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Abstract—We consider the closed nesting and check-
pointing model for transactions in fault-tolerant dis-
tributed transactional memory (DTM). The closed nested
model allows inner-nested transactions to be aborted (in
the event of a transactional conflict) without aborting the
parent transaction, while checkpointing allows transac-
tions to rollback to a previous execution state, potentially
improving concurrency over flat nesting. We consider a
quorum-based replicated model for fault-tolerant DTM,
and present algorithms to support closed nesting and
checkpointing. The algorithms use incremental validation
to avoid communication overhead on commit, and ensure
1-copy equivalence. Our experimental studies using a
Java DTM implementation of the algorithms on micro
and macro benchmarks reveal the conditions when they
improve transactional throughput over flat nesting, and
also their relative advantages and disadvantages.
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I. I NTRODUCTION

Lock-based synchronization suffers from programma-
bility, scalability, and composability challenges [1].
These difficulties are exacerbated in distributed systems
due to the challenges of multi-computer concurrency–
e.g., distributed race conditions; distributed versions of
deadlocks, livelocks, lock convoying, priority inversion;
distributed composability.

Transactional memory (TM) [2] is an alternative syn-
chronization abstraction that promises to alleviate these
difficulties. With TM, code that read/write shared mem-
ory objects is organized asmemory transactions, which
speculatively execute, while logging changes made to
objects. Transactions are monitored for read/write and
write/write conflicts, usually by keeping track of their
read-sets and write-sets. When two transactions conflict,
one of them is aborted, and the other is committed,
yielding (the illusion of) atomicity. Aborted transactions
are re-started, after rolling-back the changes. Besides a
simple programming model, TM provides performance
comparable to lock-based/lock-free synchronization, es-

pecially for read-dominated workloads, and is compos-
able [3]. TM for multiprocessors was first proposed in
hardware (called HTM), later in software (called STM),
and subsequently in combination (called HyTM).

Distributed TM (or DTM) [4]–[6] is an alternative
to lock-based distributed concurrency control, and can
be supported in any distributed execution model, in-
cluding a) control flow [7], where objects are immo-
bile and transactions invoke object operations through
RMIs/RPCs; b) dataflow [8], where transactions are
immobile, and objects are migrated to invoking transac-
tions; and c) a hybrid model [9] where transactions or
objects are migrated, based on access profiles, object
size, or locality. DTM can also be classified based
on the system architecture: cache-coherent DTM (cc
DTM) [10]–[12], in which a set of nodes communi-
cate by message-passing links over a communication
network, and a cluster model (cluster DTM) [13]–
[15], in which a group of linked computers works
closely together to form a single computer. The most
important difference between the two is communica-
tion cost. cc DTM assumes ametric-spacenetwork
(i.e., the communication cost between nodes form a
metric), whereas cluster DTM differentiates between
local cluster memory and remote memory at other
clusters. cc DTM uses a cache-coherence protocol (e.g.,
Ballistic [10], Relay [11]) to locate and move objects
in the network, satisfying object consistency properties.
Similar to multiprocessor TM, DTM provides a simple
distributed programming model (e.g., locks are entirely
precluded in the interface), and performance compara-
ble or superior to distributed lock-based concurrency
control [12]–[15].

With a single object copy, node/link failures cannot
be tolerated. If a node fails, the objects held by the
failed node will be simply lost and all following trans-
actions requesting such objects would never commit.
Additionally, read concurrency cannot be effectively
exploited. Thus, an array of DTM works ( [5], [6],



[9], [13], [16], [17]) – all of which are cluster DTM
– consider object replication. These works provide
fault-tolerance properties by inheriting fault-tolerance
protocols from database replication schemes, which
rely on broadcast primitives (e.g., atomic broadcast,
uniform reliable broadcast) [5], [6], [9], [13], [15], [16].
Broadcasting transactional read/write sets or memory
differences in metric-space networks is inherently non-
scalable, as messages transmitted grow quadratically
with the number of nodes. Thus, directly applying
cluster DTM replication solutions to cc DTM may not
yield similar performance.

A. Nesting and Checkpointing : Mechanisms for partial
abort

Nesting: A transaction is callednestedwhen it is en-
closed within another transaction. Three types of nesting
models have been previously studied [18]: flat, closed
and open. They differ based on whether the parent and
children transactions can independently abort:

Flat nesting.This is the simplest type of nesting,
where the existence of transactions in inner code is
simply ignored. All operations are executed in the
context of the outermost enclosing transaction. Aborting
the inner transaction causes the parent to abort as well
(i.e., partial rollback is not possible).

Closed nesting.Here, each transaction attempts to
commit individually, but the commit of inner transac-
tions is not visible outside the enclosing transaction. In-
ner transactions can abort independently of their parent
(i.e., partial rollback).

Open nesting.Here, the commit of inner nested
transactions are visible to the entire system, though the
parent transaction has not yet committed. In case of
abort of a parent transaction, the changes committed by
inner nested transactions need to be compensated.

