
On Scheduling Exception Handlers in Dynamic Real-Time Systems

Binoy Ravindran?, Edward Curley?, and E. Douglas Jensen‡

?ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA

{binoy,alias}@vt.edu

‡The MITRE Corporation

Bedford, MA 01730, USA

jensen@mitre.org

Abstract

We consider the problem of scheduling exception handlers in real-time systems that operate under run-

time uncertainties including those on execution times, activity arrivals, and failure occurrences. The applica-

tion/scheduling model includes activities and their exception handlers that are subject to time/utility function

(TUF) time constraints and an utility accrual (UA) optimality criterion. A key underpinning of the TUF/UA

scheduling paradigm is the notion of “best-effort” where high importance activities are always favored over

low importance ones, irrespective of activity urgency. (This is in contrast to classical admission control

models which favor feasible completion of admitted activities over admitting new ones, irrespective of activity

importance.) We consider a transactional style activity execution paradigm, where handlers that are released

when their activities fail (e.g., due to time constraint violations) abort the failed activities after performing

recovery actions. We present a scheduling algorithm called Handler-assured Utility accrual Algorithm (or

HUA) for scheduling activities and their handlers. We show that HUA’s properties include bounded-time

completion for handlers and bounded loss of the best-effort property. Our implementation experience on a

RTSJ (Real-Time Specification for Java) Virtual Machine demonstrates the algorithm’s effectiveness.

I. INTRODUCTION

Embedded real-time systems that are emerging in many domains such as robotic systems in the

space domain (e.g., NASA/JPL’s Mars Rover [4]) and control systems in the defense domain (e.g.,

airborne trackers [2]) are fundamentally distinguished by the fact that they operate in environments with

dynamically uncertain properties. These uncertainties include transient and sustained resource over-

loads due to context-dependent activity execution times, and non-deterministically distributed activity

arrivals and failure occurrences (which may also cause overloads). Nevertheless, such systems require

the strongest possible assurances on activity timeliness behavior. Another important distinguishing

feature of most of these systems that are of interest to us is their relatively long activity execution

time magnitudes, compared to conventional real-time subsystems—e.g., from milliseconds to minutes.

When resource overloads occur, meeting time constraints of all activities is impossible as the demand

exceeds the supply. The urgency of an activity is sometimes orthogonal to the relative importance

of the activity—-e.g., the most urgent activity may be the least important, and vice versa; the most

urgent may be the most important, and vice versa. Hence when overloads occur, completing the most

important activities irrespective of activity urgency is often desirable. Thus, a clear distinction has to

be made between urgency and importance during overloads. (During underloads, such a distinction

generally need not be made, especially if all time constraints are deadlines, as algorithms that can

meet all deadlines exist for those situations—e.g., EDF [6].)

Deadlines by themselves cannot express both urgency and importance. Thus, we consider the

abstraction of time/utility functions (or TUFs) [7] that express the utility of completing an activity as a

function of that activity’s completion time. We specify a deadline as a binary-valued, downward “step”

shaped TUF; Figure 1(a) shows examples. Note that a TUF decouples importance and urgency—i.e.,

urgency is measured on the X-axis, and importance is denoted (by utility) on the Y-axis. TUFs usually

have a termination time — the latest time after which the function is not defined. For downward step

TUFs, this time generally is the function’s discontinuity point.

-
Time

6Utility

0

(a)

-
Time

6Utility

0

bbb

(b)

-
Time

6Utility

S
S
SS

0

HHH

(c)

Fig. 1. Example TUF Time Constraints: (a) Step

TUFs; (b) TUF of an AWACS [2]; and (c) TUFs of

a Coastal Air defense System [12].

Some real-time systems also have activities with non-

deadline time constraints, such as those where the utility

attained for activity completion varies (e.g., decreases,

increases) with completion time. Figures 1(b)–1(c) show

examples from two defense applications [2], [12].

When activity time constraints are expressed with TUFs,

the scheduling optimality criteria are based on maximizing

accrued activity utility—e.g., maximizing the total activity accrued utility. Such criteria are called

utility accrual (or UA) criteria, and sequencing (scheduling, dispatching) algorithms that optimize UA

criteria are called UA sequencing algorithms (see [15] for example algorithms). UA criteria may also

include other factors—e.g., dependencies that may arise between activities due to synchronization.

