributed particle filter (or CDPF) for target tracking in
sensor networks, and further improve it with neighborhood
estimation toward minimizing the communication cost. First,
we describe the particle maintenance and propagation mech-
anism, by which particles are maintained on different sensor
nodes and propagated along the target trajectory. Then, we
design the CDPF algorithm by adjusting the order of PFs’
four steps and leveraging the data aggregation during particle
propagation. Finally, we develop a neighborhood estimation
method to replace the measurement broadcasting and the
calculation of likelihood functions. With this approximate
estimation, the communication cost of DPFs can be minimized.
Our experimental evaluations show that although CDPF incurs
about 50% more estimation error than semi-distributed particle
filter (or SDPF), its communication cost is lower than that of
SDPF by as much as 90%.

Keywords-Distributed particle filter; wireless sensor network;
target tracking; Bayesian estimation; neighborhood estimation

I. INTRODUCTION

Wireless sensor networks, which consist of a large number
of multi-functional and low cost sensor nodes, have been
extensively studied for collecting data from a geographical
region of interest. A typical characteristic of WSNs is that
their resources—including the power supply, computing and
communication capabilities of sensor nodes—are strictly
constrained [1]. Thus, resource constraints have to be con-
sidered carefully in the design of algorithms/protocols for
WSNs.

Among the diverse application domains of WSNs, target
tracking is one of the most fundamental types of application,
which studies the dynamic state estimation problem by
modeling the state space as a stochastic process that evolves
over time [2].

For dynamic state estimation such as tracking problems,

particle filters are one of the most widely used Bayesian es-
timation methods that approximate the optimal solution [3].
Particle filters are sequential Monte Carlo methods that esti-
mate nonlinear and/or non-Gaussian dynamic processes. The
posterior probability density function (or pdf) of Bayesian
estimation is represented with discrete samples (or particles)
with associated weights. Then in each iteration, PFs draw
particles from a proposal distribution (or importance den-
sity), assign them with corresponding weights, normalize the
weights, possibly resample, and finally make the estimation
based on these weighted particles.

Despite their attractive tracking performance and flexibil-
ity [4], the application of PFs in WSNs is challenging due
to the limited resources of WSNs. This challenge is mainly
introduced by the centralized computation manner of generic
PFs: weight normalization and resampling require collection
of data from multiple nodes to a single computational center
(either a cluster head [5], [6] or a global transceiver/sink
node [7], [8]). Specifically, centralized particle filters (or
CPFs) introduce the following problems: 1) collecting data
consumes significant energy; 2) convergecast communica-
tion introduces a long delay, as the computational center has
to receive messages in a sequential order; and 3) centralized
implementation is vulnerable as a single point of failure [9].

Distributed particle filters [10] were studied as a response
to these problems, in particular, to offload the computation
from the central unit as well as to reduce convergecast
communication [11]. However, few existing efforts on DPF
were implemented in a completely distributed manner [7],
because the aggregation of weights is inevitable. For effi-
ciently transmitting the particle data to the computational
center, there exist several DPF efforts that focus on reducing
the communication cost by compressing messages, such as
Gaussian mixture approximation [5], non-parametric particle
compression based on support vector machine [9], and adap-
tive encoding [10], [12]. But like CPFs, these DPF efforts all
share a common problem: the number of messages remain
unchanged. Usually, compressing the number of messages
is more efficient for saving energy than compressing the
data contained in each message, especially in duty-cycled
WSNs where nodes need to wake up from the sleep state for
transmitting data [13], irrespective of how much data they
need to transmit. Therefore, only when PFs are implemented
in a completely distributed manner, the communication cost

can be minimized and the energy efficiency of WSNs can
be enhanced significantly.

Toward this, we need to develop a method to aggregate
the particle weights without any extra communication other
than necessary particle propagation and/or those needed for
sharing of measurements. This may be achieved by maintain-
ing particles on different nodes and propagating it along the
target trajectory. Based on the overhearing effect [14], nodes
may receive all the propagated particles, thereby obtaining
the aggregation as a side product of particle propagation.

Another important feature of WSNs that we may use for
this purpose is that the local status in a WSN is relatively
stable in the short term. The local status may include, but is
not limited to, node positions, the topology, and the detection
capability of neighbor nodes. Based on this stable local
status, it is possible for a node to estimate the working status
of its neighbor nodes thus the contributions they may make
toward target estimation. We fully leverage this feature to
approximate the contributions of neighbor nodes and further
reduce the communication cost.

In this paper, we design a completely distributed particle
filter for target tracking in WSNs, called CDPF, so as
to minimize the communication cost. First, we develop
a mechanism for maintaining particles on sensor nodes
and propagating them along the target trajectory. Then we
design CDPF by adjusting the order of PFs’ four steps and
leveraging the data aggregation during particle propagation.
Finally, we introduce a neighborhood estimation method so
that each node may replace the likelihood functions with
approximate, estimated contributions of its neighbors, and
eliminate the communication cost of measurement broad-
casting. We compared CDPF with CPF and SDPF, the
latter of which is a state-of-the-art effort that considers the
distributed implementation of PFs from the perspective of
network architecture and protocol of WSNs. Our experi-
mental simulation studies show that, compared with SDPF,
CDPF reduces the communication cost by 90%, with about
50% of the tracking error increment as the cost. Like most
existing literature on Bayesian estimation and particle filters,
we study the tracking problem in a possibly continuous
dynamic system using the discrete-time approach [3].

The primary contribution of this paper is that, we provide
a completely distributed implementation of generic PFs,
which minimizes the communication cost. This makes it
possible to fully leverage the advantages of PFs for WSNs.
To the best of our knowledge, this is the first ever imple-
mentation of a completely distributed PF, without any special
efforts for the centralization-demanding operations, such as
weight aggregation.

