On Closed Nesting and Checkpointing in Fault-Tolerant Distibuted
Transactional Memory

Aditya Dhoke Binoy Ravindran Bo Zhang
ECE Dept. ECE Dept. ECE Dept.
Virginia Tech. Virginia Tech. Virginia Tech.

Email: adityad@vt.edu

Abstract—We consider the closed nesting and check-
pointing model for transactions in fault-tolerant dis-
tributed transactional memory (DTM). The closed nested
model allows inner-nested transactions to be aborted (in
the event of a transactional conflict) without aborting the
parent transaction, while checkpointing allows transac-
tions to rollback to a previous execution state, potentiaif
improving concurrency over flat nesting. We consider a
quorum-based replicated model for fault-tolerant DTM,
and present algorithms to support closed nesting and
checkpointing. The algorithms use incremental validation
to avoid communication overhead on commit, and ensure
1-copy equivalence. Our experimental studies using a
Java DTM implementation of the algorithms on micro
and macro benchmarks reveal the conditions when they
improve transactional throughput over flat nesting, and
also their relative advantages and disadvantages.

Keywords-software transactional memory; distributed
systems; replication; closed nesting ; checkpointing;

I. INTRODUCTION

Email: binoy@vt.edu

Email: alexzbzb@vt.edu

pecially for read-dominated workloads, and is compos-
able [3]. TM for multiprocessors was first proposed in
hardware (called HTM), later in software (called STM),
and subsequently in combination (called HyTM).
Distributed TM (or DTM) [4]-[6] is an alternative
to lock-based distributed concurrency control, and can
be supported in any distributed execution model, in-
cluding a) control flow [7], where objects are immo-
bile and transactions invoke object operations through
RMIs/RPCs; b) dataflow [8], where transactions are
immobile, and objects are migrated to invoking transac-
tions; and c) a hybrid model [9] where transactions or
objects are migrated, based on access profiles, object
size, or locality. DTM can also be classified based
on the system architecture: cache-coherent DTM (cc
DTM) [10]-[12], in which a set of nodes communi-
cate by message-passing links over a communication
network, and a cluster model (cluster DTM) [13]-
[15], in which a group of linked computers works

Lock-based synchronization suffers from programma-<losely together to form a single computer. The most

bility, scalability, and composability challenges [1]. important difference between the two is communica-
These difficulties are exacerbated in distributed systemsion cost. cc DTM assumes metric-spacenetwork
due to the challenges of multi-computer concurrencyi.e., the communication cost between nodes form a
e.g., distributed race conditions; distributed versiohs ometric), whereas cluster DTM differentiates between
deadlocks, livelocks, lock convoying, priority inversion local cluster memory and remote memory at other
distributed composability. clusters. cc DTM uses a cache-coherence protocol (e.g.,
Transactional memory (TM) [2] is an alternative syn- Ballistic [10], Relay [11]) to locate and move objects
chronization abstraction that promises to alleviate thesén the network, satisfying object consistency properties.
difficulties. With TM, code that read/write shared mem- Similar to multiprocessor TM, DTM provides a simple
ory objects is organized asemory transactionsvhich distributed programming model (e.g., locks are entirely
speculatively execute, while logging changes made tgrecluded in the interface), and performance compara-
objects. Transactions are monitored for read/write andle or superior to distributed lock-based concurrency
write/write conflicts, usually by keeping track of their control [12]-[15].
read-sets and write-sets. When two transactions conflict, With a single object copy, node/link failures cannot
one of them is aborted, and the other is committedpe tolerated. If a node fails, the objects held by the
yielding (the illusion of) atomicity. Aborted transact®n failed node will be simply lost and all following trans-
are re-started, after rolling-back the changes. Besides actions requesting such objects would never commit.
simple programming model, TM provides performanceAdditionally, read concurrency cannot be effectively
comparable to lock-based/lock-free synchronization, esexploited. Thus, an array of DTM works ([5], [6],

[9], [13], [16], [17]) — all of which are cluster DTM Flat nested transactions, typically, gain access to
— consider object replication. These works provideobjects through read and write requests, perform com-
fault-tolerance properties by inheriting fault-toleranc putations on them, and finally attempt to commit the
protocols from database replication schemes, whichmodifications via a commit request. If the commit
rely on broadcast primitives (e.g., atomic broadcastrequest does not succeed, the work done so far is rolled
uniform reliable broadcast) [5], [6], [9], [13], [15], [16] back and retried. This optimistic approach ensures that
Broadcasting transactional read/write sets or memoryhe transaction accesses the latest copy of objects the
differences in metric-space networks is inherently non-next time. However, this can be conservative in many
scalable, as messages transmitted grow quadraticallyases, and we could end up doing redundant work.
with the number of nodes. Thus, directly applying

.. . T flat
cluster DTM replication solutions to cc DTM may not 7" _" et Remot e(m_

j);
yield similar performance. M2 = get Renpte(n2_Qbj);
nB3 get Renot e(nB_hj) ;
A. Nesting and Checkpointing : Mechanisms for partial
abort intm= add(ntl, nR2);
result = add(intmnB);
Nesting: A transaction is callethestedvhen itis en- if commit()

