
Dynamic Analysis of the Relay Cache-Coherence Protocol for
Distributed Transactional Memory

Bo Zhang
ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA
alexzbzb@vt.edu

Binoy Ravindran
ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA
binoy@vt.edu

Abstract

Transactional memory is an alternative programming model for managing con-
tention in accessing shared in-memory data objects. Distributed transactional memory
(TM) promises to alleviate difficulties with lock-based (distributed) synchronization and
object performance bottlenecks in distributed systems. In distributed TM systems, both
the management and consistency of a distributed transactional object are ensured by
a cache-coherence protocol. The Relay protocol is a cache-coherence protocol that
operates on a fixed spanning tree. The protocol efficiently reduces the total number
of abortions for a given set of transactions. We analyze the Relay protocol for a set
of transactions which are dynamically generated in a given time period, and compare
the protocol’s time complexity against that of an optimal offline clairvoyant algorithm.
We show that Relay is O(log D)-competitive, where D is the diameter of the spanning
tree, for a set of transactions that request the same object, given the condition that the
maximum local execution time of transactions is sufficiently small.

1. Introduction

Lock-based synchronization is inherently error-prone. For example, coarse-grained locking,
in which a large data structure is protected using a single lock is simple and easy to use, but
permits little concurrency. In contrast, with fine-grained locking, in which each component of a
data structure (e.g., a bucket of a hash table) is protected by a lock, programmers must acquire
only necessary and sufficient locks to obtain maximum concurrency without compromising safety,
and must avoid deadlocks when acquiring multiple locks. Both these situations are highly prone
to programmer errors. In addition, lock-based code is non-composable. For example, atomically
moving an element from one hash table to another using those tables’ lock-based atomic methods
(e.g., insert, delete) is not possible in a straightforward way: if the methods internally use
locks, a thread cannot simultaneously acquire and hold the locks of the methods (of the two
tables); if the methods were to export their locks, that will compromise safety. For these and
other reasons, lock-based concurrent code is difficult to reason about, program, and maintain [9].

Transactional memory (TM) is an alternative synchronization model (for shared in-memory
data objects) that promises to alleviate these difficulties. A transaction is an explicitly delimited

sequence of steps that is executed atomically by a single thread. Transactions read and write
shared objects. A transaction ends by either committing (i.e., its operations take effect), or by
aborting (i.e., its operations have no effect). If a transaction aborts, it is typically retried until
it commits. Transactional memory API for multiprocessors have been proposed in hardware [7],
in software [8], [15], and in hardware/software combination [3]. Two transactions conflict if
they access the same object and one access is a write. The transactional approach to contention
management [10] guarantees atomicity by ensuring that whenever a conflict occurs, only one of
the transactions involved can proceed.

The difficulties of lock-based synchronization also appear in distributed (control-flow) pro-
gramming models such as RPCs. For example, RPC calls, while holding locks, can become
remotely blocked on other calls for locks, causing distributed deadlocks. Livelocks and lock
convoying similarly occur. In addition, in the RPC model, an object can become a “hot spot,”
and thus a performance bottleneck. These difficulties have similarly motivated research on the
design of distributed TM systems as a possible solution. For example, in the data-flow distributed
TM model of [11] (that we also consider), object performance bottlenecks can be reduced by
exploiting locality: move the object to nodes. Moreover, if an object is shared by a group
of geographically-close clients that are far from the object’s home, moving the object to the
clients can reduce communication costs. Distributed (data-flow) TM can therefore alleviate these
difficulties, in which distributed transactional conflicts are resolved and object consistencies are
ensured through distributed contention managers and cache-coherence protocols, respectively.

Past works on transactional memory in distributed systems include [2], [11], [13], and [18].
In [13], the authors present a page-level distributed concurrency control algorithm, which main-
tains several distributed versions of the same data item. In [2], the authors decompose a set of
existing cache-coherent TM designs into a set of design choices, and select a combination of
such choices to support TM for commodity clusters. None of these works present theoretical
analysis of the fundamental properties of TM for distributed systems, such as performance upper
bounds of cache-coherence protocols, which is our focus.

In [11], Herlihy and Sun present a Ballistic distributed cache-coherence protocol in a metric-
space network, where the communication costs between nodes form a metric. The protocol’s
performance is evaluated by measuring its stretch, which is the ratio of the protocol’s commu-
nication cost for obtaining a cached copy of an object to that of the optimal communication
cost. The Ballistic protocol mainly suffers from two drawbacks. First, it employs an existing
distributed queuing protocol, which does not consider the contention between two transactions,
and the worst-case queue length, which is O(N2

i) for Ni transactions requesting the same object.
Second, its hierarchical structure degrades its scalability—e.g., whenever a node joins or departs,
the whole structure has to be rebuilt.

The Relay cache-coherence protocol is proposed in [18], which focuses on optimizing the
worst-case queue length of the distributed queue, i.e., it reduces the total number of transaction
abortions. Motivated by the Arrow distributed queuing protocol [4] due to the similarities of the
distributed queuing problem and the problem of the synchronization of write/read access requests
to mobile objects for distributed TM, the Relay protocol is proposed. Operating on a network
spanning tree. The Relay protocol efficiently reduces the worst-case number of total abortions to
O(Ni), for Ni transactions requesting the same object.