The rest of the paper is organized as follows. In Section II,
we introduce the motivations and describe our models.
We discuss the mechanism of particle maintenance and
propagation in Section III. In Section IV, we present the
CDPF algorithm. Then in Section V, we introduce the

neighborhood estimation method and its effect on reducing
the communication cost. We report our experimental evalu-
ation results in Section VI. Related work is summarized in
Section VII, and we conclude the paper in Section VIII.

II. PRELIMINARIES

In this section, we start from reviewing generic particle
filters and the algorithm of its centralized implementation.
Then we introduce our motivations based on the analysis
of the communication overhead and finally describe our
models.

A. Generic Particle Filter—Centralized Implementation

The tracking problem is usually formulated as a dynamic
system in the state space {xk, k ∈ N}, where k is the
index of discrete time. This dynamic system includes a
state transition model and a measurement (or observation1)
model [3]:

xk = fk(xk−1,vk−1)
zk = hk(xk,nk)

(1)

where fk and hk are possibly nonlinear functions,
{vk−1, k ∈ N} and {nk, k ∈ N} are i.i.d. process noise and
measurement noise sequences respectively, and {zk, k ∈ N}
is a sequence of observations at time k.

Assuming that states {xk, k ∈ N} follow a first order
Markov process and observations depend only on the states,
the posterior probability density p(xk|z1:k) (i.e., the degree-
of-belief in the state xk) can be recursively estimated in two
steps—prediction and update:

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (2)

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(3)

For this tracking problem, particle filters are one of
the approximate approaches when the analytic solution is
intractable. Particle filters represent the posterior pdf with
a number of particles with associated weights, and make
estimations based on these weighted particles. A generic
particle filter, i.e. sequential importance sampling (SIS)
algorithm, runs in an iterative manner. After the initialization
step that draws Ns particles for the first time t = 0, each
iteration consists of the following four steps [9]:

1) Prediction—draw Ns particles for time k from an
importance density q(xk|xi

k−1, zk);
2) Update—assign and normalize a weight wi

k for each
particle;

3) Resampling (optional)—eliminate particles with low
importance weights and multiply those with high importance
weights so as to reduce the degeneracy effect;

1The terms “measurement” and “observation” will be used alternatively
whenever there is no ambiguity.

4) Estimation—calculate the estimation x̂k based on the
weighted particles.

Here Ns ∈ N is the number of particles, i = 1, . . . , Ns

is the index of particles, wi
k is the weight of particle xi

k at
time k, and x̂k is the estimated xk.

Sampling importance resampling (or SIR) filters are de-
rived from generic particle filters by choosing the prior den-
sity p(xk|xi

k−1) as the importance density q(xk|xi
k−1, zk),

and resampling in every iteration [3].

B. Motivations

As discussed in Section I, few existing efforts on DPF
were implemented in a completely distributed manner, be-
cause the weights of particles need to be transmitted to
and aggregated somewhere. Next we discuss the potential
improvements on reducing the communication cost if we
implement a completely distributed particle filter.

It was shown in [10] that the communication workload of
centralized particle filters at each iteration is

∑N
i=1 DmHi,

where N is the number of sensor nodes with measurements,
Dm is the data amount of a measurement message and Hi is
the number of hops that Dm data needs to be propagated to
the computational center. Then, we have the communication
complexity of CPFs as O(NDmHmax), where Hmax =
maxi≤N Hi.

Coates elaborated the achievable compression on the dis-
seminated raw data of particles, i.e., compressing Dm either
by training parametric models or with adaptive encoding
in [10]. Like the communication cost of CPFs, the achievable
communication cost of DPF is O(NPHmax), where P is
the data amount of each compressed measurement message.
This result only provides a possibility of reducing the total
data amount of communication if P ¿ D. In fact, the
number of communication messages is equal to or even
higher than that of CPFs (due to the backward parameter
exchange). Thus the efficiency of DPF completely depends
on the compression efficiency on the raw data.

In [7], Coates and Ing developed a semi-distributed par-
ticle filter, named SDPF, in which particles are maintained
on different sensor nodes and weight aggregation is com-
pleted on a global transceiver. The communication of SDPF
consists of three parts: particle propagation, measurement
sharing and weight aggregation/dissemination. First, the par-
ticles maintained on different sensor nodes are propagated
in the predicted direction of the target at each iteration.
As each sensor node that maintains particles needs to
broadcast a message containing both particles and their
weights to its neighbors within one hop, the communication
cost is

∑Nn

i=1 Ni(Dp + Dw) = (Dp + Dw)
∑Nn

i=1 Ni =
Ns(Dp + Dw). Here Nn is the number of sensor nodes
that are maintaining a subset of particles, Ni (Ni ≥ 1) is
the number of particles maintained on sensor node i, thus∑Nn

i=1 Ni = Ns. Moreover, we denote the data amount for
each particle Dp (the subscript p represents “particle”), and

Table I
ANALYZED COMMUNICATION COSTS OF VARIOUS PFS

Particle filter methods Communication costs

CPF NDHmax

DPF NPHmax

SDPF Ns(Dp + Dm + 2Dw)

CDPF Ns(Dp + Dm + Dw)

the data amount of a particle’s weight Dw (the subscript w
represents “weight”). Secondly, the measurements of neigh-
bor nodes are shared locally among Nn nodes. Then the
communication cost will be

∑Nn

i=1 Dm = NnDm a NsDm,
where we mean “bounded by” with a. Thirdly, at each
iteration, each sensor node that maintains particles needs to
transmit the weights of particles on it to a global transceiver,
which is assumed to be one hop away from every node in
the network. After a three-way query-response handshaking,
the transceiver sends the calculated total weight back to
active nodes. The communication cost during the whole
aggregation process is

∑Nn

i=1 NiDw + 2 = NsDw + 2,
where 2 comes from the two broadcast messages from
the transceiver. Therefore, the total communication cost of
SDPF is Ns(Dp + Dw + Dm + Dw) + 2 ≈ Ns(Dp + Dm +
2Dw).