closed within another transaction. Three types of nestin return resul t;
models have been previously studied [18]: flat, close(%
and open. They differ based on whether the parent and
children transactions can independently abort: Figure 1: An Example Flat Nested Transaction.
Flat nesting. This is the simplest type of nesting,
where the existence of transactions in inner code is Nesting and checkpointing provide mechanisms to
simply ignored. All operations are executed in the partially abort or rollback a transaction. We show the
context of the outermost enclosing transaction. Abortingoenefit of partial abort by illustrating an example of
the inner transaction causes the parent to abort as wetllosed nesting. Figure 1 shows the code snippet for a
(i.e., partial rollback is not possible). transaction, which takes three matrices;, ms, and
Closed nestingHere, each transaction attempts to mg3, as arguments and returns their sum on successful
commit individually, but the commit of inner transac- commit. The transaction adds two matrices at a time.
tions is not visible outside the enclosing transaction. In-First, the result of the addition of the matrices and
ner transactions can abort independently of their parentu, is stored in an intermediate matrix. Next, the matrix
(i.e., partial rollback). mg is added to the intermediate matrix to obtain the final
Open nesting.Here, the commit of inner nested result, after whichl'y;,; attempts to commit.
transactions are visible to the entire system, though the Assume that by thel;,,, attempts to commit its
parent transaction has not yet committed. In case othanges, a conflicting transaction, sBy has success-
abort of a parent transaction, the changes committed bfully made write modification tons. This will cause
inner nested transactions need to be compensated. Ty, to abort, and start again from the beginning (line
Checkpointing modelTransactions in checkpointing corresponding to label Tlat in Figure 1). In the next
model create checkpoints by saving their executiorattemptZy;,; again readsn; andms, though they were
state. Checkpoints provide a way to resume from a conunchanged, and thus incurring additional remote calls.
sistent transaction state. In case of conflict, transaction Figure 2 shows closed nested transactifif,s.q, €n-
can partially rollback to a checkpoint to resolve conflict closed inside parent transactidf,qren:. Here, Tporent
and resume execution. Checkpointing can be thought ciddsm; and ms, while Ty;,s.q adds the intermediate
as generalization of closed nesting, where transactiomatrix andms. Similar to previous example, assume
can rollback to any of the checkpoints, whereas, inthat by theT,;,,.q attempts to commit, a conflicting
closed nesting, it is limited one of the enclosing trans-transaction,T., has made changes ia3. As a result,
actions. Let us look at an example of transaction usinghe commit attempt of .;,s.q fails, and it restarts from
checkpointing. A transaction has successfully added atine corresponding to label_Elosed in Figure 2. In the
elementA to a hashmap, created checkpo@ttk and subsequent attempf,.;,scq Will only read ms. After
is attempting to delete elemeBt However, a conflict commit of T,ipsed, Tparent Will attempt to commit
is encountered while deletir Instead of aborting the changes to shared memory.
transaction, we can partially rollback ©hk and retry In the closed nesting scenario, we did not repeat the
deletingB. first add operation omn; andms, thus avoiding extra

retry T_flat;

T_parent
mL = get Renot e(mL_Cbj

)
nm2 = get Remote(n2_0Ohj);

intm= add(nt, nR);

T_cl osed

m = get Remote(nB_0Obj) ;

result = add(intmnB);
if comit()

return result;
el se

retry T_cl osed;

if comit()

return result;
el se

retry T_parent;

in quorum-based replicated DTM, we develop a pro-
tocol for incremental validation calledRead Quorum
Validation or Rqv (Section IlI-B). We show that Rqv
ensures 1-copy equivalence (Section V).

We construct a Java implementation of quorum-
based replicated DTM, called QR-DTM, and implement
our proposed protocols in QR-DTM. We conduct ex-
perimental studies using macro-benchmarks including
distributed versions of applications from the STAMP
benchmark suite and micro-benchmarks including dis-
tributed data structures (Section VI). Our studies reveal
that closed nesting improves throughput by as much as

101% over flat nesting in specific cases, with an average
Figure 2: An Example Closed Nested Transaction. improvement of 53% across all benchmarks. To the best

of our knowledge, ours is the first work on supporting

closed nesting and checkpointing in fault-tolerant DTM

computation and remote calls. In the DTM context, (Section VII), and constitutes the paper’s contribution.
partial abort of transactions can therefore potentially
save computation time and communication messages for Il. QUORUM-BASED REPLICATION

requesting remote object copies. In the replicated DTM Zhang and Ravindran's quorum-based replication

context, the commit request can incur remote messagq;rotocol [19] (QR for ShOI’t) provides concurrency con-

equal to the number of nodes in the system. Thereforg, | ¢, objects via STM and fault-tolerance by main-

I bec_:o_m(_as_ important to reduce commit requests (ef'g“faining copies of an object at multiple nodes. Each node
by minimizing the abort rate) to reduce network traffic. is designated a read quorum and a write quorum, where
a quorum is a set of nodes having specific properties. A
read quorum services read and write requests of objects,
In the example in Figure 2, we considered a simplewhile a write quorum is used to commit changes to
scenario where we knew beforehand that the conflictingbjects. A transaction executing on a node uses the read
transaction had modified the matrixs. However, in and write quorum designated to that node. (From here
general, we need to answer the following questions: on, when we say a node’s or transaction’s guorum we
(1) What application/workload will benefit from par- will refer to these designated quorums).
tial abort, as compared to flat nesting? The QR protocol ensures 1-copy equivalence [20],
(2) What is the potential performance improvementmeaning that when a transaction reads an object, it
or degradation due to partial abort? will use the latest copy of the object. This property is
(3) Which parameters of a transaction will affect the maintained by the system, because any write quorum
partial abort performance? and read quorum always intersect [21]. Thus, the latest
We answer these questions by developing supporthanges committed to a write quorum will be visible
for closed nesting and checkpointing in replicated ccto at least one node in the read quorum. Therefore,
DTM. We consider Zhang and Ravindran’s quorum-any read quorum can provide the latest version of the
based replication model [19] (Section Il). In this model, object. (Note that the rest of the nodes in a read quorum
a quorum systenis used to manage transactional metamay have stale versions of an object.) Thus, the QR
data (i.e., read-set, write-set). Transactions commtmica protocol ensures a consistent view of the most recently
with a read quorumfor obtaining the latest copy of committed changes.
an object for reading and writing, and communicate A transaction uses its read quorum and write quorum
with a write quorum for committing their changes. for reading from, or writing to objects and for propa-
The intersection property of read and write quorumsgating updates, respectively. For reading or acquiring a
is used for concurrency control: they ensure consistenivritable copy of an object, a transaction sends a request
state of the replicas and thus, 1-copy equivalence. W¢o its read quorum. The transaction selects the object
support closed nesting and checkpointing by developingopy with the latest version from all the copies received
protocols calledQR-CN (Section Ill) and ,QR-CHK from the read quorum. This object copy is the most
(Section 1V), respectively. To reduce commit overheadrecent one in the system, at that point of time.