Checkpointing model:Transactions in checkpointing
model create checkpoints by saving their execution
state. Checkpoints provide a way to resume from a con-
sistent transaction state. In case of conflict, transaction
can partially rollback to a checkpoint to resolve conflict
and resume execution. Checkpointing can be thought of
as generalization of closed nesting, where transaction
can rollback to any of the checkpoints, whereas, in
closed nesting, it is limited one of the enclosing trans-
actions. Let us look at an example of transaction using
checkpointing. A transaction has successfully added an
elementA to a hashmap, created checkpointChk and
is attempting to delete elementB. However, a conflict
is encountered while deletingB. Instead of aborting the
transaction, we can partially rollback toChk and retry
deletingB.

Flat nested transactions, typically, gain access to
objects through read and write requests, perform com-
putations on them, and finally attempt to commit the
modifications via a commit request. If the commit
request does not succeed, the work done so far is rolled
back and retried. This optimistic approach ensures that
the transaction accesses the latest copy of objects the
next time. However, this can be conservative in many
cases, and we could end up doing redundant work.

T_flat
m1 = getRemote(m1_Obj);
m2 = getRemote(m2_Obj);
m3 = getRemote(m3_Obj);

intm = add(m1,m2);
result = add(intm,m3);
if commit()

return result;
else

retry T_flat;

Figure 1: An Example Flat Nested Transaction.

Nesting and checkpointing provide mechanisms to
partially abort or rollback a transaction. We show the
benefit of partial abort by illustrating an example of
closed nesting. Figure 1 shows the code snippet for a
transaction, which takes three matrices,m1, m2, and
m3, as arguments and returns their sum on successful
commit. The transaction adds two matrices at a time.
First, the result of the addition of the matricesm1 and
m2 is stored in an intermediate matrix. Next, the matrix
m3 is added to the intermediate matrix to obtain the final
result, after whichTflat attempts to commit.

Assume that by theTflat attempts to commit its
changes, a conflicting transaction, sayTc, has success-
fully made write modification tom3. This will cause
Tflat to abort, and start again from the beginning (line
corresponding to label Tflat in Figure 1). In the next
attempt,Tflat again readsm1 andm2, though they were
unchanged, and thus incurring additional remote calls.

Figure 2 shows closed nested transaction,Tclosed, en-
closed inside parent transaction,Tparent. Here,Tparent

addsm1 andm2, while Tclosed adds the intermediate
matrix andm3. Similar to previous example, assume
that by theTclosed attempts to commit, a conflicting
transaction,Tc, has made changes tom3. As a result,
the commit attempt ofTclosed fails, and it restarts from
line corresponding to label Tclosed in Figure 2. In the
subsequent attempt,Tclosed will only read m3. After
commit of Tclosed, Tparent will attempt to commit
changes to shared memory.

In the closed nesting scenario, we did not repeat the
first add operation onm1 andm2, thus avoiding extra
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T_parent
m1 = getRemote(m1_Obj);
m2 = getRemote(m2_Obj);
intm = add(m1,m2);

T_closed
m3 = getRemote(m3_Obj);
result = add(intm,m3);
if commit()

return result;
else

retry T_closed;

if commit()
return result;

else
retry T_parent;

Figure 2: An Example Closed Nested Transaction.

computation and remote calls. In the DTM context,
partial abort of transactions can therefore potentially
save computation time and communication messages for
requesting remote object copies. In the replicated DTM
context, the commit request can incur remote messages
equal to the number of nodes in the system. Therefore,
it becomes important to reduce commit requests (e.g.,
by minimizing the abort rate) to reduce network traffic.

B. Contributions

In the example in Figure 2, we considered a simple
scenario where we knew beforehand that the conflicting
transaction had modified the matrixm3. However, in
general, we need to answer the following questions:

(1) What application/workload will benefit from par-
tial abort, as compared to flat nesting?

(2) What is the potential performance improvement
or degradation due to partial abort?

(3) Which parameters of a transaction will affect the
partial abort performance?

We answer these questions by developing support
for closed nesting and checkpointing in replicated cc
DTM. We consider Zhang and Ravindran’s quorum-
based replication model [19] (Section II). In this model,
a quorum systemis used to manage transactional meta
data (i.e., read-set, write-set). Transactions communicate
with a read quorumfor obtaining the latest copy of
an object for reading and writing, and communicate
with a write quorum for committing their changes.
The intersection property of read and write quorums
is used for concurrency control: they ensure consistent
state of the replicas and thus, 1-copy equivalence. We
support closed nesting and checkpointing by developing
protocols called,QR-CN (Section III) and ,QR-CHK
(Section IV), respectively. To reduce commit overhead

in quorum-based replicated DTM, we develop a pro-
tocol for incremental validation called,Read Quorum
Validation or Rqv (Section III-B). We show that Rqv
ensures 1-copy equivalence (Section V).