In this paper, we conduct the first dynamic analysis of the Relay protocol, which allows nodes

to initiate transactions at arbitrary times. In other words, we give the first “online” analysis of
the Relay protocol, given a set of dynamically generated transactions in a time period. Such an
analysis is outside the scope of [18] and is therefore not discussed in [18] (or for any cache-
coherence protocol for that matter). We adopt the method of [12], which gives a dynamic analysis
of the Arrow protocol for a set of ordering requests. As our analysis shows, for distributed TM,
transactions involve two more variables than simple ordering requests: the local execution time
and the worst-case number of abortions, which makes the dynamic analysis complex.

We compare the time complexity of the Relay protocol against an optimal clairvoyant offline
algorithm. We show that, for a set of transactions T i requesting access to the same object, the
competitive ratio of the Relay protocol is O(log D), if the maximum local execution time of
the transactions in T i is O(log D), where D is the diameter of the spanning tree. This is the
first ever dynamic analysis of a distributed TM cache-coherence protocol. Since the Ballistic
protocol which adopts the same mechanism as that of the Arrow protocol is not capable of
reducing the worst-case number of abortions [18], the competitive ratio of the Relay protocol
is a significant improvement over past distributed TM cache-coherence protocols and distributed
queuing protocols. These two results constitute the papers contributions.

The rest of the paper is organized as follows. We present our system model and describe the
distributed TM cache-coherence problem in Section 2. In Section 3, for the paper’s completeness,
we summarize the Relay protocol. The section also describes the protocol’s operation for a set
of dynamically generated transactions (this is outside the scope of [18]). Section 4 presents
the dynamic analysis and compares the Relay protocol against an optimal clairvoyant offline
algorithm. The paper concludes in Section 5.

2. System Model and Problem Description

2.1. Network Model.

We consider a distributed system with n nodes. Let G = (V,E, d) be a weighted connected
graph, where |V | = n and d is a function that maps E to the set of positive real numbers.
Specifically, we use d(u, v) to denote the communication cost of the edge e(u, v) ∈ E.

We assume a fixed-rooted spanning tree T of G. Given the spanning tree T , we define the
distance in T between a pair of two nodes, u and v, to be the sum of the lengths of the edges on
the unique path in T between u and v, denoted by dT (u, v). We define the diameter D of T as:
D = maxu,v∈V dT (u, v); and the normalized diameter D0 of T as: D0 = maxu,v,x,y∈V {dT (u,v)

dT (x,y)
}.

2.2. Distributed Queuing Problem

We first describe the distributed queuing problem, which provides us with a starting point to
understand the distributed TM cache-coherence problem. Assume that nodes initiate ordering
requests for an object at arbitrary times in the network. Formally, an ordering request r can be
identified by the tuple r = (u, t) where u is the node that initiates the ordering request, and t
is the time when the request is initiated. When receiving the ordering request r, the object is
simply moved to node u.

A distributed queuing protocol orders all requests in the system over time globally in a
distributed way. As a result, all ordering requests form a fixed distributed queue. Each request
will find its predecessor and will be found by its successor in the queue. Hence, the solution to
the distributed queuing problem is to find an ordering algorithm for a set of requests R:

Definition 1 (Ordering Algorithm): An ordering algorithm is a distributed algorithm which
defines a total order on R such that in the end each node that initiates requests knows the
predecessors of all its requests.
Note that such an algorithm must be distributed. For example, the Arrow protocol [14] is a simple
distributed queuing protocol based on path reversal.

2.3. Distributed Transactional Memory Model

We consider the data-flow model of Herlihy and Sun in [11], which converts the distributed
TM cache-coherence problem to a special distributed queuing problem where the length of the
distributed queue is dynamically changed based on contentions. Compared with the distributed
queuing problem, for distributed TM, we deal with transactions instead of ordering requests.
A transaction is a sequence of requests, each of which is a read or write operation request
to an individual object. Given a set of s ≥ 1 objects, {R1, . . . , Rs}, we can use the tuple
Tj = (vj, tj, ~R(j), τj) to identify a transaction Tj . We explain each field of Tj as follows:
- vi: the node that initiates the transaction.
- ti: the time when the transaction is initiated.
- ~R(j): the vector that describes the sequence of requests of Tj . Let ~R(j) = {R1(j), . . . , Rs(j)},

where Ri(j) ∈ {0, 1, 1
n
} represents the units of Ri required by Tj . If Tj does not require

access to Ri, then Ri(j) = 0. If Tj updates Ri, i.e., a write operation, then Ri(j) = 1. If it
reads Ri without updating, then Ri(j) = 1

n
, i.e., at most the object can be read by n nodes

simultaneously. Suppose there are two transactions Tj and Tk, and Ri(j) + Ri(k) > 1. Then
Tj and Tk conflict at Ri.

- τj: the duration of Tj’s successful local execution. An execution of a transaction is a sequence of
timed actions. Generally, there are four action types that may be taken by a single transaction:
write, read, commit, and abort. An execution ends by either a commit (success) or an abort
(failure). A successful local execution of Tj is a successful execution when all objects requested
by Tj already reside in vj , i.e., there is no need to fetch those objects from the network.
Distributed queuing protocols that consider ordering requests cannot be directly used for

distributed TM since they usually do not provide efficient mechanisms to mediate conflicts among
multiple transactions over a set of objects: when a node holding the object receives a new request,
it simply sends the object to the requesting node. Since a transaction is atomic, i.e., a transaction
can only commit as long as all its read/write operations have executed, such a simple mechanism
could cause deadlocks and livelocks. For example, suppose there are two transactions Tj and Tk,
and both of them request write accesses for two objects R1 and R2. Suppose, initially R1 is held
by Tj and R2 is held by Tk. Hence, vj sends a request for R2 and vk sends a request for R1. If
we use a simple distributed queuing protocol to order these requests, it is very likely that both
transactions are aborted and R1 and R2 are moved to Tk and Tj , respectively. As a result, both
transactions cannot proceed in this case.