UA algorithms that maximize total utility under downward step TUFs (e.g., [3], [11], [19]) default to

EDF during underloads, since EDF satisfies all deadlines during underloads. Consequently, they obtain

the optimum total utility during underloads. During overloads, they inherently favor more important

activities over less important ones (since more utility can be attained from the former), irrespective of

activity urgency, and thus exhibit adaptive behavior and graceful timeliness degradation. This behavior

of UA algorithms is called “best-effort” [11] in the sense that the algorithms strive their best to feasibly

complete as many high importance activities — as specified by the application through TUFs — as

possible.1 Consequently, high importance activities that arrive at any time always have a very high

1Note that the term “best effort” as used in the context of networks actually is intended to mean ”least effort.”

likelihood for successful completion (irrespective of their urgency). Note also that EDF’s optimal

timeliness behavior is a special-case of UA scheduling.

A. Contributions: Scheduling Exception Handlers with Timing Assurances

When a failure occurs to an activity in such dynamic systems (e.g., an execution overrun causing a

time constraint violation, logical error), an application-supplied exception handler is often immediately

released for execution. Such handlers may have time constraints themselves and will compete for

the processor along with other activities. Under a termination model, when a handler executes (not

necessarily when it is released), it will abort the failed activity after performing transactional-style

recovery actions that are necessary to avoid inconsistencies (e.g., [17]). After a handler completes its

execution, the application may desire to resume the execution of the failed activity’s logic—e.g., the

parent activity (or another activity that was waiting for the completion) of the failed activity creates

a new child activity to resuscitate the failed activity’s logic.

Scheduling of the handlers (along with their activities) must contribute to system-wide timeliness

optimality. Untimely handler execution can degrade timeliness optimality—e.g.: high urgency handlers

are delayed by low urgency non-failed activities, thereby delaying the resumption of high urgency

failed activities; high urgency, non-failed activities are delayed by low urgency handlers.

A straightforward approach for scheduling handlers is to conceptually model them as normal

activities, insert them into the ready queue when activities arrive, and schedule them along with the

normal activities, according to a discipline that provides acceptably optimal system-wide timeliness.

This should be possible, as handlers are like normal activities, with similar scheduling parameters

(e.g., execution time, time constraints). However, doing so causes some serious difficulties:

(1) Constructing a schedule that includes an activity and its handler implies that the activity and

the handler will be dispatched for execution according to their order in the schedule. This is not true,

as the handler needs to be dispatched only if and when the activity fails;

(2) When an activity is released for execution, which is a scheduling event, it is immediately ready

for execution. However, its handler is released for execution only if and when the activity fails. Thus,

constructing a schedule at an activity’s release time such that it also includes the activity’s handler

will require a prediction of when the handler will be ready for execution in the future — a potentially

impossible problem as there is no way to know if an activity will fail.

These problems can possibly be alleviated by considering an activity’s failure time as a scheduling

event and constructing a schedule that includes the activity’s handler at that time. Doing so means

that there is no way to know whether or not the handler can feasibly complete, satisfying its time

constraint, until the activity fails. In fact, it is quite possible that when the activity fails, the scheduler

may discover that the handler is infeasible due to an overload — e.g., there are more activities than

can be feasibly scheduled, and there exists a schedule of activities excluding the handler from which

more utility can be attained than from one including the handler.

Another strategy that avoids this predicament and has been very often considered in the past

(e.g., [1], [13], [18]) is classical admission control: When an activity arrives, check whether a feasible

schedule can be constructed that includes all the previously admitted activities and their handlers,

besides the newly arrived one and its handler. If so, admit the activity and its handler; otherwise,

reject. But this will cause the very fundamental problem that is solved by UA schedulers through its

best-effort decision making—i.e., a newly arriving activity is rejected because it is infeasible, despite

that activity being the most important. In contrast, UA schedulers will feasibly complete the high

importance newly arriving activity (with high likelihood), at the expense of not completing some

previously arrived ones, since they are now less important than the newly arrived.

Note that this problem does not occur in hard real-time systems (i.e., those that are assured to meet

all deadlines) because the arrival and execution behaviors of activities are statically known. Thus,

activities and their handlers are statically scheduled to ensure that all deadlines are met; if no feasible

schedule exists, the application is redesigned until one exists [8].

Thus, scheduling handlers to ensure their system-wide timely execution in dynamic systems involves

an apparently paradoxical situation: an activity may arrive at any (unknown) time; in the event of its

failure, which is unknown until the failure occurs, a handler is immediately released, and as strong

assurances as possible must be provided for the handler’s feasible completion.