We construct a Java implementation of quorum-
based replicated DTM, called QR-DTM, and implement
our proposed protocols in QR-DTM. We conduct ex-
perimental studies using macro-benchmarks including
distributed versions of applications from the STAMP
benchmark suite and micro-benchmarks including dis-
tributed data structures (Section VI). Our studies reveal
that closed nesting improves throughput by as much as
101% over flat nesting in specific cases, with an average
improvement of 53% across all benchmarks. To the best
of our knowledge, ours is the first work on supporting
closed nesting and checkpointing in fault-tolerant DTM
(Section VII), and constitutes the paper’s contribution.

II. QUORUM-BASED REPLICATION

Zhang and Ravindran’s quorum-based replication
protocol [19] (QR for short) provides concurrency con-
trol for objects via STM and fault-tolerance by main-
taining copies of an object at multiple nodes. Each node
is designated a read quorum and a write quorum, where
a quorum is a set of nodes having specific properties. A
read quorum services read and write requests of objects,
while a write quorum is used to commit changes to
objects. A transaction executing on a node uses the read
and write quorum designated to that node. (From here
on, when we say a node’s or transaction’s quorum we
will refer to these designated quorums).

The QR protocol ensures 1-copy equivalence [20],
meaning that when a transaction reads an object, it
will use the latest copy of the object. This property is
maintained by the system, because any write quorum
and read quorum always intersect [21]. Thus, the latest
changes committed to a write quorum will be visible
to at least one node in the read quorum. Therefore,
any read quorum can provide the latest version of the
object. (Note that the rest of the nodes in a read quorum
may have stale versions of an object.) Thus, the QR
protocol ensures a consistent view of the most recently
committed changes.

A transaction uses its read quorum and write quorum
for reading from, or writing to objects and for propa-
gating updates, respectively. For reading or acquiring a
writable copy of an object, a transaction sends a request
to its read quorum. The transaction selects the object
copy with the latest version from all the copies received
from the read quorum. This object copy is the most
recent one in the system, at that point of time.
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Figure 3: Ternary tree with 13 nodes.

For committing writes, a transaction uses a two-
phase commit protocol to obtain consensus for commit
from its write quorum. Initially, the transaction sends a
commit request message to its write quorum. On every
node of the write quorum, a decision for commit or
abort is made based on the state of objects. If the node
decides to commit the requesting transaction, it will lock
the objects in write-set for the transaction by setting the
object fieldprotected to true. If the node decides to
abort, the object state remains unchanged. The decision
is then sent back as reply to the requesting transaction.
The transaction collects all the replies and commits only
when it receives acommitmessage from all the nodes;
otherwise, the transaction is aborted.

Quorums maintainpotential readers list(PR) and
potential writers list(PW) for every object. Whenever
a read or a write request is processed for an object,
the requesting transaction is added to the PW or PR,
accordingly. These lists are used by contention man-
agers to decide which transaction needs to be aborted
or committed.

The nodes in QR form a logical ternary tree. Agrawal
et. al [21] have defined the precedure for creating read
and write quorum. A read quorum can be viewed as
majority of children at a level, while write quorum can
be viewed as majority of children at every level.

Figure 3 illustrates the process. The figure
shows a tree with 13 nodes with read quorum
as R1 = {n1, n2} and write quorum as
W2 = {n0, n2, n3, n8, n9, n11, n12}. A transactionTw

writes to an objecto1 and commits the changes at
time t usingW2. All the nodes ofW2 have the latest
version ofo1. Now, another transactionTr readso1 by
requesting toR1 after timet. Since the intersection of
R1 andW1 is n2, n2 has the latest version ofo1. Tr

collects copies of objects fromn1 andn2, and chooses
the one sent byn2.

A. System Model

We consider a distributed system which consists of
a set of nodes that communicate with each other by
message-passing links. We consider a set ofdistributed
transactionsT := {T1, T2, . . .} sharing a set of objects
O := {o1, o2, . . .} distributed on the network. A trans-
action contains a sequence of requests, each of which
is a read or a write operation request for an individual
object, followed by a commit operation. We define
the transactions under closed nesting and checkpointing
below.

Closed Nesting Model:Following are the different
kinds of transactions in the system [18].

• Root transaction. This transaction has a behavior
similar to that of a flat nested transaction. The
commit of a root transaction is globally visible
– i.e., any transaction accessing objects after root
transaction’s commit will be able to view the
changes. The abort of a root transaction will retry
the transaction from beginning.

• Closed Nested Transaction.A closed nested
transaction (CT) executes on behalf of the parent
transaction. Commit of a closed nested transaction
is not globally visible. Successful commit of CT
moves the execution back to the parent, while an
abort either retries the CT or its parent transaction.

• Parent transaction. A transaction is a parent
transaction when it encloses atleast one CT. Upon
successful commit of the CT, the parent transaction
continues its execution.

Checkpointing Model:This model requires transac-
tions to support checkpoint creation and rollback.

• Checkpointing transaction. A checkpointing
transaction (CPT) creates checkpoints based on
specific criterion. Note, this criterion is predefined
in the system, as opposed to programmer created
manual checkpoints [22]. Commit of CPT is glob-
ally visible.