To understand the elements of the design to support the transactional memory API in a
distributed system, we consider Herlihy and Sun’s data-flow model [11]. In this model, trans-

actions are immobile (running at a single node), but objects move from node to node, just like
mobile objects in the distributed queuing problem. Transactional synchronization is optimistic: a
transaction commits only if no other transaction has executed a conflicting access. A contention
manager module is responsible for mediating between conflicting accesses to avoid deadlocks
and livelocks. A contention manager assigns priorities to transactions. A running transaction
could only be aborted by another transaction with a higher priority. We use Tj ≺ Tk to represent
that transaction Tj is issued a higher priority than Tk. Revisiting the previous example, suppose
Tj ≺ Tk. In this case, Tj first commits after R2 is moved to vj , and then R1 is moved to vk to
let Tk commit.

Thus, the design of a distributed TM system is composed of two parts: a contention manager
to mediate conflicts and a protocol (equivalent to the distributed queuing protocol) to locate and
move objects in the network. Such a protocol is called a distributed cache-coherence protocol.
When a transaction attempts to access an object, the cache-coherence protocol must locate the
current cached copy of the object, move it to the requesting node’s cache, and invalidate the old
copy.

Different contention managers have been studied in the past [16]. An efficient contention
management policy should guarantee progress—i.e., at any given time, there exists at least
one transaction that proceeds to commit without interruption. In this paper, we assume a fixed
contention manager, which satisfies the work conserving [1] and pending commit [6] properties:

Definition 2: A contention manager is work conserving if it always lets a maximal set of
non-conflicting transactions to run.

Definition 3: A contention manager obeys the pending commit property if, at any given time,
some running transaction will execute uninterrupted until it commits.
For example, the Greedy contention manager in [6] which uses a globally consistent priority
policy that issues priorities to transactions is shown in [1] to satisfy both properties.

A simple design for the cache-coherence protocol is to directly use an existing distributed
queuing protocol, as suggested in [11]. In [11], Herlihy and Sun present the Ballistic protocol,
which is based on the Arrow distributed queuing protocol built on a hierarchical clustering
network structure which provides a better stretch than the simple spanning tree structure. However,
current distributed queuing protocols do not consider the contention between two transactions.
Thus, an aborted transaction has to restart and join the distributed queue again. As a result,
the length of the distributed queue increases and the worst-case queue length is O(N2

i) for Ni

transactions requesting the same object. In Section 3, we summarize the Relay protocol for
completeness. Relay provides an optimal O(Ni) worst-case queue length.

3. The Relay Protocol

The Relay protocol is motivated by the Arrow protocol which is based on path reversal on a
network spanning tree. It is a distributed cache-coherence protocol designed for the synchronized
management of transactional accesses to mobile objects (i.e., the data flow TM model) in a
network. When multiple nodes in the network transactionally request an object concurrently,
the transactional requests must be queued in some order, and the object must travel from one
node to another down the queue. To manage such a distributed queue, an efficient distributed
cache-coherence protocol must solve three problems: a) how to order the requests from different

nodes into a single queue; b) how to provide the necessary information to nodes such that each
node knows the location of its successor in the queue and the object can be forwarded down
the queue; and c) how to efficiently reduce the length of the queue. Note that the protocol is
“distributed” in the sense that no single node needs to have the global knowledge of the queue.
Each node only needs to know its successor in the queue and will forward the object to it.

The Relay protocol is initialized in the same way as the Arrow protocol. The protocol runs
on a fixed spanning tree T of G. Each node v keeps an “arrow” or a pointer p(v) to itself or
to one of its neighbors in T . If p(v) = v, then v is the tail of the queue, i.e., the next request
should be forwarded to v. In this case, the node v is defined as a “sink”. Clearly, at any time,
there exists only one sink for each object. If p(v) = u, then p(v) only knows the “direction” of
the tail of the queue and the request is forwarded following that direction. At the start, the node
vtail, where the object resides, is selected to be the tail of the queue. Each node v ∈ V maintains
a pointer p(v) and is initialized so that following the pointers from any node leads to the tail, as
shown in Figure 1(a).

Figure 1. (a) Initialization. (b) Node v1 sends
a find message.

To request the object after the initial-
ization, a transaction T1 invoked by node
v1 sends a find message find(v1) to node
p(v1). Note that p(v1) is not modified when
a find message is forwarded, which is dif-
ferent from the Arrow protocol. If a node w
between v and the tail of the queue receives
a find message, it simply forwards the find
message to p(w). At the end, the find
message will be forwarded to the tail of
the queue without changing any pointers.

The find message find(v1) keeps a path
vector ~path to record the path it travels.
Each node receiving the find message from
v1 appends its ID to find(v1). ~path. When

the find message arrives at the tail of the queue, the vector find(v1). ~path records the path from
v1 to the tail vtail. Such an operation is shown in Figure 1(b).