We precisely address this problem in this paper. We consider real-time activities that are subject to

TUF time constraints. Activities may have arbitrary arrival behaviors and failure occurrences. Activities

may synchronize their execution for serially sharing non-CPU resources, causing dependencies. For

such a model, we consider the scheduling objective of maximizing the total utility accrued by

all activities on one processor. This problem is NP-hard. We present a polynomial-time heuristic

algorithm called the Handler-assured Utility accrual Algorithm (or HUA).

We show that HUA ensures that handlers of activities that encounter failures during their execution

will complete within a bounded time. Yet, the algorithm retains the fundamental best-effort property

of UA algorithms with bounded loss—i.e., a high importance activity that may arrive at any time has a

very high likelihood for successful completion. HUA also exhibits other properties including optimal

total utility for a special case, deadlock-freedom, and correctness. Our implementation experience of

HUA on a RTSJ Virtual Machine demonstrates the algorithm’s effectiveness.

Thus, the contribution of the paper is the HUA algorithm. To the best of our knowledge, we are

not aware of any other efforts that solve the problem solved by HUA.

The rest of the paper is organized as follows: Section II outlines our activity model and state

the scheduling objectives. We present HUA in Section III and establish the algorithm’s properties in

Section IV. Section V reports our implementation experience. We conclude the paper in Section VI.

II. MODELS AND OBJECTIVES

A. Threads and Scheduling Segments

Our basic scheduling entity is the thread abstraction. Thus, the application consists of a set of

threads, denoted Ti, i ∈ {1, 2, ..., n}. Threads can arrive arbitrarily and be preempted arbitrarily.

A thread can be subject to time constraints. A time constraint usually has a “scope”—a segment

of the thread control flow that is associated with a time constraint [14]. We call such a scope a

“scheduling segment.” We call a thread a “real-time thread” while it is executing inside a scheduling

segment. Otherwise, it is called a “non-real-time thread.”

A thread presents an execution time estimate of its scheduling segment to the scheduler when it

enters that segment. This time estimate is not the worst-case; it can be violated at run-time (e.g., due

to context dependence) and can cause CPU overloads.

B. Resource Model

Threads can access non-CPU resources including physical (e.g., disks) and logical (e.g., locks)

resources. Resources can be shared, and can be subject to mutual exclusion constraints.

Similar to resource access models for fixed-priority scheduling [16] and that for TUF/UA schedul-

ing [3], [10], we consider a single-unit resource model. Thus, only a single instance is present for

each resource and a thread must explicitly specify the resource that it needs.

A thread may request multiple shared resources during its lifetime. The requested time intervals for

holding resources may be nested or disjoint. We assume that a thread explicitly releases all granted

resources before the end of its execution.

C. Timeliness Model

A thread’s time constraints are specified using TUFs. A TUF is always associated with a thread

scheduling segment and is presented by the thread to the scheduler when the thread enters that segment.

We focus on non-increasing unimodal TUFs, as they encompass the majority of the time constraints

of interest to us. Figures 1(a), 1(b), and two TUFs in Figure 1(c) show examples.

Each TUF has an initial time and a termination time, which are the earliest and the latest times

for which the TUF is defined, respectively. We assume that the initial time is the thread release time;

thus a thread’s absolute and relative termination times are the same. In this paper, we also assume

that the termination time of a downward step TUF is its discontinuity point.

D. Exceptions and Abortion Model

An exception handler is assumed to be associated with each scheduling segment of a thread. We

consider a termination model for failures that are encountered during thread executions including

time-constraint violations and logical errors. When a thread segment encounters such a failure during

its execution, an exception is raised, and the segment’s handler is immediately released.

When the handler executes (not necessarily when it is released), it will abort the thread after

performing transactional-style (e.g., [17]) compensations and recovery actions that are necessary to

avoid inconsistencies—e.g., rolling back, rolling forward, or making other compensations to logical

and physical resources that are held by the failed thread to safe states. Often, the handler will also

perform actions that are required to ensure the safety and stability of the external state.

A handler also has a time constraint, which is specified using a TUF. The handler’s TUF’s initial

time is the time of failure of the handler’s thread. The handler’s TUF’s termination time is relative to

its initial time. Thus, a handler’s absolute and relative termination times are not the same.

A handler also specifies an execution time estimate. This estimate along with the handler’s TUF

are described by the handler’s thread when the thread enters the corresponding scheduling segment.

To summarize, when a thread enters a scheduling segment, it presents the following scheduling

parameters to the scheduler: (1) execution time estimate of the scheduling segment; (2) time constraint

of the segment (described using a TUF); (3) execution time estimate of the segment’s exception

handler; and (4) time constraint of the handler (described using a TUF).