Unlike DPFs and SDPF, a completely distributed particle
filter does not have to collect the particle weights for
the aggregation. Based on the calculation for SDPF, the
communication cost of such a PF like CDPF that we present
in this paper will approximately be Ns(Dp + Dm + Dw).

We compare the analyzed communication costs of four
PFs in Table I. Obviously, SDPF and CDPF may signifi-
cantly reduce the communication cost of CPFs and DPFs
by constraining the communication within one hop. Except
for this, CDPF eliminates the communication for weight
aggregation completely, thereby achieves the minimal com-
munication cost.

C. Models

1) Network Model: We consider a sensor network with
a two-dimensional plane, where sensor nodes are randomly
deployed and their static positions are known a priori via
GPS [15] or using algorithmic strategies such as [16].

2) Sensor Model: For the communication, we adopt the
protocol model introduced in [17], where both transmission
and interference depend only on the Euclidean distance be-
tween nodes. Among the typical detection models (including
instant detection, sampling detection, energy detection [18],
and probabilistic detection [19]), we consider the instant
detection model, i.e., a sensor node detects a target when
the target’s trajectory intersects the node’s sensing area. In
addition, we assume that the sensing radius of nodes (in
which nodes can detect an event) is no greater than half of
the communication radius (in which nodes can communicate

with each other). This is a reasonable assumption, as the
radio of a node is usually much more powerful than its
sensing devices. For example, the radio range of MICA2
is up to 150 m [20], which is very difficult to reach for
most sensing devices.

3) Dynamic System Model: For the algorithm discussion,
we do not make any specific assumptions for the dynamic
system. The model used in the simulation will be introduced
in Section VI.

III. PARTICLE MAINTENANCE AND PROPAGATION

For the sake of clarify, we first explicitly interpret the
term “distributed” in DPFs. In the existing literature, it was
defined in several different ways. For example in [10], “dis-
tributed” means that the aggregation of particles and their
weights is completed in a distributed manner on different
sensor nodes. Other operations, such as the calculation of
factorized likelihood functions, the training of parametric
models and measurement quantization, all serve for this
purpose. Unlike [10], the term “distributed” in [7] was
interpreted as meaning that disjoint subsets of particles are
maintained on different sensor nodes.

We define “distributed” in CDPF following the interpre-
tation of [7], i.e., particles on nodes. Its advantages include:
1) the computational workload may be distributed onto
different sensor nodes; 2) particles are easy to manage and
propagate; and 3) particles can be combined or divided based
on node positions.

Next, we introduce the maintenance and propagation
mechanism of particles.

A. Particle Maintenance

Like [7], we constrain particles to locate on sensor nodes
only, thus each particle will automatically have the position
of its “host” node that maintains it. This may increase
the estimation error of PFs. But if nodes are deployed
densely enough or an error bounded by the sensing radius
is tolerable, the error increment will be less important.

We do not distinguish the different particles on the same
node. Hence multiple particles on a single node may be
combined to one particle, with the total weights of original
particles as its weight. On the contrary, a single particle may
also be divided into multiple ones during the propagation,
which will be detailed in Section III-B. Though the number
of particles Ns may vary when being combined and divided,
this variable Ns is controllable. This is because that Ns

corresponds to the number of sensor nodes that maintain
particles and participate into filtering, while these nodes are
always around the target trajectory thus will be bounded
when given a certain deployment density.

B. Particle Propagation

At the initialization step, each node that first detects an
intruding target is given a particle with a certain weight.

Iteration k Iteration (k+1)

A

B

Figure 1. Particle propagation

This particle weight may be configured as a constant,
or adaptively determined according to the received signal
strength. In the following tracking process, these particles
will be propagated along with the moving target.

Figure 1 shows the propagation of particles at iteration k.
In the figure, small circles represent sensor nodes, squares
mean the target positions, and dotted lines and circles signify
the prediction and the direction of particle propagation.
For the discussion convenience, we call the dotted circles
“predicted areas”. The other symbols in the figure will be
introduced in Sections IV and V, where they are discussed.

Nodes always propagate particles towards the predicted
target position, so that the particles in the current iteration
can be reused in the next iteration, with their weights
updated. A dynamic clustering mechanism as in [21] may be
used for this purpose: a node broadcasts the particles on it to
all of its neighbors, but only those that are highly likely to
detect the target record the particles (i.e., nodes in predicted
areas). We leverage the linear probability model in [21] to
decide which neighbors should record the particles. If there
are more than one node in the predicted area, a single particle
will be divided into multiple ones, so will its weight. The
weight is divided based on the following rule: 1) the total
weight of divided particles is equal to the original particle’s
weight; and 2) the ratio of any pair of divided particles’
weights is equal to the ratio of their host nodes’ probabilities
in the linear probability model.

Particle propagation from multiple source nodes may also
overlap on neighbor nodes, e.g., nodes in the intersection of
two predicted areas in Figure 1. In this case, particles from
different source nodes will be combined into one on the
receiving node.

It is possible that some nodes receive and record particles,
but they are not able to detect the target at the next iteration,
e.g., the blank node in Figure 1. Then, the weight update of
particles on it will depend on the likelihood function. If the
likelihood function shows zero or almost zero density, this
node may drop the particle on it and stop broadcasting.

It is also possible that a node that does not receive any

propagated particles detects the target, e.g., the node outside
of any predicted areas. Then a new particle will be created
as in the initialization step.