Now the tail of the queue vtail receives a find message from node v1. We have to examine
the status of the transaction Ttail which also requires the object. If Ttail has committed, then
the object is moved to v1. This case is trivial except the way that pointers are updated (we will
discuss that update process in detail later). If Ttail has not committed, the contention manager of
vtail has to compare the priorities of T1 and Ttail. We discuss this scenario case by case.
- Case 1: If T1 ≺ Ttail, then Ttail is aborted and the object is moved to v1. The pointers are

updated when the object is moved. To let the pointers update correctly, node vtail sends a
move message move(vtail) with a route vector ~route which records the route that move(vtail)
will travel. In this case, move(vtail). ~route = find(v1). ~path. Hence, node vtail sends the object
with move(vtail) to move(vtail). ~route[max] (the last element of move(vtail). ~route). Meanwhile,
node vtail sets p(vtail) to move(vtail). ~route[max]. Then Ttail restarts and immediately sends
a find(vtail) message to p(vtail). Suppose a node u receives a move message from one of
its neighbors. It updates move(vtail). ~route by removing move(vtail). ~route[max] and sends the

object to the new move(x). ~route[max], setting p(u) = move(vtail). ~route[max]. Finally, when
the object arrives at v1, p(v1) is set to v1 and all pointers are updated. Such operations guarantee
that at any time, there exists only one sink in the network, and, from any node, following the
direction of its pointer leads to the sink. Such an operation is shown in Figure 2(a).

- Case 2: If Ttail ≺ T1, then T1 will be postponed to let Ttail commit. Node vtail stores a “virtual
pointer” next(vtail) = v1. The object is moved to next(vtail) once after Ttail commits. Hence,
next(vtail) has to keep a route vector next(vtail). ~route to record the path from vtail to itself.
In this case, next(vtail). ~route = find(v1). ~path. We show this operation in Figure 2(b).

Figure 2. (a) Case 1: T1 ≺ Ttail. (b) Case 2: Ttail ≺
T1.

Since the pointers are not updated
until the object is moved, and the
object will only be moved unless the
running transaction Ttail has commit-
ted or it receives another transaction
with higher priority, node vtail may re-
ceive multiple find messages. Suppose
it receives another find message from
v2. If T2 ≺ Ttail, then it falls into Case
1. If Ttail ≺ T2, then the contention
manager compares the priorities of
next(tail) (in this case it is T1) and
T2. If T1 ≺ T2, then the find message
from v2 is forwarded to v1. If T2 ≺ T1,
then vtail sets next(tail) to T2 and

forwards the find message from v1 to v2.

Figure 3. Example: Ttail ≺ T2 ≺ T1. Node
vtail receives find(v2) after find(v1) and forwards
find(v1) to v2. The path vector find(v1). ~path is
updated.

A problem appears when vtail for-
wards find messages from other nodes
to a new node, e.g., find(v1) to v2.
In this case, the path vector should
record the path from v1 to v2. How-
ever, since find(v1) is forwarded
along the path v1 → vtail → v2,
the path recorded in find(v1). ~path is
not the shortest path from v1 to v2 in
the spanning tree T . Hence, the path
vector has to be correctly updated to
record the shortest path. We illustrate
this update policy with the help of an
example, as shown in Figure 3.

Since there is only one path in a
spanning tree between two nodes such
that each node in the path is visited

exactly once, the path vector is updated to detect and eliminate nodes that have been visited
multiple times. In the example of Figure 3, node vtail has to forward find(v1) to v2. Initially,
find(v1). ~path = [v1, v3, v4, v6]. When node v6 receives find(v1), it first checks the last two

elements of find(v1). ~path, which are v4 and v6. Since they are different, v6 simply appends its
ID to the path vector, as shown in Figure 3(a). Now, find(v1) arrives at v4 and the last two
elements of find(v1). ~path are the same (v6). Node v4 has to check the third last element of
the path vector (v4) to see whether a loop forms. Hence, a loop forms by [v4, v6, v6, v4] and v6

is deleted from the path vector since it is not on the shortest path from v1 to v2, as shown in
Figure 3(b). When find(v1) arrives at v2, it finds that the last two elements of the path vector
are the same, but the third last element is not v2. Hence v4 should exist on the path vector, as
shown in Figure 3 (c).

The correctness of the protocol can be proved from the protocol description. The pointers are
only “flipped” when the object is moved, which guarantees that at any time there is only one sink
in the network and following the pointer from any node leads to the sink. The key to proving
the correctness of the protocol is that find and move messages are forwarded along the correct
path on T . As explained in the protocol description, we use path vectors and route vectors to
record paths. As long as they are correctly updated, a find or a move message can be forwarded
along the unique path on T to its destination.

The most important advantage of the Relay protocol is that it reduces the total number of
abortions. The following theorem is proved in [18]:

Theorem 1: The total number of abortions of Ni transactions requesting the same object under
Relay is at most Ni − 1.
In other words, the Relay protocol upper bounds the length of the distributed queue to 2Ni − 1
for Ni transactions requesting the same object.

We now focus on the dynamic analysis of the Relay protocol in the following section.

4. Analysis

4.1. Cost Measures

Cost of Relay. We first focus on the cost of an individual object Ri. Let T i = {Tj ∈ T :
Ri(j) > 0}, i.e., T i is the set of transactions that require accesses to Ri. For brevity, in the rest
of the paper, we refer to the node and time of a transaction Tj directly as vj and tk, respectively.

Generally, a cache-coherence protocol performs two functions: 1) locating the up-to-date copy
of the object and 2) moving it in the network to meet transactions’ requests. We define their
costs as follows:

Definition 4 (Locating Cost): In a given graph G, the locating cost δC(Tj, Tk) is the commu-
nication cost for a transaction request invoked by node Tj to travel in the network, to successfully
locate an object held by node Tk, under a cache-coherence protocol C.

Definition 5 (Moving Cost): In a given graph G, the moving cost ζC(Tj, Tk) is the communi-
cation cost for an object held by node Tj to travel in the network to node Tk, which invokes a
transaction request of the object, under a cache-coherence protocol C.