A thread is assumed to present these scheduling parameters to the scheduler through a scheduling

API that it invokes when entering a scheduling segment. Example such scheduling APIs include

Real-Time CORBA 1.2’s [14] begin scheduling segment API and [9]’s REQ CPU API that

are invoked by distributable threads and normal threads to enter a scheduling segment, respectively.

Handlers are not allowed to mutually exclusively access non-CPU resources. Violation of a handler’s

absolute termination time will cause the immediate execution of system recovery code, which will

recover thread’s held resources and return the system to a consistent and safe state.

E. Scheduling Objectives

Our goal is to design a scheduling algorithm that maximizes the sum of the utility accrued by all the

threads as much as possible. For downward step TUFs, maximizing the total utility subsumes meeting

all TUF termination times as a special case. For non-step TUFs, this is not the case, as different

utilities can be accrued depending upon the thread completion time, even when the TUF termination

time is met. When all termination times are met for downward step TUFs (possible during underloads),

the total accrued utility is the optimum possible. During overloads, for step and non-step TUFs, the

goal is to maximize the total utility as much as possible.

Further, the completion time of handlers must be bounded. Moreover, the algorithm must exhibit

the best-effort property of UA algorithms (described in Section I) to the extent possible.

This problem is NP-hard because it subsumes the problem of scheduling dependent threads with

step-shaped TUFs, which has been shown to be NP-hard in [3].

III. HUA SCHEDULING ALGORITHM

A. Basic Rationale

Since the task model is dynamic—i.e., when threads will arrive, how long they will execute, which

set of resources will be needed by which threads, the length of time for which those resources will

be needed, the order of accessing the resources are all statically unknown, future scheduling events2

such as new thread arrivals and new resource requests cannot be considered at a scheduling event.

Thus, a schedule must be constructed solely exploiting the current system knowledge.

Since the primary scheduling objective is to maximize the total utility, a reasonable heuristic is a

“greedy” strategy: Favor “high return” threads over low return ones, and complete as many of them

as possible before thread termination times, as early as possible (since TUFs are non-increasing).

The potential utility that can be accrued by executing a thread defines a measure of its “return on

investment.” We measure this using a metric called the Potential Utility Density (or PUD). A thread’s

PUD measures the utility that can be accrued per unit time by immediately executing the thread and

those thread(s) that it (directly or transitively) depends upon for locked resources.

Since the best-case failure scenario is the absence of failure for the thread and all of its dependents,

the corresponding PUD can be obtained as the total utility accrued by executing the thread and its

dependents divided by the aggregate execution time spent for executing the thread and its dependents.

The PUD for the worst-case failure scenario (one where the thread and all of its dependents fail)

2A “scheduling event” is an event that invokes the scheduling algorithm.

can be obtained as the total utility accrued by executing the handler of the thread and that of its

dependents divided by the aggregate execution time spent for executing the thread, its handler, the

thread’s dependents, and the handlers of the dependents.3 The thread PUD can now be measured as

the minimum of these two PUDs, as that represents the worst-case.

Thus, HUA examines threads for potential inclusion in a feasible schedule in the order of decreasing

PUDs. For each thread, the algorithm examines whether the thread and its handler, along with the

thread’s dependents and their handlers, can be feasibly completed. If infeasible, the thread, its handler,

the dependents, and their handlers are rejected. The process is repeated until all threads are examined,

and the schedule’s first thread is dispatched. Rejected threads are reconsidered for scheduling at

subsequent scheduling events, until their termination times expire.

This process ensures that the threads included in the schedule at any given time have feasible han-

dlers, thereby ensuring that when those threads encounter failures during execution, their handlers are

assured to complete. Note that no such assurances are afforded to thread failures that are encountered

otherwise—e.g., when termination times of threads that are rejected at a scheduling event eventually

expire. Handlers for those failures are executed in a best-effort manner—i.e., in accordance with their

potential contribution to the total utility (at termination time expirations).

Handler Feasibility. Feasibility of a thread can be tested by verifying whether the thread can

complete before its termination time. For a handler, feasibility means whether it can complete before

its absolute termination time, which is the time of thread failure plus the handler’s termination time.

Since the thread failure time is impossible to predict, possible choices for the handler’s absolute

termination time include: (A) predicted thread completion time (in the current schedule) plus the

handler’s termination time; and (B) thread’s termination time plus the handler’s termination time.