C. Node Scheduling

Sensor nodes need to be scheduled for maintaining and
propagating particles. In a duty-cycled WSN [13], nodes
around the predicted target position may be in the sleep state
when a target is approaching. Then, it needs to be proactively
awakened so as to receive the propagated particles. We
leverage TDSS sleep scheduling algorithm presented in [21]:
nodes around the predicted target position are awakened to
prepare for the approaching target, and the energy consump-
tion could be reduced simultaneously.

IV. CDPF DESIGN

Based on the mechanism of particle maintenance and
propagation, we design the CDPF algorithm in this section.
First, we partition the update step and adjust the order of
filtering steps in CPFs. Then the CDPF algorithm will be
specified.

A. Algorithm Design

Among the four steps of generic PFs, the prediction
step may depend only on individual particles (e.g., by
choosing the prior distribution as the importance density).
Thus, every sensor node that maintains a subset of particles
may complete the prediction step independently. However,
all the other three steps (i.e., update, resampling and es-
timation) require collection of all the measurements and
particle weights. To design CDPF, we need to develop a
method to achieve the same objective without any extra
communications.

Particle propagation designed in Section III provides us
a feasible approach. Based on the overhearing effect, it
is possible that every node in any of the predicted areas
hears the particles from all the broadcasting nodes. Since we
assume that the sensing radius of nodes is no greater than
half of the communication radius, this goal is achievable as
long as the propagation does not reach too far (i.e., the time
interval of the dynamic system is not very long). Then every
node that receives particles will receive all the particles, so
that every node may obtain the total weight.

However, one problem of this approach is that the ob-
tained total weight is for the previous iteration instead of
the current one. Therefore, we have to adjust the order of
four steps to produce a working scheme. Figure 2 shows the
steps of both CPF and CDPF. We partition the “update” step
into three sub-steps: 1) the “likelihood” step shares the mea-
surements locally and calculates the likelihood functions;
2) the “assign weight” step assigns weights to particles;
and 3) the “normalization” step calculates the total weight
and normalizes the assigned weight. The dotted curves
in Figure 2(a) signifies the reorder direction: we move

Update

Prediction

Resampling

Estimation

Initialization

Likelihood

Assign

weight

Normalization

Correction

Prediction

Likelihood

Assign

weight

Initialization

Normalization

Resampling

Estimation

(a) CPFs (b) CDPFs

Figure 2. Steps of CPF and CDPF

normalization, resampling, and estimation steps forwards
and insert them after the prediction step. The reordered steps
for CDPF are shown in Figure 2(b).

After reordering the steps, we form normalization, re-
sampling and estimation into a new step, named “correc-
tion”. The correction step normalizes the updated weights,
resamples and calculates the estimated target position for the
previous iteration. Obviously, the correction step depends
on the total weight that is aggregated by overhearing during
particle propagation. This is the reason that we insert it after
the prediction step.

Then the working process of CDPF will be:
1) Prediction—predict the target motion and propagate

particles towards that direction.
2) Correction—normalize the propagated weights based

on the total weight, resample, estimate the target position for
the previous iteration, and possibly report it to sink nodes.

3) Likelihood—share the measurements at the current
iteration locally and calculate the likelihood functions.

4) Assign weight—assign or update weights to particles
based on the likelihood functions.

To update the weights, the measurement of each node
should be shared locally with other nodes. Thus in the like-
lihood step, each node will receive the broadcast measure-
ments from all of the neighbor nodes that are maintaining
particles. In fact, this is also an approach to calculate the
total weight without extra communication cost. However,
we do not take this approach, because the broadcasting
communication in this step can be eliminated, so that the
communication cost can be reduced further. We will discuss
the details in Section V.

In Figure 1, we drew two squares, meaning two possible
positions of the target. Based on the correction step, we

now explain their difference. We use the blank square to
represent the real position of the target, which is why the
blank node cannot detect it. After the correction step, the
estimated target position for the previous iteration will be
obtained. Then we use the slashed square to represent the
“predicted” target position based on this estimation. In fact,
this cannot be called “prediction” any longer, because the
current iteration has started. We use this term simply to show
our calculation method. Then this predicted position will
be an approximation to the real position, and we will use
it to estimate the neighbor nodes’ contributions and finally
eliminate the likelihood function calculation in Section V.

B. Algorithm Details

Based on our previous design, we now detail an iteration
of the CDPF algorithm in Algorithm 1.

Algorithm 1 CDPF algorithm at iteration k + 1
1: Draw Ns samples for iteration k+1 from an importance

density q(xk+1|xi
k, zk+1), i.e., propagate particles from

iteration k to k + 1;
2: Calculate the total weight by overhearing;
3: Normalize the received weights;
4: Resampling;
5: Make the estimation for iteration k;
6: Broadcast/receive measurements;
7: Calculate the likelihood function;
8: Assign/update a weight to the particle;

V. IMPROVING CDPF: NEIGHBORHOOD ESTIMATION

As discussed in Section I, the local status in a WSN
(including node positions, the topology and the detection
capability of neighbor nodes) is relatively stable in the short
term. Based on this feature, a sensor node may estimate the
working status of its neighbor nodes thereby the contribu-
tions they may make to the target estimation. In this section,
we develop an approximate estimation method to improve
CDPF by further reducing the communication cost. We
first discuss a prerequisite for the neighborhood estimation,
which answers how a node may obtain information about its
neighbors. Then, we introduce the estimation method and
present the improved CDPF algorithm. Finally, we discuss
the potential overhead that this estimation may introduce,
and potential factors that may impact the estimation result.

A. Prerequisite

A prerequisite of neighborhood estimation is that local
knowledge can be easily shared among the neighbor nodes.
Basically whatever a node knows, its one-hop neighbors
may easily know it via local direct communication. In many
existing literature, short message exchange was commonly
used for sharing local knowledge among neighbors, e.g.,
for updating routing information [22] or for maintaining

1

0

d0

d1

w0

w1

Figure 3. Neighborhood estimation

synchronization [23]. Therefore we may reasonably assume
that every sensor node knows all the detailed information
about its one-hop neighbors, especially their positions.