As shown in the description of the Relay protocol, each transaction locates the object via
the direct path in the spanning tree in the same way as the Arrow protocol. On the other
hand, the object is moved along the direct path on the spanning tree because the path vector is
correctly updated. The locating cost and moving cost of Relay are: δC(Tj, Tk) = dT (vj, vk) and
ζC(Tj, Tk) = dT (vj, vk).

Each transaction may suffer from a number of abortions before it commits. Let λ∗i (j) denote
the number of abortions of transaction Tj under Relay for a conflict on object Ri and λi(j) =
λ∗i (j) + 1, i.e., λi(j) is the total number of times that Tj receives the object Ri. We have the
following theorem:

Theorem 2: Assume v↗i,j(m) (or v↘i,j(m)) is Tj’s mth destination (or source) for locating (or
moving) the object Ri. The total cost of transaction Tj with respect to object Ri under Relay is:

costiR(Tj) ≤
λi(j)∑
m=1

[dT (vj, v
↗
i,j(m)) + distT (v↗i,j(m), v↘i,j(m)) + dT (vj, v

↘
i,j(m)) + τj], (1)

where distT (v↗i,j(m), v↘i,j(m)) is the total communication cost for the the mth find message from
vj to travel along a certain path from v↗i,j(m) to v↘i,j(m) in the spanning tree T , including the
idle time that the find message waits for other transactions’ commit.

Proof: The complete execution of Tj with respect to Ri is shown in Figure 4. Each time
Tj sends a find message, it waits until the object has arrived. The mth find message first arrives
at v↗i,j(m) and such locating cost is dT (vj, v

↗
i,j(m)). Since the find message may be forwarded

to other nodes, we have to take into account such costs. The path from v↗i,j(m) to v↘i,j(m) is
not necessarily the shortest path on the spanning tree since some nodes may be visited multiple
times. The idle time is the total time that the find message waits on v↘i,j(m) for its transaction’s
commit. Finally, the object stays at Tj for at most τj time before Tj aborts or commits. The
theorem follows.

Figure 4. The complete execution of Tj with
respect to Ri: Tj is aborted by the transaction
on v↗i,j(m),m ≥ 2.

Note that Equation 1 gives the total
communication cost of a single transaction
Tj . From another point of view, an object
started to move in the network and be get
involved by transactions once it receives
the first transaction request. The total time
complexity is composed the time that the
object travels and the time that the object
is accessed by transactions. Hence, a more
useful cost measure is the amortized cost
of a single transaction, i.e., the contribution
made by a single transaction to the total
cost of a set of transactions. We have the
following theorem.

Theorem 3: Let the amortized cost of
a transaction Tj with respect to Ri under
Relay be denoted as ci

R(Tj). Then,

ci
R(Tj) ≤

λi(j)∑
m=1

[dT (vj, v
↘
i,j(m)) + τj]. (2)

In other words, the amortized cost of a transaction Tj is at most the sum of the total moving
cost, and the total local execution cost of Ti.

Proof: The total cost of a set of transactions with respect to Ri is the sum of the Ri’s
traveling distance in the network and the local execution cost of transactions which require
accesses to Ri. From Figure 4, we can see that for the mth find message, such traveling cost is
dT (vj, v

↘
i,j(m)) and the local execution cost is at most τj . We now prove that all locating costs

and distT (v↗i,j(m), v↘i,j(m)) are covered by other transactions’ amortized cost. When m ≥ 2, the
find message is sent immediately after the object is moved from Tj . Hence, such locating cost
is covered by the moving cost from vj to v↗i,j(m) and the execution cost for the transaction
on v↗i,j(m). For m ≥ 1, when v↗i,j(m) forwards the find message to v↘i,j(m), the cost of this
distance is covered by the local execution cost and the moving cost for the set of transactions on
{v↗i,j(m), next(v↗i,j(m)), next(next(v↗i,j(m))), . . . , v↘i,j(m)}. Such cost also covers the idle time
(if any) that the mth find message waits on v↘i,j(m), since the object is moved to vj immediately
when it is available on v↘i,j(m). The theorem follows.

Transaction Decomposition We now decompose each transaction to a set of sub-transactions,
i.e., each retry of a transaction is equivalent to an invocation of a sub-transaction. Specifically,
we have Tj = {Tj(1), Tj(2), . . . , Tj(λi(j))}, where Tj ∈ T i. The only different field between
tuples (vj(l), tj(l), ~R(j, l), τj(l)) and (vj, tj, ~R(j), τj) is that tj(l) is the lth time that Tj retries,
i.e., the time that Tj retries after (l − 1)th abortion.

We index all sub-transactions Si = {S0 = (v0, t0, ~R(0), τ0), S1 = (v1, t1, ~R(1), τ1), . . . , }
,where Sj ∈ T i, in increasing order with respect to tj , with ties broken arbitrarily, i.e., j < k ⇒
tj < tk. For the Relay protocol, let φR be the order of obtaining the object by sub-transactions Si

which is induced by Relay, i.e., φR(j) denotes the index of the jth sub-transaction that receives
the object in Relay’s order. We use S0 = (root, 0) to represent the “virtual” transaction (token)
at the initial location of the object Ri. Hence we have SφR(0) = S0.