The difference between A and B is in the delay suffered by the handler before its execution begins

(A incurs less delay than B). Delaying the handler’s start time (until its latest start time) potentially

allows threads that may arrive later but with an earlier termination time than that of the handler to be

feasibly scheduled. Thus, B is more appropriate from the standpoint of maximizing total utility.

There is always the possibility that a new thread Ti may arrive after the failure of another thread

Tj but before the completion of Tj’s handler. As per the best-effort philosophy, Ti must immediately

be afforded the opportunity for feasible execution, in accordance with its potential contribution to the

total utility. However it is possible that a schedule that includes Ti may not include Tj’s handler. Since

Tj’s handler cannot be rejected, as that will violate the commitment made to Tj , the only option left

3Note that, in the worst-case failure scenario, utility is accrued only for executing the thread handlers; no utility is gained for executing

the threads themselves, though execution time is spent for executing the threads and the handlers.

is to not consider Ti for execution until Tj’s handler completes, consequently degrading the best-effort

property. In Section IV, we quantify this loss, and thereby establish the tradeoff between bounding

handler completion times and the loss of the best-effort property.

We now overview the algorithm, and subsequently describe each of its components in detail.

B. Overview

HUA’s scheduling events include the arrival of a thread, completion of a thread or a handler, a

resource request, a resource release, and the expiration of a TUF termination time. To describe HUA,

we define the following variables and auxiliary functions:

• Tr is the current set of unscheduled threads. Ti ∈ Tr is a thread. T h
i denotes Ti’s handler.

• σ is the ordered schedule. σ(i) denotes the thread occupying the ith position in schedule σ.

• Ui(t) denotes Ti’s TUF; Uh
i (t) denotes T h

i ’s TUF.

• Ti.X is Ti’s termination time. Ti.ExecT ime is Ti’s estimated remaining execution time. Ti.Dep is

Ti’s dependency list.

• H is the set of handlers that are released for execution, ordered by non-decreasing handler termi-

nation times. A handler is said to be released for execution when the handler’s thread fails. H = ∅
if all released handlers have completed.

• Function updateReleaseHandlerSet() inserts a handler T h
i into H if the scheduler is

invoked due to a thread Ti’s failure; deletes a handler T h
i from H if the scheduler is invoked due to

T h
i ’s completion. Insertion of T h

i into H is at the position corresponding to T h
i ’s termination time.

• Owner(R) denotes the threads that are currently holding resource R; reqRes(T) returns the

resource requested by T .

• headOf(σ) returns the first thread in σ.

• sortByPUD(σ) returns a schedule ordered by non-increasing thread PUDs. If two or more threads

have the same PUD, then the thread(s) with the largest ExecT ime will appear before any others

with the same PUD.

• Insert(T,σ,I) inserts T in the ordered list σ at the position indicated by index I; if entries in

σ exists with the index I , T is inserted before them. After insertion, T ’s index in σ is I .

• Remove(T,σ,I) removes T from ordered list σ at the position indicated by index I; if T is not

present at the position in σ, the function takes no action.

• lookup(T,σ) returns the index value of the first occurrence of T in the ordered list σ.

• feasible(σ) returns a boolean value indicating schedule σ’s feasibility. σ is feasible, if the

predicted completion time of each thread T in σ, denoted T.C, does not exceed T ’s termination

time. T.C is the time at which the scheduler is invoked plus the sum of the ExecT ime’s of all

threads that occur before T in σ and T.ExecT ime.

input: Tr , H; output: selected thread Texe;1:

Initialization: t := tcur; σ := ∅;2:

updateReleaseHandlerSet ();3:

for each thread Ti ∈ Tr do4:

if feasible(Ti)=false then5:

reject(Ti);6:

else

Ti.LUD = min
(

Ui(t+Ti.ExecTime)
Ti.ExecTime

,
Uh

i (t+Ti.ExecTime+T h
i .ExecTime)

Ti.ExecTime+T h
i .ExecTime

)
;7:

Ti.Dep := buildDep(Ti);8:

for each thread Ti ∈ Tr do9:

Ti.PUD:=calculatePUD(Ti, t);10:

σtmp :=sortByPUD(Tr);11:

for each thread Ti ∈ σtmp from head to tail do12:

if Ti.PUD > 0 then13:

σ := insertByETF(σ, Ti);14:

else break;15:

HandlerIsMissed := false ;16:

if H 6= ∅ then17:

for each thread T h ∈ H do18:

if T h /∈ σ then19:

HandlerIsMissed := true;20:

break;21:

if HandlerIsMissed := true then22:

Texe :=headOf(H);23:

else

Texe:=headOf(σ);24:

return Texe;25:

Algorithm 1: HUA: High Level Description

Algorithm 1 describes HUA at a high level of abstraction. When invoked at time tcur, HUA first

updates the set H (line 3) and checks the feasibility of the threads. If a thread’s earliest predicted

completion time exceeds its termination time, it is rejected (line 6). Otherwise, HUA calculates the

thread’s Local Utility Density (or LUD) (line 7), and builds its dependency list (line 8).