B. Estimation Method

Figure 3 shows a local topology including two sensor
nodes (shown as small circles) and the predicted position of
a target (the square). The large circle with a communication
radius represents the one-hop neighbor area of node 0, and
the middle circle with a sensing radius signifies the area in
which nodes may detect the target. We define this middle
circle as an estimation area:

Definition 1 (Estimation Area): In a two-dimensional
plane, we define the estimation area as the circular area
that is centered at a target’s predicted position and has the
sensing radius as its radius.

In Figure 1, the two large solid circles (labeled as A and
B) are right the estimation areas of two iterations. Since
we assume that the sensing radius of nodes is no greater
than half of the communication radius, an estimation area
will never exceed the scope of the large circle, i.e., the
communication range of any sensor node within it. This
means that the information of all the nodes that may detect
the target thereby participate into particle filtering can be
shared with each other.

In Figure 3, we let d0 and d1 denote the distances of
two nodes from the predicted target position, and c0 and
c1 denote the contributions of nodes 0 and 1 respectively.
Based on the prerequisite, the positions of nodes 0 and 1
are known to each other, so is the predicted target position.
Thus, both nodes may easily calculate d0 and d1.

We set the contribution of a node for a specific target
inverse proportional to its distance from the target. Then,
the weighted distance of any nodes from the target in the
estimation area will be constant. We argue that this model
is reasonable, as the closer a node is to the target, the more
contribution it will make for estimating the target feature,
i.e., the more information users may obtain from it. In fact,
this is also intuitive in terms of the idea of PFs: when

particles are maintained on sensor nodes, the closer a node
is to the target, the more weight the particle maintained on
it should have. Therefore, we setup the following proportion
equation:

c0d0 = c1d1 = ε (4)

where ε is a constant.
By assuming that c0 = 1, node 0 will obtain the relative

contribution of its neighbor node 1 as c1 = d0
d1

. Similarly,
node 1 will also obtain the relative contribution of its
neighbor node 0 as c0 = d1

d0
when assuming c1 = 1. From

now on, we only discuss the estimation process of node 0.
According to the symmetry, each node in the local area may
complete the same estimation process. The only difference
would be the values of these relative contributions.

Since node 0 may obtain such an estimation for each
of its one-hop neighbors, we assume that all the estimated
contributions form a set {c0, c1, . . . , cm}, where m is the
number of its one-hop neighbors. Then the normalized
contributions will be {c0/C, c1/C, . . . , cm/C}, where
C = 1 +

∑m
i=1 ci. We define the estimated neighbor

contributions as the following:

Definition 2 (Estimated Neighbor Contributions): Within
an estimation area, the contributions of neighbor nodes
that are estimated by node 0 are defined as:

{c0, c1, . . . , cm} = { 1
d0 ·D,

1
d1 ·D, . . . ,

1
dm ·D}

where c0 represents the contribution of node 0, ci (1 ≤ i ≤
m) are the contributions of m other neighbor nodes in the
estimation area, di (0 ≤ i ≤ m) are the distances of each
node from the predicted target position, and D =

∑m
i=0

1
di

.

Based on this definition, we may easily prove the follow-
ing two propositions are true:

1) The estimated neighbor contributions are normalized;
and

2) When the shared node positions and the predicted
target position are consistent on all the nodes, so will the
contributions estimated by all the nodes.

Theorem 1: The estimated neighbor contributions are
normalized.

Proof: First, the total contribution from Definition 2 is
equal to 1:

m∑

i=0

ci =
m∑

i=0

1
di ·D =

1
D

m∑

i=0

1
di

=
1
D
·D = 1

Secondly, the ratio of any two contributions follows the
model in Equation 4.

Hence, all the defined contributions are normalized.

Theorem 2: When the shared node positions and the
predicted target position are consistent on all the nodes,
so will the contributions estimated by all the nodes.

Proof: To prove this proposition, we only need to prove
that a node’s contribution estimated by itself is equal to that
estimated by any other node in the estimation area. Without
loss of generality, we evaluate the contribution of node 0
estimated by itself and node 1.

According to Definition 2, node 0’s contribution estimated
by itself is 1

d0·D . At the same time, its contribution is
estimated by node 1 as 1

d0·D . Since the shared node positions
and the predicted target position are consistent on all the
nodes, either d0 or D will be consistent in both results.
Therefore, the two results are identical.

C. Improved CDPF

The result of this neighborhood estimation can replace
the measurement sharing and likelihood function calculation,
i.e., the likelihood step in Figure 2(b) or steps 6 and 7 in
Algorithm 1. The detailed method is:

1) Each node in the estimation area estimates the contri-
butions of itself as well as its neighbors.

2) Based on Definition 2, each node updates the particle
weight as wk+1 = wk · c0.

We name this improved version CDPF-NE, where the
suffix “NE” represents neighborhood estimation. In this way,
c0 replaces the likelihood function (in case that the proposal
function is chosen as the prior). Therefore broadcasting for
measurement sharing could be completely eliminated. The
analyzed communication cost of CDPF in Table I will then
become Ns(Dp + Dw), i.e., the only communication cost
left is for particle propagation. Based on the architecture of
“particles on nodes”, this communication cost is already the
minimum.