III. QR-CN PROTOCOL

A. QR-CN: Overview

A closed nested transaction obtains object copies
from its read quorum. For the commit of a CT, it needs
to validate objects in its read-set and write-set, and
then merge these objects to the respective sets of the
parent. In QR [19], validation is performed by sending
a request to a write quorum. However, such a validation
would increase message overhead for closed nested
transactions, when compared to flat nested transactions.

We add an incremental validation mechanism to the
read operation. This mechanism validates a transaction’s
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read-set and write-set objects on every read operation.
This means that, when a read request is completed,
the transaction’s read-set is valid at that point of time.
Further, when a transaction completes reading all the
objects, its read-set and write-set objects are valid. As a
result, a CT does not need to send a validation request
to its write quorum and can commit without incurring
any remote communications. For commit of CT, it only
has to merge its read-set and write-set with its parent.
Similarly, a read-only operation can commit without
sending a commit request.

In the subsequent sections, we describe QR-CN pro-
tocol to support closed nested transactions. We describe
the read/write operation at local and remote nodes in
Section III-B, andcommitCT , commit operation for
CT, in Section 3. The operations forcommit−request,
commit, and abort are same as in QR, which we
summarized in Section II.

B. Read/Write Operation

Read quorum validation (Rqv). Rqv is an incre-
mental validation mechanism to detect early abort of a
transaction. It helps CT and read-only transactions to
commit locally.

Recall the following two properties of QR:
1) Every node in QR has copies of all the objects.
2) In QR, any read and write quorum intersect. There-

fore, a read quorum can provide the latest version
of every object.

From these properties, we can infer that a read quorum
is aware of the latest version of all the objects in the
system. It follows that validation can be performed on
a read quorum for any set of objects. This observation
is the basis of Rqv.

A read/write operation proceeds as follows. A trans-
action sends a read request for an object to its read
quorum. A node in the read quorum first validates
objects that are currently in the transaction’s read-set
and write-set. In the validation procedure, the versions
of read-set and write-set objects are checked against
the versions of objects present at that node. Validation
is successful if the transaction’s objects have versions
equal to the object versions on that node; else it fails. On
successful validation, the node proceeds to retrieve the
copy of the requested object. However, if the validation
fails for any of the objects, an abort message is sent
back to the transaction.

For a flat nested transaction, an abort message implies
abort of that transaction. For a CT, an abort message
could mean abort of the CT or any of its parents. This
is decided by the objects on which validation fails.

Consider again the example in Figure 3, with a read
quorumR1 and a write quorumW2 intersecting atn2.
A transactionT1 has read objectsO = {o1, o2, o3} from
its read quorumR1. At this point, a conflicting transac-
tion T2 commits via write quorumW2 and increments
the version of objecto2. Next, T1 requests objecto4
from R1. n1 will successfully validateT1’s read-set
({o1, o2, o3}). However,n2 will find that the version
of o2 has increased. Therefore, validation will fail and
n2 will send an abort message toT1.

Algorithm 1 : QR-CN: Read Quorum Validation for
transaction.

procedure VALIDATION (T )
Remote:1
dataSet = getDataSet(T );2
abortTxn = null;3
foreach o in dataSet do4

protected = getObj(o.id).isP rotected;5
ownerTxn = getObj(o.id).ownerTxn;6
if o.version < getObj(o.id).version ||7
protected then

removeownerTxn from PW ,PR;8
if isParent( ownerTxn, abortClosed) then9

abortClosed = ownerTxn;10
returnabortClosed;11

Algorithm 1 shows the read quorum validation pro-
cedure for a transactionT . getDataSet traverses the
parents ofT and stores the objects read so far by them in
dataSet. Each of the object copies have anownerTxn,
which refers to the transaction that reads the object.
Each objecto is checked for its validity (line 7). If
the object is not valid, thenownerTxn is removed
from PR and PW lists (line 8). Then, we check
whetherownerTxn is higher in transaction heirarchy
than abortClosed (line 9). If it is, then ownerTxn

becomes the new value ofabortClosed; else it remains
unchanged. At the end of iteration,abortClosed is the
transaction highest in the hierarchy whose object is
invalid and which needs to be aborted. However, if the
value ofabortClosed is null, it means that validation
is successful.

Algorithm 2 shows the read operation procedure,
which uses the validation procedure in Algorithm 1.

A read request of a CT first recursively checks for
the object in the read-set and write-set of the parents
(line 2). If the object is found, the request is completed
locally without incurring any remote call. If the object
does not exist locally, a request for that object is
sent to its read quorum. The remote node records the
relationship between CT and the parent transaction, and
performs validation for the transaction. If the validation
succeeds (i.e., if the return value isnull), the node
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Algorithm 2 : QR-CN: Read for CT.

procedure READ (T, objId)
Local:1
o = checkParent(objId);2
if o == null then3

objSet, abortClosed = READQUORUM (T, objId));4
if abortClosed != null then5

abort(abortClosed);6
return;7

o = latestV ersion(objSet);8
addo to T.readset;9

Remote:10
setChild(parent(T ), T );11
abortClosed = validate(T );12
if abortT != null then13

respond(T, abortTxn);14
return;15

o = getObj(objId);16
if T is root then17

addT to PR(o);18
respond(T, o);19

sends back the copy of the object. The remote node
adds the objects to the PR/PW list only when it is a
root transaction. It is necessary that we do not create
any metadata for CT on the remote node. This ensures
that the commit of CT happens locally.