We define the cost metric to order a sub-transaction Sk after Sj as follows: cR(Sj, Sk) :=
dT (vj, vk). We have the following theorem:

Theorem 4:
|T i|∑
j=1

λi(j)∑
m=1

dT (vj, v
↘
i,j(m)) =

|Si|∑

k=1

cR(SφR(k−1), SφR(k)). (3)

In other words, the total moving cost of the set of transactions T i is equivalent to the cost of
ordering a set of sub-transactions Si which are decomposed from T i.

Proof: The cost dT (vj, v
↘
i,j(m)) is the moving cost from v↘i,j(m) to vj . Since the object

is moved along this path, we know that v↘i,j(m) receives the object just before vj . From the
definition of the transaction decomposition, the theorem follows.

Each sub-transaction Sj locates the object just once. For brevity, let dT (vj, v
↗
i,j), distT (v↗i,j, v

↘
i,j)

and dT (vj, v
↘
i,j) be denoted as d↗i (j), disti(j) and d↘i (j), respectively.

Thus, the total cost of the Relay protocol with respect to Ri is given by:

costiRelay =

|T i|∑
j=1

ci
R(Tj) =

|T i|∑
j=1

[dT (vj, v
↗
i,j(1)) + λi(j)τj] +

|Si|∑

k=1

cR(SφR(k−1), SφR(k)) (4)

Cost of OPT. We now consider the cost of an optimal clairvoyant offline ordering algorithm,
denoted OPT, that has a complete knowledge of all the transactions T . Clearly, an optimal offline

algorithm just has to order each transaction to receive the object once to commit. Let φO be the
order of OPT. For the cost of OPT, we have to take into account its complete knowledge of
all transactions. For a transaction Tj = ((vj, tj, ~R(j), τj)), the algorithm OPT already knows
the succeeding transaction Tk = ((vk, tk, ~R(k), τk)). When the object is available at vj , the
algorithm can immediately send the object to vk. Hence, we define the transaction Tj’s completion
time in the order φO as tOj . We therefore define the moving cost ci

O(Tj, Tk) of ordering Tk

after Tj in the φO order as: ci
O(Tj, Tk) := dT (vj, vk) + max{0, tOj − tk + dT (vj, vk)} + τk ≥

dT (vj, vk)+max{0, tj− tk +dT (vj, vk)}+τk. The total cost of an optimal algorithm with respect
to Ri then becomes:

costiOPT = min
φ
{
|T i|∑
j=1

ci
O(TφO(j−1), TφO(j))} (5)

Hence, φO is an order which minimizes the sum of Equation 5.
The competitive ratio ρi achieved by the Relay protocol is the ratio between the cost of Relay

and the cost of an optimal offline ordering algorithm:

ρi :=
costiRelay

costiOPT

(6)

4.2. Dynamic Analysis of the Relay Protocol

We now focus on the analysis of the order φR produced by the Relay protocol. As suggested
in [12], the order produced by the Arrow protocol corresponds to a nearest neighbor traveling
salesman path (TSP) on the set of requests by defining a new comparable cost metric. Motivated
by this method, we first define a new cost metric cT . Then, we show that the cost of ordering
all sub-transactions in φR with respect to cT is comparable to the costiRelay.

Definition 6: Let Sj and Sk be two sub-transactions such that Relay orders Sj before Sk, i.e.,
φR(Sj) < φR(Sk). Then the cost metric ci

T (Sj, Sk) is defined as:

ci
T (Sj, Sk) := tk + d↗i (k) + disti(k)− tj − d↗i (j)− disti(j)

We have the following theorem.
Theorem 5: The order of φR is defined by a nearest neighbor TSP path on the metric ci

T (Sj, Sk),
starting with the sub-transaction S0. Further, cT (Sj, Sk) ≥ 0 for all pairs of request rj and rk.

Proof: We prove Theorem 5 by induction. The object is initialized at S0. For this dummy
token, t0 = d↗i (0) = disti(0) = 0. The sub-transaction Sj which minimizes tj +dT (vj, v0) arrives
at v0 first. By the definition of φR, this is the sub-transaction SφR(1). In this case, d↗i (j) =
dT (vj, v0) and disti(j) = 0. The sub-transaction Tj is the one that minimizes ci

T (S0, Sk) for all
Sk ∈ Si\{S0}. Clearly, ci

T (S0, SφR(1)) ≥ 0.
Assume SφR(k′) is the sub-transaction that minimizes ci

T (SφR(k′−1), Sl) for all Sl ∈ {SφR(k′),
SφR(k′+1), . . .}. From the definition of φR, we know that SφR(k′+1) will receive the object from
SφR(k′). Note that at time tk′ + d↗i (k′) + disti(k′), the object is moved from SφR(k′−1) to SφR(k′).
From this time point, all new generated find messages are forwarded to SφR(k′). Hence, the sub-
transaction that minimizes ci

T (SφR(k′), SφR(l′)) for all sub-transactions Sl′ ∈ {SφR(k′+1), SφR(k′+2), . . .}
is SφR(k′+1), which is the first sub-transaction that was ordered after SφR(k′).

Note that ci
T (SφR(k′−1), SφR(k′)) ≤ ci

T (SφR(k′−1), SφR(k+1)). Then:

0 ≤ ci
T (SφR(k′−1), SφR(k+1))− ci

T (SφR(k′−1), SφR(k′))

= tk′+1 + d↗i (k′ + 1) + disti(k′ + 1)− tk′−1 − d↗i (k′ − 1)− disti(k′ − 1)

− (tk′ + d↗i (k′) + disti(k′)− tk′−1 − d↗i (k′ − 1)− disti(k′ − 1))

= ci
T (SφR(k′), SφR(k+1)).