D. Discussion

First, we discuss the frequency of this estimation and its
potential overhead. From the definitions above, we may ob-
serve that the local status used for neighborhood estimation
mainly involves with node positions, the predicted target
position, and the working status of neighbor nodes. First,
the node positions never change in a static WSN. Even in
a mobile WSN, nodes rarely move fast, either. Secondly,
the predicted target position of CDPF is calculated by each
individual node based on consistent data. So it is also
consistent within the estimation area. Finally, the working
status of neighbor nodes is subject to change. However, as
long as the change can be anticipated, the estimation still
can work correctly. For example, duty cycling is widely
used [13] to reduce the energy consumption during idle
listening, which is a major source of energy waste [24],
thereby improve the network lifetime. With duty cycling,
nodes are put into sleep states for most of the time, and only

awakened periodically. In certain cases, the sleep pattern of
nodes may also be explicitly scheduled, via proactive wake-
up [21], [25] for instance. No matter what sleep pattern is
taken, the working status can still be anticipated as long as
the pattern is certain.

Based on these conditions, we may hence exchange the
local status of neighbor nodes and execute the neighbor-
hood estimation at a low frequency, e.g., once per day,
once per week or even longer. This will introduce little
communication overhead, but gain much improvement on
the communication efficiency for target tracking, especially
in a WSN where target intrusion events are not rare.

Then we discuss the potential factors that may impact
the estimation. According to the previous analysis, the most
significant impacts are those uncertain factors, e.g, a random
sleep pattern, unexpected node failure, mobile sensor nodes
at a high speed, or overloaded nodes due to network conges-
tion. These uncertain factors will propose more requirements
on time synchronization. The level of synchronization is
dependent on the impact level of these factors. For a real
deployment with any of these uncertain features, CDPF-NE
needs to be applied carefully. In addition, the estimation
depends on the predicted target position. Thus, a wide prior
distribution may result in a large error on the estimation
result.

VI. EVALUATION

We evaluated CDPF and CDPF-NE in Matlab and com-
pared them with CPF and SDPF. This section reports our
evaluation results using the communication cost as the
overhead criterion, and root mean squared error (or RMSE)
as the estimation correctness criterion.

A. Simulation Environment

The sensor network includes 2, 000 − 16, 000 nodes in
a two-dimensional plane, which are randomly deployed
in a 200m × 200m area. Thus, the node density is 5 −
40 nodes/100m2. The sensing radius of nodes is set as
10 m, and the communication radius is set as 30 m. A target
crosses the surveillance field from the start point (0, 100)
with a constant speed 3 m/s. At each time step of 1 s, the
target turns a random angle bounded by [−15o, +15o].

We study the bearings-only tracking problem [26] in the
simulation:

xk = Φxk−1 + Γvk−1

zk = arctan yk

xk
+ nk

(5)

where xk = (sk,vk)T = (xk, yk, x′k, y′k)T , zk is the
observed bearing, and

Φ =

1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1

 Γ =

1
2∆t2 0

0 1
2∆t2

1 0
0 1

In addition, vk−1 = (vx, vy)T
k−1 and nk are zero mean

Gaussian white noises, and the variances of which are

respectively σ2
v =

[
σ2

x 0
0 σ2

y

]
and σ2

n.

The detailed parameter configurations for the dynamic
system above are as follows. The time step of CDPF is 5 s.
The standard deviations of noises are σx = σy = σn = 0.05.
The simulation includes 50 steps. For CPF, we adopt the
number of particles Ns = 1000.

For all the four algorithms simulated in the experiments,
i.e., CPF, SDPF, CDPF and CDPF-NE, we adopt SIR
filters [3] as the basis: we use the prior distribution as the
importance density, and execute the resampling step at every
iteration.

B. Experimental Results

0 50 100 150
98

99

100

101

102

103

104

105

x (m)

y
(m

)

Real trajectory
CDPF estimation
CDPF−NE estimation

Figure 4. Estimation example

First in Figure 4, we show an estimation example in-
cluding CDPF and CDPF-NE, when the node density is
20 nodes/100m2. The real trajectory of the target is shown
in a solid curve, which was simulated based on the target
model. We may observe that the estimation error of CDPF-
NE is a little greater than CDPF, as CDPF-NE replaces
the measurement sharing with neighborhood estimation.
However, the error of up to 3 m is still tolerable given the
node density of 5 m2/node.

Then we examine the communication costs of four al-
gorithms in various node densities. Based on the dynamic
model of the bearings-only tracking problem, we assume that
a particle includes four integers, and either a measurement
or a weight includes one integer only. On a 32-bit platform,
we have Dp = 16, Dm = 4 and Dw = 4, all in bytes.

In Figure 5, the communication costs of all the four algo-
rithms increase as the node density increases. This is because
that the number of sensor nodes that detect the target and
report the measurement increases. We observe that CDPF
and CDPF-NE reduce the communication cost significantly,
in which CDPF-NE achieves the minimal communication

overhead. Compared with SDPF, their reduction on the
communication cost reaches up to 90%. If compared with
CPF, they can also reduce the communication by about 70%.
Except for their communication reduction efforts, another
reason for this is that multiple particles on a single node can
be combined into one, thus the data amount for propagation
decreases significantly.

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Node density (node/100m2)

C
om

m
un

ic
at

io
n

co
st

 (
by

te
s)

CPF
SDPF
CDPF
CDPF−NE

Figure 5. Communication cost

A counterintuitive observation is that the communication
cost of SDPF is higher than that of CPF. This is caused by
the network scale: in the configured network environment,
any node can propagate the particle data to the sink node in
the center of the network within four hops at the most. Thus,
the hop count factor in the communication cost of CPF is
not dominant. On the contrary, the eight particles on each
node that detects the target increase SDPF’s communication
workload significantly. Therefore the two curves show a
reverse relation. If the surveillance field is large enough so
that the hop count factor dominates the communication cost,
two curves are supposed to reverse their positions.