The write procedure is the similar to the read proce-
dure, except thatT.readset is replaced withT.writeset
in line 9 andPR is replaced withPW in line 18.

The local node, on receiving objects from read quo-
rum, selects the object with the highest version number.
If an abort message is received, either the CT or its
parent transaction aborts, depending on the value of
abortClosed.

C. QR-CN : Commit operation.

Algorithm 3 shows the procedure for commit of a
CT. The local node merges the read-set and write-set of
a CT with that of its parent.

Algorithm 3 : QR-CN: Commit of CT.

procedure COMMIT CT (T )
Local:1
parent = T.parent;2
foreach o← T.readSet do3

addo to parent.readset;4
foreach o← T.writeSet do5

addo to parent.writeSet;6

IV. QR-CHK PROTOCOL

A. QR-CHK: Overview

A CPT has the ability to rollback to previous ex-
ection state in case of transactional conflict. It has

read and write operations similar to those defined in
QR-CN, while the request-commit and commit oper-
ation are exactly the same as flat nested transaction.
Transaction creates checkpoints whenever a pre-defined
criterion is satisfied. These checkpoints are the points
to which transaction can be rolled back to whenever
a transactional conflict is detected. When a conflict is
detected during request commit, the entire transaction is
aborted and retried. In case of a conflict detected during
read/write of a remote object, the transaction is partially
aborted by rolling back to an appropriate checkpoint.

In DTM context, a checkpoint is defined as the state
of the transaction at a specific point in time. The state
consists of transaction’s read-set, write-set and program
state. A checkpoint is created whenever the number of
objects in transactions’s read-set and write-set crosses
a threshold. Every checkpoint has a checkpoint ID
representing the time at which it was created.

B. QR-CHK: Read/Write Operation

The read/write operation performs validation of ob-
jects which can result in partial abort of transaction,
described in Algorithm 4. This process is similar to the
read quorum validation and read operation described in
Algorithm 1 and Algorithm 2, respectively. We record
the latest checkpoint ID (ownerChkpnt) in the object
copy whenever it is requested from remote node, similar
to ownerTxn in Rqv. The objects in read-set and write-
set are scanned to find out the invalid objects and
the least of theownerChkpnt among them, which
is assigned toabortChk (line 7-10 in Algorithm 4).
The read-set and write-set corresponding toabortChk

will have valid objects, similar toabortClosed in Rqv.
An abort message is sent back to the transaction along
with abortChk. The requesting transaction on receving
abortChk retrieves the corresponding checkpoint and
resumes execution from the execution state associated
with abortChk.

V. A NALYSIS

Theorem V.1. Rqv preserves1-copy equivalence for all
objects.

Proof: Let T1 be a transaction in either closed
nesting (parent and child transaction) or checkpointing
model.T1 reads an objecto at time t1. At a later time
t2, T1 sends a request for objecto′. Let O be the set
of objects in the read-set and write-set of transaction
T1 at t2. Let Tc be any transaction that has started
propagating changes to the objecto at timet3 such that
it conflicts with T1. Note thatTc can be a root, parent,
or a child transaction. We will now analyze all possible
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Algorithm 4 : QR-CN: Read Quorum Validation for
checkpointing.

procedure VALIDATION CHK (T )
Remote:1
dataSet = getDataSet(T );2
abortClosed = null;3
foreach o in dataSet do4

protected = getObj(o.id).isP rotected;5
ownerChk = getObj(o.id).ownerChk;6
if o.version < getObj(o.id).version ||7
protected then

removeownerChk from PW ,PR;8
if ownerChk < abortChk then9

abortChk = ownerChk;10
returnabortChk;11

cases based on the relationship betweent1, t2, andt3,
and show thatT1 does not violate1-copy equivalence
for o.
Tc has committed changes too beforet1. In this case,

T1 uses the latest version ofo. This is because of the
following property:

Let data(o, v) be the object copy ofo on node
v. There exists a write quorumqw such that
{∀v ∈ qw} ∧ {∀v′ 6∈ qw}, data(o, v).version >

data(o, v′).version. If any transactionT accesseso at
time t, it collects a set of copies from a read quorum
qr. We know that∃v ∈ {qw ∩ qr} such thatdata(o, v)
is collected byT . Note that read and write operations
select the object copy with the highest version number.
Hence, for any transactionT , data(o, v) is selected as
the latest copy.