B. Contributions

A. System Model

We consider a distributed system which consists of
a set of nodes that communicate with each other by
message-passing links. We consider a setisifibuted
transactionsT := {T1,T>, ...} sharing a set of objects
O := {01, 09, ...} distributed on the network. A trans-
action contains a sequence of requests, each of which
is a read or a write operation request for an individual
object, followed by a commit operation. We define
the transactions under closed nesting and checkpointing
below.

Closed Nesting ModelFollowing are the different
kinds of transactions in the system [18].

« Root transaction. This transaction has a behavior
similar to that of a flat nested transaction. The
commit of a root transaction is globally visible
— i.e., any transaction accessing objects after root
transaction’s commit will be able to view the
changes. The abort of a root transaction will retry
the transaction from beginning.

Closed Nested Transaction.A closed nested
transaction (CT) executes on behalf of the parent
transaction. Commit of a closed nested transaction
is not globally visible. Successful commit of CT
moves the execution back to the parent, while an
abort either retries the CT or its parent transaction.
Parent transaction. A transaction is a parent
o]) transaction when it encloses atleast one CT. Upon

Quorums maintairpotential readers list(PR) and successful commit of the CT, the parent transaction
potential writers list(PW) for every object. Whenever continues its execution.

a read or a write request is processed for an object, checkpointing Model:This model requires transac-
the requesting transaction is added to the PW or PRygns 1o support checkpoint creation and rollback.

accordingly. These lists are used by contention man- Checkpointing transaction. A checkpointing
agers to decide which transaction needs to be aborted (.55 ction (CPT) creates checkpoints based on

or committed. specific criterion. Note, this criterion is predefined
in the system, as opposed to programmer created
manual checkpoints [22]. Commit of CPT is glob-
ally visible.

Figure 3: Ternary tree with 13 nodes.

For committing writes, a transaction uses a two-
phase commit protocol to obtain consensus for commit
from its write quorum. Initially, the transaction sends a
commit request message to its write quorum. On every
node of the write quorum, a decision for commit or
abort is made based on the state of objects. If the node
decides to commit the requesting transaction, it will lock
the objects in write-set for the transaction by setting the *
object field protected to true. If the node decides to
abort, the object state remains unchanged. The decision
is then sent back as reply to the requesting transaction.
The transaction collects all the replies and commits only
when it receives @ommitmessage from all the nodes;
otherwise, the transaction is aborted. *

The nodes in QR form a logical ternary tree. Agrawal
et. al [21] have defined the precedure for creating read
and write quorum. A read quorum can be viewed as
majority of children at a level, while write quorum can

be viewed as majority of children at every level. Il QR-CN PrOTOCOL

Figure 3 illustrates the process. The figureA QR-CN: Overview
shows a tree with 13 nodes with read quorum A closed nested transaction obtains object copies
as Rl = {n1,ne} and write quorum as from itsread quorum. For the commit of a CT, it needs

W2 = {no, N9, N3, Ng, N9, N11, nlg}. A transactiorﬂ“w

to validate objects in its read-set and write-set, and

writes to an objecto; and commits the changes at then merge these objects to the respective sets of the

time ¢t using W2. All the nodes ofl¥’2 have the latest
version ofo;. Now, another transactiofi,. readso; by

requesting toR1 after timet. Since the intersection of

R1 and W1 is na, ny has the latest version af;. T,
collects copies of objects from; andn,, and chooses
the one sent by:s.

parent. In QR [19], validation is performed by sending
a request to a write quorum. However, such a validation
would increase message overhead for closed nested
transactions, when compared to flat nested transactions.
We add an incremental validation mechanism to the
read operation. This mechanism validates a transaction’s

read-set and write-set objects on every read operation. Consider again the example in Figure 3, with a read
This means that, when a read request is completedjuorumR; and a write quorun¥s intersecting ats.
the transaction’s read-set is valid at that point of time.A transactioril} has read object® = {01, 02, 03} from
Further, when a transaction completes reading all théts read quorunz;. At this point, a conflicting transac-
objects, its read-set and write-set objects are valid. As éion T, commits via write quoruni¥, and increments
result, a CT does not need to send a validation requedghe version of objecbs. Next, T} requests objecb,
to its write quorum and can commit without incurring from R;. n; will successfully validateT’’s read-set
any remote communications. For commit of CT, it only ({01, 02, 03}). However,n, will find that the version
has to merge its read-set and write-set with its parentof o, has increased. Therefore, validation will fail and
Similarly, a read-only operation can commit without ny will send an abort message 13.
sending a commit request.

In the subsequent sections, we describe QR-CN pro-Algorithm 1: QR-CN: Read Quorum Validation for
tocol to support closed nested transactions. We describeransaction.
the read/write operation at local and remote nodes in
Section IlI-B, andcommitC'T, commit operation for
CT, in Section 3. The operations fesmmit — request,
commit, and abort are same as in QR, which we
summarized in Section II.

procedure VALIDATION (T)
Remote:
dataSet = getDataSet(T);
abortTxn = null;
foreach o in dataSet do
protected = getObj(o.id).is Protected,
ownerTzn = getObj(o.id).ownerTzn;

B. Read/Write Operation if o.version < getObj(o.id).version ||
protected then

Read quorum validation (Rqv). Rgv is an incre- 8 removeownerTan from PW,PR;
tal lidati hani to detect | bort of 9 if isParent(ownerTzn, abortClosed) then
mental validation mechanism to detect early abort of g, abortClosed = ownerTen:
transaction. It helps CT and read-only transactions ta: return abortClosed;

commit locally.

Recall the following two properties of QR: Algorithm 1 shows the read quorum validation pro-

1) Every node in QR has copies of all the objects. cedure for a transactiofi. getDataSet traverses the

2) In QR, any read and write quorum intersect. Thereparents off” and stores the objects read so far by them in

fore, a read quorum can provide the latest versiony,;q5et. Each of the object copies have amnerTzn,
of every object. which refers to the transaction that reads the object.