The theorem follows.
Let Ci

T be the cost of ordering all sub-transactions in φR with respect to ci
T . We have the

following theorem.
Theorem 6:

Ci
T ≥

|Si|∑

k=1

cR(SφR(k−1), SφR(k))−D,

where D is the diameter of the spanning tree T .
Proof: We first show that:

ci
T (SφR(k−1), SφR(k)) ≥ cR(SφR(k−2), SφR(k−1)) (7)

where k ≥ 2. Note that cR(SφR(k−2), SφR(1)) = dT (vφR(k−2), vφR(k−1)) by definition. Since ci
T (SφR(k−1),

SφR(k)) = tk+d↗i (k)+disti(k)−tk−1−d↗i (k−1)−disti(k−1), note that the object arrives at Sk−1

at time tk−1 +d↗i (k−1)+disti(k−1)+dT (vφR(k−2), vφR(k−1)). Hence, the fastest way for SφR(k)

to get the object is that the object is moved to SφR(k) once it arrives at SφR(k−1), i.e., SφR(k) aborts
SφR(k−1). In this case, tk+d↗i (k)+disti(k) = tk−1+d↗i (k−1)+disti(k−1)+dT (vφR(k−2), vφR(k−1)),
which is minimum. Equation 7 follows. By summing up over k, we have:

Ci
T ≥

|Si|∑

k=1

cR(SφR(k−1), SφR(k)) + tφR(1) + dT (vφR(1), v0)− dT (vφR(|Si|−1), vφR(|Si|)),

which completes the proof.
The Relay protocol and an optimal offline algorithm produce the same ordering when the

transactions are sparse enough, i.e., in a relatively long time period there is only one transaction
invoked. We can shift the sub-transactions as much as possible without increasing the cost of
Relay and an optimal offline algorithm.

Lemma 1: Let SφR(k) and SφR(k+1) be two consecutive sub-transactions in order φR. Let ε :=
cT (SφR(k), SφR(k+1)) − dT (vφR(k−1), vφR(k)) − τk. If ε > 0, for all sub-transactions SφR(l) where
l ≥ k + 1, tφR(l) can be replaced by tφR(l) − ε without increasing the cost of Relay and OPT.

Proof: The proof follows the same argument of the proof of Lemma 2.6 in [12].
By applying Lemma 1 as many times as possible, we have the following theorem:
Theorem 7: The upper bound of the cost ci

T (Sj, Sk) of the longest edge on Relay’s path is:
ci
T (Sj, Sk) ≤ D + max

|Si|
l=1 τl.

4.3. Competitive Ratio of the Relay Protocol

We first define the Manhattan metric cM which is comparable to ci
O.

Definition 7 (Manhattan Metric): The Manhattan metric cM(Tj, Tk) is defined as:

cM(tj, tk) := dT (vj, vk) + |tj − tk|+ τj + τk.

Lemma 2: Let φ be an ordering and C i
O and CM be the costs for ordering all transactions in

order φ with respect to cO and cM . The Manhattan cost is bounded by: CM ≤ 2CO + tφ(|Ti)| .

Proof: We can lower bound the optimal cost of ci
O by:

cO(Tj, Tk) ≥ dT (vj, vk) + max{0, tj − tk}+ τk

Let DT =
∑|T i|

j=1{dT (vφ(j−1),φ(j))+τj+τj−1}. Then we have: 2Ci
O ≥ DT +2

∑|T i|
j=1 max{0, tφ(j−1)−

tj} = DT +
∑|T i|

j=1 |0, tφ(j−1) − tj| − tφ(|T i|) = CM − tφ(|T i|)
The lemma follows.

We use the following lemma from [12]:
Lemma 3: Let c′M(Tj, Tk) := dT (vj, vk)+ |tj− tk| and C ′

M be the cost of ordering all requests
in order φ with respect to c′M . Then, CM ≥ 3

2
t|T i| where t|T i| is the largest time of any request

in T i.
Hence, we have the following theorem to make CM comparable to Ci

O:
Theorem 8:

CM ≤ 6Ci
O

Proof: The theorem can be proved by Lemmas 2 and 3. Note that we have cM ≥ cM ′ and
t|T i| ≥ tφ(T i). Then the theorem follows.

We now compare CM and Ci
T with the help of the following theorem from [12]:

Theorem 9: Let V be a set of N := |V | and let dn : V × V → < and do : V × V → < be the
distance functions between nodes of V . For dn and do, the following conditions hold:

do(u, v) = do(v, u), dn(u, v) = dn(v, u)

do(u, v) ≥ dn(u, v) ≥ 0, do(u, u) = 0

do(u,w) ≤ do(u, v) + do(v, w)

Let CN be the length of a nearest neighbor TSP tour with respect to the distance function dn

and let CO be the length of an optimal TSP tour with respect to the distance function do. Then,
CN ≤ 3

2
dlog2(DNN/dNN)e · CO holds, where DNN and dNN are the lengths of the longest and

the shortest non-zero edge on the nearest neighbor tour with respect to dn.
Now we have the following theorem:
Theorem 10:

Ci
T ≤ 2

⌈
log2(D0 +

|T i|
max
j=1

τj)

⌉
(CM − 2

|T i|∑

k=1

τk)

This theorem follows from Theorems 1 and 9. Note that ci
T and cM comply with the conditions for

dn(u, v) and do(u, v), respectively. By Lemma 1, we have ci
T Sj, Sk ≤ cMTj, Tk. And the triangle

inequality holds for cM . Finally, we can bound the shortest value of ci
T by minvj ,vk∈V d(vj, vk).