Since Tc has committed changes ono before t1,
T1 uses the latest version ofo and does not find any
conflict. The read request foro′ succeeds.
Tc is attempting to commit changes aftert1 and

before t2. In this state,Tc has received the commit
decision from its write quorum. Thus, any node inTc’s
write quorum will either have applied the changes of
Tc on o or would have seto.protected = true. While
Tc is in this state,T1 sends a read request foro′ to
its read quorum. Letqr and qw be the read quorum
and write quorum ofT1 and Tc, respectively. Then
∃v ∈ {qr ∩ qw} such that the changes committed by
Tc are applied ono or o.protected = true. Therefore,
the read request ofT1 will be denied by such a node
v, and theabort message will be sent back. For closed
nesting, the transactionabortClosed will be aborted.
For checkpointing, the transaction will be rolled back
upto abortChk.
Tc is attempting to commit changes aftert2 and

before the request commit ofT1. At t2, the read

quorum validation forT1 succeeded as there was no
conflict. Next,T1 has completed reading all the remote
objects and its next request will be commit request.
Furthermore,Tc has received the commit decision from
its write quorum, and any node in the write quorum
will either have applied the changes ofTc on o or
would have seto.protected = true. Let qw and q′w
be the write quorums ofT1 andTc, respectively. Then
∃v ∈ {qw∩q′w} such that the changes committed byTc

are applied ono or haso.protected = true. When the
request commit forT1 is sent to its write quorum, such
a nodev will send an abort message toT1. Note that,
this case is exactly the same as in QR [19].
T1 reads from its data-set or parent data-set.If o has

been read before byT1 or any of the parent transaction,
thenT1 will read the local copy of the object. In this
case, the read quorum validation will not be performed.
Instead, the object validation is performed wheneverT1

sends the next remote read request. If this was the last
remote request, then validation is performed as part of
request commit.

From all these cases, we see that transactions observ-
ing an inconsistent state of an object will never commit.
Theorem follows.

From the above proof, we can easily prove that QR-
CN and QR-CHK also preserve 1-copy equivalence. For
a transaction in QR-CN and QR-CHK, the read/write
cost is equal to transaction node’s distance from read
quorum (distance from farthest node in read quorum),
while request commit and commit confirm cost is equal
to its distance from write quorum. We show that QR-
CN and QR-CHK guarantee opacity. More details can
be seen in [23].

VI. I MPLEMENTATION AND EXPERIMENTAL

EVALUATION

A. Implementation

We implemented QR-DTM, a Java based DTM. QR-
DTM uses the QR protocol [19] as the basic algorithm
for providing replication and cache coherency.

Figure 4 shows the architecture diagram for QR-
DTM. It shows interaction ofTransaction Manager,
Cluster Manager, the nodes and their quorums in QR-
DTM. A Transaction Manager performs two tasks i)
It provides an interface for remote requests through
TM Proxy. ii) Context Delegator, a sub-module in
Transaction Manager, maintains the metadata regarding
PR and PW lists of objects, relation between parent,
child and root transactions.

The TM Proxy forwards the message request to Clus-
ter Manager. The designated quorums for a node are
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Figure 4: QR-DTM’s architecture.

tracked by the Cluster Manager. The message received
by Cluster Manager is multicast to the read quorum
or write quorum depending on the type of the message.
JGroups API handles the group communication between
the nodes and their quorums. JGroups sends multicast
and unicast messages in a reliable manner.

QR-DTM uses Java Exceptions for partial rollback
in closed nesting. On abort of a transaction, an ex-
ception encapsulating the transactionabortClosed is
thrown. Transaction catching this exception compares
abortClosed with its ID. If it does not match, it
throws another exception which is caught by its parent.
This process continues until transaction Id matches
abortClosed. At this point, the transaction discards the
previous read and write sets, and starts afresh.

QR-DTM uses Java Continuations for partial rollback
in checkpointing. Continuations provide a mechanism
to save the current execution state, and resume from
this saved state at a later time. During checkpoint
creation, Continuation objects are saved along with a
copy of transaction information. For restoring from
a given checkpoint ID, the execution resumes from
the state saved in corresponding Continuation object
using transaction copy. Java Continuations require a
customized JVM available at [24].

B. Experimental Settings

We conducted the experiments using a 40-node
testbed. Each node is an AMD Opteron processor
clocked at 1.9GHz and running the Ubuntu Linux 10.04
server operating system. Each node was assigned the
same read and write quorums. The average round-trip
network latency for a remote request was observed to
be≈30 milliseconds.

In section VI-C, we compare flat nesting (i.e.
QR), closed nesting (i.e. QR-CN) and checkpointing
(i.e. QR-CHK) for three micro-benchmarks including

Hashmap, Red Black Tree (RBTree), Skiplist (SList),
and macro-benchmarks including Bank (monetary) ap-
plication (similar to the one in [4]) and STAMP bench-
mark [25] Vacation. In Section VI-D, we compare
existing DTM implementations with QR-DTM for Bank
benchmark. In Section VI-D, we show graceful degar-
dation in failure scenario for three benchmarks.