From these properties, we can infer that a read quorungach objecto is checked for its validity (line 7). If
is aware of the latest version of all the objects in thethe object is not valid, themwnerTzn is removed
system. It follows that validation can be performed onfrom PR and PW lists (line 8). Then, we check
a read quorum for any set of objects. This observationyhetherownerTzn is higher in transaction heirarchy
is the basis of Rqv. than abortClosed (line 9). If it is, then ownerTaxn

A read/write operation proceeds as follows. A trans-becomes the new value abortClosed; else it remains
action sends a read request for an object to its rea@inchanged. At the end of iteratiomhortClosed is the
quorum. A node in the read quorum first validatestransaction highest in the hierarchy whose object is
objects that are currently in the transaction’s read-sefnvalid and which needs to be aborted. However, if the
and write-set. In the validation procedure, the versionssalue of abortClosed is null, it means that validation
of read-set and write-set objects are checked again$t successful.
the versions of objects present at that node. Validation Algorithm 2 shows the read operation procedure,
is successful if the transaction’s objects have versionsvhich uses the validation procedure in Algorithm 1.
equal to the object versions on that node; else it fails. On A read request of a CT first recursively checks for
successful validation, the node proceeds to retrieve théhe object in the read-set and write-set of the parents
copy of the requested object. However, if the validation(line 2). If the object is found, the request is completed
fails for any of the objects, an abort message is senlocally without incurring any remote call. If the object
back to the transaction. does not exist locally, a request for that object is

For a flat nested transaction, an abort message impliesent to its read quorum. The remote node records the
abort of that transaction. For a CT, an abort messageelationship between CT and the parent transaction, and
could mean abort of the CT or any of its parents. Thisperforms validation for the transaction. If the validation
is decided by the objects on which validation fails. succeeds (i.e., if the return value 4s:ll), the node

NOoO g~ WNBRE

Algorithm 2: QR-CN: Read for CT. read and write operations similar to those defined in
QR-CN, while the request-commit and commit oper-
ation are exactly the same as flat nested transaction.

procedure READ (T, objId)

1 Local: . . .

2 o = checkParent(objId); Transaction creates checkpoints whe_never a pre—def_lned
3 if o == null then ‘ criterion is satisfied. These checkpoints are the points
4 objSet, abortClosed = READQUORUM (T’ objId)); to which transaction can be rolled back to whenever
5 if abortClosed = null then . L L

6 abort(abortClosed): a transacuoryal conflict is dete_cted. Wh.en a confhpt is
7 return; detected during request commit, the entire transaction is
8 o = latestVersion(objSet);

aborted and retried. In case of a conflict detected during

9 addo to T.readset;
read/write of a remote object, the transaction is partially

10 Remote:

11 setChild(parent(T), T); aborted by rolling back to an appropriate checkpoint.

12 abortClosed = validate(T); In DTM context, a checkpoint is defined as the state
3 if ab;’;‘zgoif p (’,}“Z bt(';‘retf:‘rm)_ of the transaction at a specific point in time. The state
15 return: ’ consists of transaction’s read-set, write-set and program
16 o = getObj(objld); state. A checkpoint is created whenever the number of
g if Ta'ds d?otf)t?aig(o)- objects in transactions’s read-set and write-set crosses
19 respond(T,0); a threshold. Every checkpoint has a checkpoint 1D

representing the time at which it was created.

] B. QR-CHK: Read/Write Operation
sends back the copy of the object. The remote node

adds the objects to the PR/IPW list only when it is a, '€ read/write operation performs validation of ob-
root transaction. It is necessary that we do not creatéeCts Which can result in partial abort of transaction,
any metadata for CT on the remote node. This ensuredescribed in Algorithm 4. This process is similar to the
that the commit of CT happens locally. read quorum validation and read operation described in
The write procedure is the similar to the read proce-lg0rithm 1 and Algorithm 2, respectively. We record
dure, except thaf.readset is replaced with.writeset e latest checkpoint IDofvnerChkpnt) in the object
in line 9 andPR is replaced withPW in line 18. copy whenever it is requested from remote node, similar
The local node, on receiving objects from read quo-© ownerTzn in RQv. The objects in r_ead-_set and write-
rum, selects the object with the highest version numberS€t are scanned to find out the invalid objects and
If an abort message is received, either the CT or itdhe least of theownerChkpnt among them, which

parent transaction aborts, depending on the value df assigned tawbortChk (line 7-10 in Algorithm 4).
abortClosed. The read-set and write-set correspondingubortChk

will have valid objects, similar tabortClosed in Rqv.
C. QR-CN : Commit operation. An abort message is sent back to the transaction along
Algorithm 3 shows the procedure for commit of a with abortChk. The requesting transaction on receving
CT. The local node merges the read-set and write-set afbortChk retrieves the corresponding checkpoint and
a CT with that of its parent. resumes execution from the execution state associated
with abortChk.

Algorithm 3: QR-CN: Commit of CT.

V. ANALYSIS
L p[g‘égﬁ“re CommiT CT (T) Theorem V.1. Rqv preserves-copy equivalence for all
2 parent = T.parent,; objects.
3 foreach o + T.readSet do . . .
4 addo to parent.readset; Proof. Let 73 be a transaction in either closed
5 foreach o +— T.writeSet do nesting (parent and child transaction) or checkpointing
6 add o to parent.writeSet;

model.T; reads an object at timet;. At a later time
t2, T1 sends a request for object. Let O be the set
of objects in the read-set and write-set of transaction
V. QR'CHK PROTOCOL T, at t,. Let T, be any transaction that has started
A. QR-CHK: Overview propagating changes to the objecat timet; such that
A CPT has the ability to rollback to previous ex- it conflicts with 77. Note that7, can be a root, parent,
ection state in case of transactional conflict. It hasor a child transaction. We will now analyze all possible

Algorithm 4: QR-CN: Read Quorum Validation for
checkpointing.

procedure VALIDATION CHK (T)
1 Remote:
2 dataSet = getDataSet(T);
3 abortClosed = null,
foreach o in dataSet do
protected = getObj(o.id).is Protected,
ownerChk = getObj(o.id).ownerChk;
if o.version < getObj(o.id).version ||
protected then
removeownerChk from PW ,PR;
9 if ownerChk < abortChk then
10 abortChk = ownerChk;
11 returnabortChk;

N

5
6
7

8

cases based on the relationship betweert,, andts,
and show thafl; does not violatel-copy equivalence
for o.