The PUD of each thread is computed by the procedure calculatePUD(), and the threads are

then sorted by their PUDs (lines 10–11). In each step of the for-loop from line 12 to 15, the thread

with the largest PUD, its handler, the thread’s dependents, and their handlers are inserted into σ, if it

can produce a positive PUD. The output schedule σ is then sorted by the threads’ termination times

by the procedure insertByETF().

If one or more handlers have been released but have not completed their execution (i.e., H 6= ∅;

line 17), the algorithm checks whether any of those handlers are missing in the schedule σ (lines 18–

21). If any handler is missing, the handler at the head of H is selected for execution (line 23). If all

handlers in H have been included in σ, the thread at the head of σ is selected (line 24).

C. Computing Dependency Lists

HUA builds the dependency list of each thread—that arises due to mutually exclusive resource

sharing—by following the chain of resource request and ownership.

input: Thread Tk; output: Tk.Dep ;1:

Initialization : Tk.Dep := Tk; Prev := Tk;2:

while reqRes(Prev) 6= ∅∧
3:

Owner(reqRes(Prev)) 6= ∅ do

Tk.Dep :=Owner(reqRes(Prev)) ·Tk.Dep;4:

Prev := Owner(reqRes(Prev));5:

Algorithm 2: buildDep(Tk): Building Dependency List for a Thread Tk

Algorithm 2 shows this procedure for a thread Tk. For convenience, the thread Tk is also included

in its own dependency list. Each thread Tl other than Tk in the dependency list has a successor job

that needs a resource which is currently held by Tl. Algorithm 2 stops either because a predecessor

thread does not need any resource or the requested resource is free. Note that “¦” denotes an append

operation. Thus, the dependency list starts with Tk’s farthest predecessor and ends with Tk.

D. Resource and Deadlock Handling

To handle deadlocks, we consider a deadlock detection and resolution strategy, instead of a deadlock

prevention or avoidance strategy precisely due to the dynamic nature of the systems of interest —

which resources will be needed by which threads, for how long, and in what order are all unknown to

the scheduler. Under a single-unit resource request model, the presence of a cycle in the resource graph

is the necessary and sufficient condition for a deadlock to occur. Thus, a deadlock can be detected by

a straightforward cycle-detection algorithm. Such an algorithm is invoked by the scheduler whenever

a thread requests a resource. A deadlock is detected if the new edge resulting from the thread’s

resource request produces a cycle in the resource graph. To resolve the deadlock, some thread needs

to be aborted, which will result in some utility loss. To minimize this loss, we compute the utility

that a thread can potentially accrue by itself if it were to continue its execution, which is measured

by its LUD (line 7, Algorithm 1). HUA aborts that thread in the cycle with the lowest LUD.

E. Computing Thread PUD

Procedure calculatePUD() (Algorithm 3) accepts a thread Ti (with its dependency list) and

the current time tcur. It determines Ti’s PUD, by assuming that threads in Ti.Dep and their handlers

are executed from the current position (at tcur) in the schedule, while following the dependencies.

input: Ti, tcur; output: Ti.PUD;1:

Initialization : tc := 0, th
c := 0, U := 0, Uh := 0;2:

for each thread Tj ∈ Ti.Dep, from tail to head do3:

tc := tc + Tj .ExecT ime;4:

U := U + Uj(tcur + tc);5:

th
c := th

c + T h
j .ExecT ime;6:

Uh := Uh + Uh
j (tcur + tc + th

c);7:

Ti.PUD := min
(
U

/
tc, U

h
/
(tc + th

c)
)
;8:

return Ti.PUD;9:

Algorithm 3: calculatePUD(Ti,tcur): Calculating the PUD of a Thread Ti

To compute Ti’s PUD at time tcur, HUA computes the PUDs for the best-case and worst-case

failure scenarios and determines the minimum of the two.

For determining Ti’s total accrued utility for the best-case failure-scenario, HUA considers each

thread Tj that is in Ti’s dependency chain, which needs to be completed before executing Ti. The

total expected execution time upon completing Tj is counted using the variable tc of line 4. With the

known expected completion time of each thread, we can derive the expected utility for each thread,

and thus obtain the total accrued utility U (line 5) for Ti’s best-case failure-scenario.