C. Comparison between flat and closed nesting, and
checkpoint

We compared closed nesting (QR-CN) and check-
pointing (QR-CHK) with flat nesting (QR) under Bank,
Hashmap, RBTree, SList and Vacation. Every root
transaction consists of one or more CTs, where each
CT is an operation on data structure. For example in
hashmap, operation for adding or removing an element
is a CT, and multiple such CTs are enclosed inside a
root transaction. For vacation, each of the reservations
for car, hotel and flight forms a CT.

In these experiments, we measured the throughput
(transactions committed per second) by varying the fol-
lowing parameters: 1) read workload i.e. the percentage
of read operations 2) the number of nested calls, which
affects the number of objects read within a transaction,
thereby controlling its length, 3) the number of objects,
which could increase or decrease contention depending
on the application.

Figures 5a, 5b, 5c, 5d and 5e show the variation
with read workload for five benchmarks, varied from
0 to 100 %. Figures 6a, 6b, 6c, 6d and 6e show
the variation with number of calls, varied from 1 to 5.
Figures 7a, 7b, 7c, 7d and 7e show the variation with
number of objects. Contention increases for SList and
Hashmap benchmarks with increase in objects, while
for remaining benchmarks contention reduces.

In all these runs, we observed that closed nesting
outperforms flat nesting and checkpointing, and that
checkpointing suffers from performance degradation
over flat nesting. The best speedup obtained by closed
nesting over flat nesting is for SList (101%) and the
least speedup is for Bank (9%). We observed that
checkpointing has 16% degradation over flat nesting
across all benchmarks.

For read workload variation, we observed that the
throughput improvement of closed nesting over flat nest-
ing and checkpointing is greater for higher percentage
of writes, while the gap reduces as the read workload
increases. Similarly, for transaction length variation,
throughput improvement for closed nesting increases as
the length increases. For object variation, with increase
in contention for benchmarks, we observed closed nest-
ing performing better than other two models.
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Figure 5: Flat nesting, closed nesting and checkpointing for different read workload.
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Figure 6: Flat nesting, closed nesting and checkpointing for different transaction length.
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Figure 7: Flat nesting, closed nesting and checkpointing for different number of objects.

We also measured the transaction abort rates (i.e.,
root and child transaction aborts) and the number of
messages exchanged (i.e., read and commit requests) for
all benchmarks. Table 8 shows the percentage change in
abort rate and messages exchanged with closed nesting
and checkpointing compared to flat nesting. For QR-
CN, there was decrease in the abort rate and message
(denoted by negative values), while for QR-CHK it
has increased. The independent evaluation to find the
overhead for checkpoint creation shows that it has
only 6 % overhead compared to flat nesting. Thus, the

reason for overall drop in througput for QR-CHK is the
fine granularity of checkpoints which results in large
number of unnecessary partial aborts as can be seen in
table 8. There is almost a direct correlation between
the decrease in the number of messages and the total
number of aborts and the throughput improvement. The
least reduction in abort rate is observed for Bank and
highest reduction is for SList.

From the results so far, we also observe that the
improvement obtained by closed nesting increases with
increase in contention. We also note that the length of

9



Bench. QR-CN
Abort
%

QR-
CHK
Abort
%

QR-CN
Msg. %

QR-
CHK
Msg. %

Bank -18 14 -22 15
Hashmap -45 19 -51 22
SList -56 23 -52 26
RBTree -21 15 -23 16
Vacation -33 11 -41 17

Figure 8: Abort rate and message % for QR-CN and
QR-CHK compared to flat nesting

transactions has a significant effect in determining the
throughput gain for closed nesting. The SList bench-
mark, which have large lengths, have high throughput
gain (as high as 122 %). In contrast, the average gain
for rest of the benchmarks with shorter lengths is 40%.

D. Comparison with DTM implementations

We compared QR-DTM with other DTM implemen-
tations including HyFlow [4] and Decent STM [6]. De-
cent STM uses a fully decentralized snapshot algorithm
that relies on multiversion concurrency control: using
a history of object states, conflicting transactions are
allowed to proceed as long as they can see a consistent
snapshot of memory. Thus, Decent STM is a fair com-
petitor to QR-DTM. On the other hand, HyFlow uses
an algorithm called Transaction Forwarding Algorithm
(TFA), which is based on the single object copy model
and therefore cannot cope with failures. TFA ensures
transactional properties using an asynchronous clock-
based validation technique. We still include HyFlow in
our comparison because, for the no-failure case, TFA is
shown to outperform Decent-STM in [26], and therefore
serves as a good baseline for us.

Figure 9 shows the comparison of the three DTM
implementations under high and low contention for the
Bank benchmark. We observe that QR-DTM consis-
tently outperforms Decent STM. HyFlow performs the
best.

These results indicate that Decent-STM’s snapshot
isolation algorithm has higher overhead than QR-DTM.
The reason for the lower performance of QR-DTM
than HyFlow is that any remote request for QR-DTM
takes 30ms, on average, in our testbed, compared to
HyFlow’s 5ms. This is because, QR-DTM uses multi-
cast, while HyFlow uses unicast for message passing.
However, HyFlow cannot cope with failures.