T. has committed changes édbeforet; . In this case,
T, uses the latest version of This is because of the
following property:

Let data(o,v) be the object copy ok on node
v. There exists a write quoruny, such that
{Vv € qu} N{W &€ qu}, data(o,v).version >
data(o,v").version. If any transactioril’ accesses at
time t, it collects a set of copies from a read quorum
qr. We know that3v € {q,, N ¢, } such thatdata(o, v)
is collected byT'. Note that read and write operations

select the object copy with the highest version number.

Hence, for any transactiofl, data(o,v) is selected as
the latest copy.

Since T, has committed changes om before ¢,
T: uses the latest version of and does not find any
conflict. The read request faf succeeds.

T. is attempting to commit changes aftér and
before t,. In this state,7,. has received the commit
decision from its write quorum. Thus, any nodeTigs

quorum validation for7; succeeded as there was no
conflict. Next, T} has completed reading all the remote
objects and its next request will be commit request.
Furthermore[,. has received the commit decision from
its write quorum, and any node in the write quorum
will either have applied the changes @f on o or
would have seb.protected = true. Let ¢, and ¢,

be the write quorums of; andT,, respectively. Then
Jv € {q,Ndq,} such that the changes committed By
are applied orv or haso.protected = true. When the
request commit foff; is sent to its write quorum, such
a nodev will send an abort message 4. Note that,
this case is exactly the same as in QR [19].

T, reads from its data-set or parent data-skto has
been read before by, or any of the parent transaction,
thenT; will read the local copy of the object. In this
case, the read quorum validation will not be performed.
Instead, the object validation is performed wheneler
sends the next remote read request. If this was the last
remote request, then validation is performed as part of
request commit.

From all these cases, we see that transactions observ-
ing an inconsistent state of an object will never commit.
Theorem follows.]

From the above proof, we can easily prove that QR-
CN and QR-CHK also preserve 1-copy equivalence. For
a transaction in QR-CN and QR-CHK, the read/write
cost is equal to transaction node’s distance from read
quorum (distance from farthest node in read quorum),
while request commit and commit confirm cost is equal
to its distance from write quorum. We show that QR-
CN and QR-CHK guarantee opacity. More details can
be seen in [23].

VI. IMPLEMENTATION AND EXPERIMENTAL

EVALUATION

A. Implementation

write quorum will either have applied the changes of We implemented QR-DTM, a Java based DTM. QR-

T. on o or would have seb.protected = true. While

T, is in this state, 77 sends a read request fof to

its read quorum. Ley, and ¢, be the read quorum
and write quorum of7; and T., respectively. Then
Jv € {q, N q,} such that the changes committed by
T, are applied orv or o.protected = true. Therefore,
the read request df; will be denied by such a node

DTM uses the QR protocol [19] as the basic algorithm
for providing replication and cache coherency.

Figure 4 shows the architecture diagram for QR-
DTM. It shows interaction ofTransaction Manager
Cluster Managerthe nodes and their quorums in QR-
DTM. A Transaction Manager performs two tasks i)
It provides an interface for remote requests through

v, and theabort message will be sent back. For closed TM Proxy. ii) Context Delegatgr a sub-module in

nesting, the transactionbortClosed will be aborted.
For checkpointing, the transaction will be rolled back
upto abortChk.

T. is attempting to commit changes after and
before the request commit df;. At t5, the read

Transaction Manager, maintains the metadata regarding

PR and PW lists of objects, relation between parent,
child and root transactions.
The TM Proxy forwards the message request to Clus-

ter Manager. The designated quorums for a node are

Read Quorum |

Writeouomm| Node Hashmap, Red Black Tree (RBTree), Skiplist (SList),
1 t) and macro-benchmarks including Bank (monetary) ap-
plication (similar to the one in [4]) and STAMP bench-
mark [25] Vacation. In Section VI-D, we compare
existing DTM implementations with QR-DTM for Bank
benchmark. In Section VI-D, we show graceful degar-
i dation in failure scenario for three benchmarks.

4 4
Transaction Manager

1Groups C. Comparison between flat and closed nesting, and

s checkpoint

We compared closed nesting (QR-CN) and check-
pointing (QR-CHK) with flat nesting (QR) under Bank,
Figure 4: QR-DTM’s architecture. Hashmap, RBTree, SList and Vacation. Every root
transaction consists of one or more CTs, where each
CT is an operation on data structure. For example in

tracked by the Cluster Manager. The message received@shmap, operation for adding or removing an element
by Cluster Manager is multicast to the read quorumis & CT, and multiple such CTs are enclosed inside a
or write quorum depending on the type of the messagel00t transaction. For vacation, each of the reservations
JGroups API handles the group communication betweeffor car, hotel and flight forms a CT.
the nodes and their quorums. JGroups sends multicast In these experiments, we measured the throughput
and unicast messages in a reliable manner. (transactions committed per second) by varying the fol-
QR-DTM uses Java Exceptions for partial rollback lowing parameters: 1) read workload i.e. the percentage
in closed nesting_ On abort of a transaction, an ex_of read Operations 2) the number of nested Ca”S, which
ception encapsulating the transactiobortClosed is affects the number of objects read within a transaction,
thrown. Transaction catching this exception compareghereby controlling its length, 3) the number of objects,
abortClosed with its ID. If it does not match, it Which could increase or decrease contention depending
throws another exception which is caught by its parenton the application.
This process continues until transaction Id matches Figures 5a, 5b, 5¢, 5d and 5e show the variation
abortClosed. At this point, the transaction discards the With read workload for five benchmarks, varied from
previous read and write sets, and starts afresh. 0 to 100 %. Figures 6a, 6b, 6¢c, 6d and 6e show
QR-DTM uses Java Continuations for partial rollback the variation with number of calls, varied from 1 to 5.
in checkpointing. Continuations provide a mechanismFigures 7a, 7b, 7c, 7d and 7e show the variation with
to save the current execution state, and resume frofiumber of objects. Contention increases for SList and
this saved state at a later time. During checkpointiashmap benchmarks with increase in objects, while
creation, Continuation objects are saved along with 0r remaining benchmarks contention reduces.
copy of transaction information. For restoring from In all these runs, we observed that closed nesting
a given checkpoint ID, the execution resumes fromoutperforms flat nesting and checkpointing, and that
the state saved in corresponding Continuation objecéheckpointing suffers from performance degradation
using transaction copy. Java Continuations require #Ver flat nesting. The best speedup obtained by closed
customized JVM available at [24]. nesting over flat nesting is for SList (101%) and the
least speedup is for Bank (9%). We observed that
checkpointing has 16% degradation over flat nesting
We conducted the experiments using a 40-nodecross all benchmarks.
testbed. Each node is an AMD Opteron processor For read workload variation, we observed that the
clocked at 1.9GHz and running the Ubuntu Linux 10.04throughput improvement of closed nesting over flat nest-
server operating system. Each node was assigned thieg and checkpointing is greater for higher percentage
same read and write quorums. The average round-tripf writes, while the gap reduces as the read workload
network latency for a remote request was observed tancreases. Similarly, for transaction length variation,
be ~30 milliseconds. throughput improvement for closed nesting increases as
In section VI-C, we compare flat nesting (i.e. the length increases. For object variation, with increase
QR), closed nesting (i.e. QR-CN) and checkpointingin contention for benchmarks, we observed closed nest-
(i.,e. QR-CHK) for three micro-benchmarks including ing performing better than other two models.