5 10 15 20 25 30 35 40
1

2

3

4

5

6

7

Node density (node/100m2)

E
st

im
at

io
n

er
ro

r
(R

M
S

E
)

CPF
SDPF
CDPF
CDPF−NE

Figure 6. Estimation error

Finally, we present the result of the estimation error. In
Figure 6, CDPF shows a similar RMSE to SDPF, as their
operations on measurement sharing and particle propagation

are similar. CDPF-NE shows the greatest estimation error,
which is about 100% to 30% more than SDPF, as it simulates
the likelihood function by estimating the contribution of
neighbor nodes. However, the estimation error of CDPF-
NE decreases faster than others, because the error difference
will become less remarkable as the node deployment reaches
a certain level of density. As long as a reasonably big
estimation error can be tolerated, CDPF-NE would be the
most efficient choice.

VII. RELATED WORK

Bayesian estimation methods estimate the states in a
dynamic system in an iterative manner, by incorporating
new measures to filter the prior distribution to the posterior
one. When certain constrains (including Gaussian process
and measurement noises, and linear state transition and
measurement functions) hold, Kalman filter [27] serves as
the optimal solution by minimizing the estimated error
covariance. If otherwise the dynamic system is nonlinear
and/or non-Gaussian, which is usually true in real applica-
tions, particle filters [3] are usually used to approximate the
optimal solutions.

Given the high computation/communication cost, it is
often hard to apply PFs to WSNs. Many research efforts
were conducted to either reduce the number of particles
or compress the data amount of communication. In [28],
the author applied KLD-sampling to adapt the number of
particles dynamically, so that the estimation error is bounded
at a given probability. Kwak et. al. introduced a heuristic
algorithm based on a back-propagation neural network to
adapt the sample size in [29]. However, these efforts still
worked on centralized PFs, and did not consider a distributed
implementation.

Compared with CPFs, the research for DPFs is much less
mature. One of the most important reasons for this is that
PFs are easy to be defined for centralized architectures, but
difficult to be extended to distributed systems [30].

[10] is a widely cited literature about DPFs, in which
Coates presented the achievable compression on particles
either by training parametric models or with adaptive en-
coding. The compressed data, instead of the raw data, is
propagated and aggregated throughout the network. This
compressed data may be either parameters trained from a
certain parametric model of the factorized likelihood, or
quantized data by encoding the measurements. This work
was the first one to complete the data aggregation step by
step along with the propagation. Ing and Coates further
improved the idea of adaptive encoding with Huffman tree
in [12].

Although the training of a parametric model was proposed
in [10], the author did not present a specific parametric
model. Sheng et. al. provided one, i.e., Gaussian mixture
model (or GMM), in [5]. The distributed algorithms are
run over a set of uncorrelated sensor cliques, which are

dynamically constructed according to the moving trajectories
of the target. With GMM, the measurement data may be
compressed and aggregated efficiently.

Unlike [5], Liu et. al. introduced a non-parametric method
named support vector machine (or SVM) in [9]. The raw
data can also be compressed to reduce the communication
cost.

All these DPF literature focused on completing the aggre-
gation of particles in a distributed manner on different sensor
nodes, and reducing the communication cost by compressing
the raw data. These features will introduce the following
two problems: 1) the aggregation of particle weights will
experience a long delay, so will each iteration of PFs; and
2) though the total data amount is compressed, the number
of communicated messages may remain or even increase.
In addition, [10] strives to keep the computation result of
each iteration consistent across the network, which is often
unnecessary.

In [7], the authors presented a semi-distributed particle fil-
ter, which is the first to maintain particles on different sensor
nodes. However, weight aggregation is still dependent on a
global transceiver. Such kind of global transceiver, which
is assumed to be able to communicate with all the nodes
in the network directly, is usually hard to implement in real
deployments. On the contrary, our CDPF algorithm removes
all the weight aggregation operations and implements PFs in
a completely distributed way, thereby minimizes the com-
munication cost. Moreover, we remove many unnecessary
assumptions in [7], such as binary proximity sensors, the
optical communication and reflective devices.

Except for these DPF literature, Huang et. al. studied
target tracking using DPFs in [6], which was an efforts of
applying DPFs in specific scenarios. On the contrary, our
work studies DPF methods instead of their applications.

VIII. CONCLUSION

Based on our analysis in Section II-B and the experimental
evaluation in Section VI, we observe that compared with
SDPF, CDPF can reduce the communication cost by 90%,
with about 50% of the tracking error increment as the
cost. This shows that the communication reduction effort of
CDPF is significant. The application of CDPF’s improved
version is subject to several conditions, e.g., static nodes
and stable working status of nodes. In many deployments,
these conditions are easy to satisfy. Therefore, both CDPF
and CDPF-NE can be widely utilized.

Potential future work directions include:
1) Evaluate CDPF’s tolerance to uncertain factors. This

would allow us to understand the application scope of CDPF
and help with the configuration of WSN deployments.

2) Apply CDPF’s idea to more PF branches. Except for
generic PFs, there are many derivative efforts to solve related
problems introduced by PFs, e.g., degeneracy problem,
sample impoverishment. The idea of a completely distributed

implementation may be applied in these areas to reduce
communication costs.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer Networks
(Amsterdam, Netherlands: 1999), vol. 38, no. 4, pp. 393–422,
2002.

[2] M. Ding and X. Cheng, “Fault tolerant target tracking in
sensor networks,” in MobiHoc ’09: Proceedings of the tenth
ACM international symposium on Mobile ad hoc networking
and computing. New York, NY, USA: ACM, 2009, pp. 125–
134.

[3] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A
tutorial on particle filters for on-line non-linear/non-gaussian
bayesian tracking,” IEEE Transactions on Signal Processing,
vol. 50, pp. 174–188, 2001.

[4] A. Doucet, N. De Freitas, and N. Gordon, Eds., Sequential
Monte Carlo methods in practice. New York, USA: Springer,
2001.