Throughput under Node Failures We now show fault-
tolerance of QR-DTM by measuring throughput under
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Figure 9: Throughput of QR-DTM, HyFlow, and
Decent-STM for the bank application
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node failures. Figure 10 shows the throughput for the
Hashmap, Binary Search Tree (BST) and Vacation
benchmark under increasing number of node failures.
We consider a system with 28 nodes, where initially, a
read quorum, consisting of a single node, is assigned
to all the nodes. With each failed node, the size of the
read quorum increases by one. The number of failed
nodes (n) ranges from1 to 8. Initially, we observe that
the throughput increases for certain number of failure.
This is because, the workload is balanced across the
read quorum nodes. However, forn greater than 4, we
observe that the throughput degrades gracefully as the
messages exchanged increases due to the larger size of
the read quorum.

VII. R ELATED WORK

Replication has been studied in DTM for improving
concurrency and for coping with failures, largely in
the context of cluster DTM [5], [6], [9], [13], [16],
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[17]. These works provide fault-tolerance properties
by inheriting fault-tolerance protocols from database
replication schemes, which rely on broadcast primi-
tives. D2STM [13], is a replicated DTM that provides
strong consistency through a distributed certification
scheme. Decent STM [6] implements a decentralized
snapshot isolation protocol for guaranteeing consis-
tency. GenRSTM [5] is a generic framework for repli-
cated DTM, and supports replication via a replication
manager, which is notified of updates made by local
STMs. Zhang and Ravindran’s QR protocol [19] uses
a replicated DTM model that relies on quorums for
managing transactional metadata, and ensures consis-
tency using multicast among the replicas. QR does not
consider transactional nesting or checkpointing. (QR is
the foundation of our work.)

Transactional nesting has been studied for TM, but
largely in the multiprocessor context. Earlier multipro-
cessor TMs either did not support nesting or simply
flattened nested transactions into a single top-level trans-
action. Harriset. al. [27] argued that closed nested
transactions, supporting partial rollback, are important
for implementing composable transactions, and pre-
sented an orElse construct that relies on closed nesting.
In [28], Adl-Tabatabaiet. al. presented an STM that
provides both nested atomic regions and orElse, and
introduced the notion of mementos to support efficient
partial rollback.

Recently, a number of researchers have proposed
the use of open nesting in (multiprocessor) TM. Moss
described the use of open nesting to implement highly
concurrent data structures in a transactional setting [29].
In contrast to the database setting, the different levels of
nesting are not well-defined; thus different levels may
conflict. For example, a parent and a child transaction
may both access the same memory location and conflict.

Atomos [30], TCC [31], and LogTM [32] describe
HTM implementations of closed and open nesting, with
commit and abort handlers for open nesting. Agrawal
et al. [33] study the memory model semantics of open-
nested TM. They describe ownership-aware transac-
tions, which provide a disciplined methodology for open
nesting, while guaranteeing abstract serializability.

Herlihy and Koskinen [22] proposed checkpointing
and partial aborts (in multiprocessor TM), as an alter-
nate to nesting. They argued that fine grained check-
pointing can be achieved and closed nesting is a more
rigid alternative.

None of the DTM efforts [4]–[6], [9], [13]–[15], [34]
consider transactional nesting or checkpointing. The
nested DTM works that we are aware of include the

N-TFA protocol [35], which supports closed nesting,
and the TFA-ON protocol [36], which supports open
nesting. N-TFA extends Saad and Ravindran’s TFA
algorithm, which uses an asynchronous clock-based
validation technique to ensure DTM transactional prop-
erties, to support closed nesting. The work [35] reports
2% average performance benefit for closed nesting com-
pared to flat nesting (and 84% speedup in certain cases).
In TFA-ON [36], abstract locks are used to guarantee
that no data conflicts occur. The average speedup for
open nesting is 30% compared to flat nesting [36].
However, N-TFA and TFA-ON use a single copy DTM
model and therefore are not fault-tolerant. In contrast,
we consider nesting (QR-CN) and checkpointing (QR-
CHK) in replicated (and thus fault-tolerant) DTM, and
is the first work to do so.

VIII. C ONCLUSIONS

We presented the QR-CN and QR-CHK protocols that
supports closed nesting and checkpointing in quorum-
based replicated distributed TM. We showed that Rqv
ensures 1-copy equivalence. Our implementation and
experimental evaluation shows that closed nesting (with
QR-CN) improves throughput over flat nesting: the aver-
age performance gain is 53% across all the benchmarks,
while the highest speedup is 101%. The reason for
performance gain is the average reduction of 33% in
abort rate. The lower abort rates, in turn, are responsible
for reducing the communication overhead by 34 %. We
observed performance degradation of 16% for check-
pointing over flat nesting across benchmarks, owing to
message overhead of 19%.

We determined that closed nesting best applies for
applications with high contention. We also found that
the length of transactions is an important factor in the
performance of closed nesting. We observed that the
performance of closed nesting increases with increase
in the level of contention and transaction length.
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