Failure
Detection

| Reliability |

B. Experimental Settings

70, ~ 120, T T T T 16, T 60, T T T T 90, T T T T
lt — Flat —— Flat—— Fat—+ Flat —
Closed 6 110 Closed -6 § Closed -6 Closed ~6-7 Closed -6
60 Checkpoingag - Checkpoitng - 5 14 Checkpoining -7 Checkpaining -7 80, Checkpontng -5/
P 100 50 / /
1 10
o 10 040 460 9
Q, 1) 9] 9]
4 4 1 o
7 iy 13 I5)
§ g g g J
= F F Fg
2 s
4 e 7
P 1y 2 ¥
% @ & &% 1w U W w w w % w a4 e @ o w b w h w ® w % a4 g % m
Read % Read % Read % Read % Read %
(a) Bank. (b) Hashmap. (c) Skiplist. (d) RBTree (e) Vacation.
Figure 5: Flat nesting, closed nesting and checkpointimglftberent read workload.
% ' ' " R+ L ' ' " R l" A " @ ' ' " R+ 31 ' ' " R+
Closed -~ Closed -0~ T Closed -~ Closed -~ . Closed -0~
4 Checkpoiing - 3 Checkpoiing - 1 . Checkportng -7 35(Checkpoiing - 3 re\‘ Checkpoiing -

Trans/sec
—
P S T~ —

=

51 T3 51 T 5 1 73
Trans. Length Trans. Length Trans. Length Trans. Length Trans. Length

(a) Bank. (b) Hashmap. (c) Skiplist. (d) RBTree (e) Vacation.

Figure 6: Flat nesting, closed nesting and checkpointimglffferent transaction length.

< ' ' o % Fal 3;_ Fal ' ' S ™ ' ' " R+
-8 A Closed -0 19 Closed -~ % Closed -~ 4 Closed -
. Checkpaining -~ 2. Sgneckpmmmg 7 Checkpaintng 7 Checkpaintng 7 Chedipantng 7
Ry ” £ ’/‘ﬁ-—r ety
2, %
5] 5] 5]
A ¥ o L L
i ‘
£ ‘ £
16 14
U v \\7___/
- i % : A
1 L L 1‘7 10 L 1] 24 L L L
0 60 80 100 500 1000 1500 2000 0] 60 80 100
Objects Objects Objects Objects Objects
(a) Bank. (b) Hashmap. (c) Skiplist. (d) RBTree (e) Vacation.

Figure 7: Flat nesting, closed nesting and checkpointimglfiferent number of objects.

We also measured the transaction abort rates (i.ereason for overall drop in througput for QR-CHK is the
root and child transaction aborts) and the number ofine granularity of checkpoints which results in large
messages exchanged (i.e., read and commit requests) foumber of unnecessary partial aborts as can be seen in
all benchmarks. Table 8 shows the percentage change table 8. There is almost a direct correlation between
abort rate and messages exchanged with closed nestitige decrease in the number of messages and the total
and checkpointing compared to flat nesting. For QR-number of aborts and the throughput improvement. The
CN, there was decrease in the abort rate and messadgast reduction in abort rate is observed for Bank and
(denoted by negative values), while for QR-CHK it highest reduction is for SList.
has increased. The independent evaluation to find the From the results so far, we also observe that the
overhead for checkpoint creation shows that it hasmprovement obtained by closed nesting increases with
only 6 % overhead compared to flat nesting. Thus, théncrease in contention. We also note that the length of

Bench. | QR-CN | OR- QR-CN OR- % oL

Decent STM

Abort CHK Msg. % | CHK 9 e
% Abort Msg. %
%
Bank -18 14 -22 15
Hashmayp -45 19 -51 22
SList -56 23 -52 26 05015 J9 25 0 3 4o
Sch-Zt?(?n 'gé E’ 'jj 13 (a) Bank : 10 % Read, 90 % Write.
- - 30! QR-DTM ——

HyFlow ~€--
Decent STM %

Figure 8: Abort rate and message % for QR-CN and
QR-CHK compared to flat nesting

transactions has a significant effect in determining the
throughput gain for closed nesting. The SList bench-
mark, which have large lengths, have high throughput (b) Bank : 90 % Read, 10 % Write.

gain (as high as 122 %). In contrast, the average gain.]
for rest of the benchmarks with shorter lengths is 40%.rlllgure 9: Throughput of QR'D.TM’ HyFlow, and
Decent-STM for the bank application