The theorem follows.
Theorem 11:

ρi =
costiRelay

costiOPT

= O
(

max[log(D0 +
|T i|

max
j=1

τj),
|T i|max

|T i|
j=1 τj

H i
T

]
)

where H i
T is the total cost of the TSP path for T i with respect to metric dT (vj, vk).

Proof: From Equation 4, Theorems 6 and 8, we have:

costiRelay ≤ 12

⌈
log2(D0 +

|T i|
max
j=1

τj)

⌉
costiOPT + D +

|T i|∑
j=1

λi(j)τj.

Since costiOPT =
∑|T i|

j=1

(
dT (vφO(j−1), vφO(j)) + max{0, tOφO(j) − tφO(j) + dT (vφO(j−1), vφO(j))} +

τφO(j)

)
≤ H i

T +
∑|T i|

j=1 τj, the theorem follows.
From Theorem 11, we know that ρi is determined by the value of the maximum τj . We have

the following theorem for a possible range of the value of the maximum τj .
Theorem 12:

ρi = O(log D)

if
|T i|

max
j=1

τj = O
(

log D · min
vk,vl∈V

dT (vk, vl)
)

In other words, if the maximum local execution time of a set of transactions T i is sufficiently
small (up to the logarithmic order of the diameter of the spanning tree), the competitive ratio ρi

is O(log D).

5. Conclusions

We conclude that the Relay protocol is O(log D)-competitive for a set of transactions with
sufficiently small maximum local execution time. Hence, the Relay protocol is appropriate for
distributed systems, in which the network latency plays the major role in the total time complexity.
For the transactions with maximum local execution time, we can use Theorem 11 to analyze the
competitive ratio. When the maximum local execution time of transactions is sufficiently large,
i.e., Ω(D), the execution time will be the dominating part of the total time complexity. In this
case, the performance of a distributed TM system is not determined by the cache-coherence
protocol, but by the underlying contention manager, which determines the maximum number of
abortion times of a single transaction, just like the case for multiprocessors.

The Relay protocol works on a fixed spanning tree. Hence, finding a good spanning tree is
an important problem. The most recent breakthrough on this is due to Emek and Peleg [5], who
present an O(log n)-approximation algorithm for finding the spanning tree with the maximum
stretch in a graph. The Relay protocol is designed to support multiple objects. Since the protocol
is totally distributed (all nodes are of the same importance in the protocol), it avoids significantly
overloading some nodes in the network.

There are several directions for future work. Fault-tolerance is an important issue. Similar
to [17], a self-stabilizing algorithm can also be designed for the Relay protocol.

References

[1] Hagit Attiya, Leah Epstein, Hadas Shachnai, Tami Tamir: Transactional contention management as a non-
clairvoyant scheduling problem. In PODC ’06, 308–315

[2] R. L. Boccino, V. S. Adve, B. L. Chamberlain: Software Transactional Memory for Large Scale Clusters. In
PPoPP’08, 247–258

[3] Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Hybrid transactional memory. In
ASPLOS’06, 336–346

[4] Demmer, Michael J., Herlihy, Maurice: The Arrow Distributed Directory Protocol. In DISC ’98, 119–133

[5] Emek, Yuval, Peleg, David: Approximating Minimum Max-Stretch spanning Trees on unweighted graphs. In
SODA ’04, 261–270

[6] Rachid Guerraoui, Maurice Herlihy, Bastian Pochon: Toward a theory of transactional contention managers. In
PODC ’05, 258–264

[7] Lance Hammond, Vicky Wong, Mike Chen, Ben Hertzberg, Brian D. Carlstrom, John D. Davis, Manohar K.
Prabhu, Honggo Wijaya, Christos Kozyrakis, Kunle Olukotun: Transactional Memory Coherence and Consistency.
In ISCA’04, 102–113

[8] Maurice Herlihy, Victor Luchangco, Mark Moir: Obstruction-free Synchronization: Double-ended Queues as an
Example. In ICDCS’03, 522–529

[9] Herlihy, Maurice, Luchangco, Victor, Moir, Mark: A flexible framework for implementing software transactional
memory. In OOPSLA ’06, 253–262

[10] Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer, III: Software transactional memory for
dynamic-sized data structures. In PODC ’03, 92–101

[11] Maurice Herlihy, Ye Sun: Distributed Transactional Memory for Metric-space Networks. Distributed Comput-
ing, 20(3): 195–208 (2007)

[12] Kuhn, Fabian, Wattenhofer, Roger: Dynamic analysis of the arrow distributed protocol. In SPAA ’04, 294–301

[13] K. Manassiev, M. Mihailescu, C. Amza: Exploiting Distributed Version Concurrency in a Transactional Memory
Cluster. In PPoPP’06, 198–208

[14] Raymond, Kerry: A tree-based algorithm for distributed mutual exclusion. ACM Trans. Comput. Syst., 7(1):
61–77 (1989)

[15] N. Shavit, D. Touitou: Software Transactional Memory. In PODC ’95, 204–213

[16] William N. Scherer, III, Michael L. Scott: Advanced contention management for dynamic software transactional
memory. In PODC ’05, 240–248 (2005)

[17] Srikanta Tirthapura, Maurice Herlihy: Self-Stabilizing Distributed Queuing. IEEE Transactions on Parallel and
Distributed Systems, 17(7): 646–655 (2006)

[18] Bo Zhang, Binoy Ravindran: Relay: A Cache-Coherence Protocol for Distributed Transactional Memory. In
OPODIS’09, To Appear.