[5] X. Sheng, Y.-H. Hu, and P. Ramanathan, “Distributed particle
filter with gmm approximation for multiple targets local-
ization and tracking in wireless sensor network,” in IPSN
’05: Proceedings of the 4th international symposium on
Information processing in sensor networks. Piscataway, NJ,
USA: IEEE Press, 2005, p. 24.

[6] Y. Huang, W. Liang, H.-b. Yu, and Y. Xiao, “Target tracking
based on a distributed particle filter in underwater sensor
networks,” Wirel. Commun. Mob. Comput., vol. 8, no. 8, pp.
1023–1033, 2008.

[7] M. Coates and G. Ing, “Sensor network particle filters:
motes as particles,” in IEEE Workshop on Statistical Signal
Processing, 2005, pp. 1152–1157.

[8] X. Wang, J. Ma, S. Wang, and D. Bi, “Distributed energy
optimization for target tracking in wireless sensor networks,”
IEEE Transactions on Mobile Computing, vol. 9, pp. 73–86,
2010.

[9] H.-Q. Liu, H.-C. So, F. K. W. Chan, and K. W. K. Lui, “Dis-
tributed particle filter for target tracking in sensor networks,”
Progress In Electromagnetics Research, vol. 11, pp. 171–182,
2009.

[10] M. Coates, “Distributed particle filters for sensor networks,”
in IPSN ’04: Proceedings of the 3rd international symposium
on Information processing in sensor networks. New York,
NY, USA: ACM, 2004, pp. 99–107.

[11] N.-L. Lai, C.-T. King, and C.-H. Lin, “On maximizing the
throughput of convergecast in wireless sensor networks,” in
GPC’08: Proceedings of the 3rd international conference
on Advances in grid and pervasive computing. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 396–408.

[12] G. Ing and M. J. Coates, “Parallel particle filters for tracking
in wireless sensor networks,” in Proceedings of IEEE 6th
Workshop on Signal Processing Advances in Wireless Com-
munications, 2005, pp. 935 – 939.

[13] Y. Gu and T. He, “Data forwarding in extremely low duty-
cycle sensor networks with unreliable communication links,”
in SenSys ’07: Proceedings of the 5th international conference
on Embedded networked sensor systems, 2007, pp. 321–334.

[14] P. Basu and J. Redi, “Effect of overhearing transmissions
on energy efficiency in dense sensor networks,” Third In-
ternational Symposium on Information Processing in Sensor
Networks (IPSN), 2004., pp. 196–204, 2004.

[15] J. Hightower and G. Borriello, “Location systems for ubiqui-
tous computing,” IEEE Computer, vol. 34, no. 8, pp. 57–66,
August 2001.

[16] R. Stoleru, J. A. Stankovic, and S. H. Son, “Robust node
localization for wireless sensor networks,” in EmNets ’07:
Proceedings of the 4th workshop on Embedded networked
sensors, 2007, pp. 48–52.

[17] P. Gupta and P. Kumar, “The capacity of wireless networks,”
Information Theory, IEEE Transactions on, vol. 46, no. 2, pp.
388–404, 2000.

[18] L. Lazos, R. Poovendran, and J. A. Ritcey, “Probabilistic de-
tection of mobile targets in heterogeneous sensor networks,”
in IPSN ’07: Proceedings of the 6th international conference
on Information processing in sensor networks. New York,
NY, USA: ACM, 2007, pp. 519–528.

[19] J. Lin, W. Xiao, F. L. Lewis, and L. Xie, “Energy-efficient
distributed adaptive multisensor scheduling for target tracking
in wireless sensor networks,” IEEE Transactions on Instru-
mentation and Measurement, vol. 58, no. 6, pp. 1886–1896,
2008.

[20] CrossBow, “Mica2 data sheet,” http://www.xbow.com.

[21] B. Jiang, K. Han, B. Ravindran, and H. Cho, “Energy efficient
sleep scheduling based on moving directions in target tracking
sensor network,” in IPDPS, 2008, pp. 1–10.

[22] Y. M. Lu and V. W. S. Wong, “An energy-efficient multipath
routing protocol for wireless sensor networks: Research ar-
ticles,” Int. J. Commun. Syst., vol. 20, no. 7, pp. 747–766,
2007.

[23] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient
mac protocol for wireless sensor networks,” in IEEE Infocom,
vol. 3, 2002, pp. 1567–1576.

[24] G. Lu, N. Sadagopan, B. Krishnamachari, and A. Goel, “De-
lay efficient sleep scheduling in wireless sensor networks,” in
INFOCOM 2005. 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings IEEE,
vol. 4, March 2005, pp. 2470–2481.

[25] J. Fuemmeler and V. Veeravalli, “Smart sleeping policies
for energy efficient tracking in sensor networks,” Signal
Processing, IEEE Transactions on, vol. 56, no. 5, pp. 2091–
2101, May 2008.

[26] W. R. Gilks and C. Berzuini, “Following a moving target-
monte carlo inference for dynamic bayesian models,” Journal
of the Royal Statistical Society. Series B (Statistical Method-
ology), vol. 63, no. 1, pp. 127–146, 2001.

[27] R. Olfati-Saber, “Distributed kalman filtering for sensor net-
works,” in Decision and Control, 2007 46th IEEE Conference
on, Dec. 2007, pp. 5492–5498.

[28] D. Fox, “Adapting the sample size in particle filters through
kld-sampling,” International Journal of Robotics Research,
vol. 22, no. 12, pp. 985–1003, 2003.

[29] N. Kwak, I.-K. Kim, H.-C. Lee, and B.-H. Lee, “Adaptive
prior boosting technique for the efficient sample size in fast-
slam,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2007, pp. 630–635.

[30] M. Rosencrantz, G. Gordon, and S. Thrun, “Decentralized
sensor fusion with distributed particle filters,” in Proceedings
of Uncertainty in Artificial Intelligence Acapulco, 2003.