5 10 15 20 25 30 35 40
Nodes

D. Comparison with DTM implementations

35

We compared QR-DTM with other DTM implemen- iRy
tations including HyFlow [4] and Decent STM [6]. De- m
cent STM uses a fully decentralized snapshot algorithm
that relies on multiversion concurrency control; using
a history of object states, conflicting transactions are
allowed to proceed as long as they can see a consistent o
snapshot of memory. Thus, Decent STM is a fair com- w T e
petitor to QR-DTM. On the other hand, HyFlow uses (R —

an algorithm called Transaction Forwarding Algorithm % Faires

(TFA), which is based on the gingle_ object copy model Figure 10: Throughput under increasing node failures.
and therefore cannot cope with failures. TFA ensures
transactional properties using an asynchronous clock-

based validation technique. We still include HyFlow in 4e failures. Figure 10 shows the throughput for the
our comparison because, for the no-failure case, TFA isf-lashmap Binary Search Tree (BST) and Vacation
shown to outperform Decent-STM in [26], and thereforepechmark under increasing number of node failures.
serves as a good baseline for us. We consider a system with 28 nodes, where initially, a
~ Figure 9 shows the comparison of the three DTMeaq quorum, consisting of a single node, is assigned
implementations under high and low contention for they 3| the nodes. With each failed node, the size of the
Bank benchmark. We observe that QR-DTM consis-read quorum increases by one. The number of failed
tently outperforms Decent STM. HyFlow performs the gges {) ranges froml to 8. Initially, we observe that
best. o ’ the throughput increases for certain number of failure.
~ These results indicate that Decent-STM's snapshothis is because, the workload is balanced across the
isolation algorithm has higher overhead than QR-DTM. ggq quorum nodes. However, fargreater than 4, we
The reason for the lower performance of QR-DTM gpserve that the throughput degrades gracefully as the

than HyFlow is that any remote request for QR-DTM messages exchanged increases due to the larger size of
takes 36ns, on average, in our testbed, compared totne read quorum.

HyFlow's 5ms. This is because, QR-DTM uses multi-

cast, while HyFlow uses unicast for message passing. VII. RELATED WORK

However, HyFlow cannot cope with failures. Replication has been studied in DTM for improving
Throughput under Node Failures We now show fault-concurrency and for coping with failures, largely in

tolerance of QR-DTM by measuring throughput underthe context of cluster DTM [5], [6], [9], [13], [16],

L Trang/sec |, ,
f=3 joa) f=3
o o o

@
k=)

10

[17]. These works provide fault-tolerance propertiesN-TFA protocol [35], which supports closed nesting,
by inheriting fault-tolerance protocols from databaseand the TFA-ON protocol [36], which supports open
replication schemes, which rely on broadcast primi-nesting. N-TFA extends Saad and Ravindran’s TFA
tives. D2STM [13], is a replicated DTM that provides algorithm, which uses an asynchronous clock-based
strong consistency through a distributed certificationvalidation technique to ensure DTM transactional prop-
scheme. Decent STM [6] implements a decentralizeckrties, to support closed nesting. The work [35] reports
shapshot isolation protocol for guaranteeing consis2% average performance benefit for closed nesting com-
tency. GenRSTM [5] is a generic framework for repli- pared to flat nesting (and 84% speedup in certain cases).
cated DTM, and supports replication via a replicationin TFA-ON [36], abstract locks are used to guarantee
manager, which is notified of updates made by localthat no data conflicts occur. The average speedup for
STMs. Zhang and Ravindran’s QR protocol [19] usesopen nesting is 30% compared to flat nesting [36].
a replicated DTM model that relies on quorums for However, N-TFA and TFA-ON use a single copy DTM
managing transactional metadata, and ensures consistodel and therefore are not fault-tolerant. In contrast,
tency using multicast among the replicas. QR does notve consider nesting (QR-CN) and checkpointing (QR-
consider transactional nesting or checkpointing. (QR iSCHK) in replicated (and thus fault-tolerant) DTM, and
the foundation of our work.) is the first work to do so.

Transactional nesting has been studied for TM, but
largely in the multiprocessor context. Earlier multipro-
cessor TMs either did not support nesting or simply We presented the QR-CN and QR-CHK protocols that
flattened nested transactions into a single top-leveltransupports closed nesting and checkpointing in quorum-
action. Harriset. al. [27] argued that closed nested based replicated distributed TM. We showed that Rqv
transactions, supporting partial rollback, are importantensures 1-copy equivalence. Our implementation and
for implementing composable transactions, and preexperimental evaluation shows that closed nesting (with
sented an orElse construct that relies on closed nestinfQR-CN) improves throughput over flat nesting: the aver-
In [28], Adl-Tabatabaiet. al. presented an STM that age performance gain is 53% across all the benchmarks,
provides both nested atomic regions and orElse, anghile the highest speedup is 101%. The reason for
introduced the notion of mementos to support efficientperformance gain is the average reduction of 33% in
partial rollback. abort rate. The lower abort rates, in turn, are responsible

Recently, a number of researchers have proposetr reducing the communication overhead by 34 %. We
the use of open nesting in (multiprocessor) TM. Mossobserved performance degradation of 16% for check-
described the use of open nesting to implement highlypointing over flat nesting across benchmarks, owing to
concurrent data structures in a transactional setting [29Jnessage overhead of 19%.

In contrast to the database setting, the different levels of We determined that closed nesting best applies for
nesting are not well-defined; thus different levels mayapplications with high contention. We also found that
conflict. For example, a parent and a child transactiorthe length of transactions is an important factor in the
may both access the same memory location and conflicherformance of closed nesting. We observed that the

Atomos [30], TCC [31], and LogTM [32] describe Performance of closed nesting increases with increase
HTM implementations of closed and open nesting, within the level of contention and transaction length.
commit and abort handlers for open nesting. Agrawal
et al. [33] study the memory model semantics of open-
nested TM. They describe ownership-aware transac-[1] M. Herlihy, “The art of multiprocessor programming,”
tions, which provide a disciplined methodology for open in PODC, 2006, pp. 1-2.
nesting, while guaranteeing abstract serializability.