For determining Ti’s total accrued utility for the worst-case failure-scenario, the algorithm counts

the total expected execution time upon completing Tj’s handler using the variable thc of line 6. The total

accrued utility for the worst-case failure scenario Uh can be determined once the thread’s completion

time followed by its handler’s completion time is known (line 7).

The best-case and worst-case failure scenario PUDs can be determined as U and Uh divided by tc

and tc + thc , respectively, and the minimum of the two PUDs is determined as Ti’s PUD (line 8).

Note that the total execution time of Ti and its dependents consists of two parts: (1) the time needed

to execute the threads that directly or transitively block Ti; and (2) Ti’s remaining execution time.

According to the process of buildDep(), all the dependent threads are included in Ti.Dep.

Note that each thread’s PUD is calculated assuming that they are executed at the current position

in the schedule. This would not be true in the output schedule σ, and thus affects the accuracy

of the PUDs calculated. Actually, we are calculating the highest possible PUD of each thread by

assuming that it is executed at the current position. Intuitively, this would benefit the final PUD, since

insertByETF() always selects the thread with the highest PUD at each insertion on σ. Also, the

PUD calculated for the dispatched thread at the head of σ is always accurate.

F. Constructing Termination Time-Ordered Feasible Schedules

Algorithm 4 describes insertByETF() (invoked in Algorithm 1, line 14). insertByETF()

updates the tentative schedule σ by attempting to insert each thread, along with its handler, all of the

thread’s dependent threads, and their handlers into σ. The updated schedule σ is an ordered list of

threads, where each thread is placed according to the termination time that it should meet.

input : Ti and an ordered thread list σ1:

output : the updated list σ2:

if Ti /∈ σ then3:

Copy σ into σtmp: σtmp :=σ;4:

Insert(Ti, σtmp, Ti.X);5:

Insert(T h
i , σtmp, Ti.X + T h

i .X);6:

CuTT = Ti.X;7:

for each thread Tj ∈ {Ti.Dep− Ti} from head to tail do8:

if Tj ∈ σtmp then9:

TT=lookup(Tj , σtmp);10:

if TT < CuTT then11:
continue;

else12:

Remove(Tj , σtmp, TT);13:

TTh=lookup(T h
j , σtmp);14:

Remove(T h
j , σtmp, TTh);15:

CuTT :=min(CuTT, Tj .X);16:

Insert(Tj , σtmp, CuTT);17:

Insert(T h
j , σtmp, Tj .X + T h

j .X);18:

if feasible(σtmp) then19:

σ := σtmp;20:

return σ;21:

Algorithm 4: insertByETF(σ, Ti): Inserting a Thread Ti, Ti’s Handler, Ti’s Dependents, and

their Handlers into a Termination Time-Ordered Feasible Schedule σ

Note that the time constraint that a thread should meet is not necessarily its termination time. In

fact, the index value of each thread in σ is the actual time constraint that the thread should meet.

A thread may need to meet an earlier termination time in order to enable another thread to meet

its termination time. Whenever a thread is considered for insertion in σ, it is scheduled to meet its

own termination time. However, all of the threads in its dependency list must execute before it can

execute, and therefore, must precede it in the schedule. The index values of the dependent threads

may be changed with Insert()in line 17 of Algorithm 4.

The variable CuTT keeps track of this information. It is initialized with the termination time of

thread Ti, which is tentatively added to the schedule (line 7). Thereafter, any thread in Ti.Dep with a

later termination time than CuTT is required to meet CuTT (lines 13; 16–17). If, however, a thread

has a tighter termination time than CuTT , then it is scheduled to meet that time (line 11), and CuTT

is advanced to that time since all threads left in Ti.Dep must complete by then (lines 16–17).

When Ti (or any thread Tj ∈ Ti.Dep) is inserted in σ, its handler T h
i is immediately inserted to

meet a termination time that is equal to Ti’s termination time plus T h
i ’s (relative) termination time

(lines 6, 18). When a thread in Ti.Dep with a later termination time than CuTT is advanced to meet

CuTT , the thread’s handler is also correspondingly advanced (lines 14–15; 18).

Finally, if this insertion (of Ti, its handler, threads in Ti.Dep, and their handlers) produces a feasible

schedule, then the threads are included in this schedule; otherwise, not (lines 19–20).