Herlihy and Koskinen [22] proposed checkpointing

and partial aborts (in multiprocessor TM), as an alter- [3] B. Saha, A.-R. Adl-Tabatabait al, “McRT-STM: a high
nate to nesting. They argued that fine grained check- ~ performance software transactional memory system for
pointing can be achieved and closed nesting is a more a multi-core runtime,” inPPoPR, 2006, pp. 187-197.

rigid alternative.
g [4] M. M. Saad and B. Ravindran, “Distributed
None of the DTM efforts [4]-[6], [9], [13]-[15], [34] Hybrid-Flow STM : Technical Report” ECE Dept.,

consider transactional nesting or checkpointing. The Virginia Tech, Tech. Rep., 2010. [Online]. Available:
nested DTM works that we are aware of include the http://hyflow.org/trac/hyflow/wiki/Publications

VIII. CONCLUSIONS

REFERENCES

[2] J. R. Larus and R. RajwaTransactional Memory2006.

11

[5] P. R. N. Carvalho and L. Rodrigues, “A generic frame- [21] D. Agrawal and A. El Abbadi, “The tree quorum proto-

work for replicated software transactional memories,” in
IEEE NCA11 2011, pp. 271-274.

[6] A. Bieniusa and T. Fuhrmann, “Consistency in hindsight: [22]

(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

A fully decentralized stm algorithm,” inPDPS April
2010, pp. 1 -12.

K. Arnold, R. Scheifleret al,, Jini Specification 1999.

E. Tilevich and Y. Smaragdakis, “J-Orchestra: Autoroati
Java application partitioning,” iECOOP, 2002, pp. 1-3.

R. L. Bocchinoet al, “Software transactional memory
for large scale clusters,” iRPoPP, 2008, pp. 247-258.

M. Herlihy and Y. Sun, “Distributed transactional mem- 2

ory for metric-space networksPistributed Computing
vol. 20, no. 3, pp. 195-208, 2007.

(23]

(24]

5]

B. Zhanget al, “Relay: A cache-coherence protocol for [26]

distributed transactional memory,” @PODIS 2009, pp.
48-53.

M. M. Saad and B. Ravindran, “Supporting STM in [27]

distributed systems: Mechanisms and a Java framework,”
in TRANSACT ACM, 2011. [Online]. Available:
hyflow.org

(28]

M. Couceiro et al, “D2STM: Dependable distributed
software transactional memory,” iIRRDC 2009, pp.
307-313.

P. Romano, N. Carvalho, M. Couceiro, L. Rodrigues, [29]

and J. Cachopo, “Towards the integration of distributed
transactional memories in application servers clusters,”
in QoSHN 2009, pp. 755-769.

P. Romano, L. Rodrigues, N. Carvalho, and J. Cachopo,
“Cloud-TM: harnessing the cloud with distributed trans-
actional memories,SIGOPS pp. 1-6, 2010.

(30]

[31]
C. Kotselidiset al, “DiSTM: A software transactional
memory framework for clusters,” ilCPP, 2008, pp. 51—
58.

[32]

R. Palmieri, F. Quaglia, P. Romano, and N. Carvalho,
“Evaluating database-oriented replication schemes in
software transactional memory systems,” IPDPSW
2010, pp. 1-8.

J. E. B. Moss and A. L. Hosking, “Nested transactional
memory: model and architecture sketcheSCP pp.
186-201, 2006.

B. Zhang and B. Ravindran, “A quorum-based repli-

(33]

(34]

cation framework for distributed software transactional [35]

memory,” PoDS pp. 18-33, 2011.
P. Bernstein and N. Goodman, “Multiversion concur-

rency controltheory and algorithmsTODS pp. 465-
483, 1983.

12

(36]

col: An efficient approach for managing replicated data,”
in VLDB, 1990, pp. 243-254.

E. Koskinen and M. Herlihy, “Checkpoints and contin-
uations instead of nested transactions,"SBAA 2008,
pp. 160-168.

A. Dhoke and B. Ravindran, “On Closed Nesting
in Replicated Distributed Transactional Memory,”
ECE Dept., Virginia Tech, Tech. Rep., Sep 2012.
[Online]. Available: http://www.hyflow.org/hyflow/raw-

attachment/wiki/Publications/gr-cn-tech-report.pdf

J. Rose. Multi-language virtual machine. [Online].aflv
able: http://hg.openjdk.java.net/mlivm/mlvm/summary

C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun,
“Stamp: Stanford transactional applications for multi-
processing,” inlISWC 2008, pp. 35-46.

M. M. Saad and B. Ravindran, “Transactional
forwarding algorithm,” ECE Dept., Virginia Tech, Tech.
Rep., January 2011. [Online]. Available: hyflow.org

T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy,
“Composable memory transactions,” PPoPR, 2005,
pp. 48-60.

A.-R. AdI-Tabatabai, B. T. Lewis, V. Menon, B. R. Mur-
phy, B. Saha, and T. Shpeisman, “Compiler and runtime
support for efficient software transactional memory,” in
PLDI, 2006, pp. 26-37.

J. E. B. Moss, “Open nested transactions: Semantics and
support,” inWMPI, 2005.

B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung,
C. C. Minh, C. Kozyrakis, and K. Olukotun, “The
Atomos transactional programming language,”AGM
SIGPLAN 2006, pp. 1-13.

A. McDonald, J. Chung, B. D. Carlstrom, C. C. Minh,
H. Chafi, C. Kozyrakis, and K. Olukotun, “Archi-
tectural semantics for practical transactional memory,”
SIGARCH pp. 53-65, 2006.

M. J. Moravanet al, “Supporting nested transactional
memory in logTM,” inASPLOS$ 2006, pp. 359-370.

K. Agrawal, I.-T. A. Lee, and J. Sukha, “Safe open-
nested transactions through ownership,’'SRAA 2008,
pp. 110-112.

K. Manassieet al., “Exploiting distributed version con-
currency in a transactional memory cluster,”"RPoPPR,
2006, pp. 198-208.

A. Turcu, B. Ravindran, and M. Saad, “On closed nesting
in distributed transactional memory,” BCM SIGPLAN
2012.

A. Turcu and B. Ravindran, “On open nesting in dis-
tributed transactional memory,” iBYSTOR2012.