Computational Complexity. With n threads, HUA’s asymptotic cost is O(n2 log n) (for brevity,

we skip the analysis). Though this cost is higher than that of many traditional real-time scheduling

algorithms, it is justified for applications with longer execution time magnitudes such as those that

we focus on here. (Of course, this high cost cannot be justified for every application.)

IV. ALGORITHM PROPERTIES

We first describe HUA’s bounded-time completion property for exception handlers:

Theorem 1: If a thread Ti encounters a failure during its execution, then under HUA with zero

overhead, its handler T h
i will complete no later than Ti.X + T h

i .X time units (barring T h
i ’s failure).

Proof: If Ti fails at a time t during its execution, then Ti was included in HUA’s schedule

constructed at the scheduling event that occurred nearest to t, say at t′, since only threads in the

schedule are executed (lines 23–25, Algorithm 1). If Ti was in HUA’s schedule at t′, then both Ti

and T h
i (besides Ti’s dependents and their handlers) were feasible at t′, since infeasible threads and

their handlers (along with their dependents) are rejected by HUA (lines 19–20, Algorithm 4). Thus,

T h
i was scheduled to complete no later than Ti.X + T h

i .X (lines 6, 18, Algorithm 4).

When a thread Ti arrives after the failure of a thread Tj but before the completion of T h
j , HUA

may exclude Ti from a schedule until T h
j completes, resulting in some loss of the best-effort property.

To quantify this loss, we define the concept of a Non Best-effort time Interval (or NBI):

Definition 1: Consider a scheduling algorithmA. Let a thread Ti arrive at a time t with the following

properties: (a) Ti and its handler together with all threads in A’s schedule at time t are not feasible

at t, but Ti and its handler are feasible just by themselves;4 (b) One or more handlers (which were

released due to thread failures before t) have not completed their execution at t; and (c) Ti has the

highest PUD among all threads in A’s schedule at time t. Now, A’s NBI, denoted NBIA, is defined

as the duration of time that Ti will have to wait after t, before it is included in A’s feasible schedule.

Thus, Ti is assumed to be feasible together with its handler at t + NBIA.

We now describe the NBI of HUA and other UA algorithms including DASA [3], LBESA [11],

and AUA [5] (under zero overhead):

Theorem 2: HUA’s worst-case NBI is t + max∀Tj∈σt

(
Tj.X + T h

j .X
)
, where σt denotes HUA’s

schedule at time t. DASA’s and LBESA’s worst-case NBI is zero; AUA’s is +∞.

Proof: The time t that will result in the worst-case NBI for HUA is when σt = H 6= ∅. By

NBI’s definition, Ti has the highest PUD and is feasible. Thus, Ti will be included in the feasible

schedule σ, resulting in the rejection of some handlers in H . Consequently, the algorithm will discard

σ and select the first handler in H for execution. In the worst-case, this process repeats for each of the

scheduling events that occur until all the handlers in σt complete (i.e., at handler completion times),

as Ti and its handler may be infeasible with the remaining handlers in σt at each of those events.

Since each handler in σt is scheduled to complete by max∀Tj∈σt

(
Tj.X + T h

j .X
)
, the earliest time that

Ti becomes feasible is t + max∀Tj∈σt

(
Tj.X + T h

j .X
)
.

DASA and LBESA will examine Ti at t, since a task arrival is always a scheduling event for them.

Further, since Ti has the highest PUD and is feasible, they will include Ti in their feasible schedules

at t (before including any other tasks), yielding a zero worst-case NBI.

AUA will examine Ti at t, since a thread arrival at any time is a scheduling event under it. However,

AUA is a TUF/UA algorithm in the classical admission control mould and will reject Ti in favor of

previously admitted threads, yielding a worst-case NBI of +∞.

Theorem 3: The best-case NBI of HUA, DASA, and LBESA is zero; AUA’s is +∞.

Proof: HUA’s best-case NBI occurs when Ti arrives at t and the algorithm includes Ti and

all handlers in H in the feasible schedule σ (thus the algorithm only rejects some threads in σt to

construct σ). Thus, Ti is included in a feasible schedule at time t, resulting in zero best-case NBI.

4If A does not consider a thread’s handler for feasibility (e.g., [3], [11]), then the handler’s execution time is regarded as zero.

The best-case NBI scenario for DASA, LBESA, and AUA is the same as their worst-case.

Thus, HUA’s NBI interval [0, max∀Tj∈σt Tj.X + T h
j .X] lies in between that of DASA/LBESA’s [0]

and AUA’s [+∞]. Note that HUA and AUA bound handler completions; DASA/LBESA do not.

HUA produces optimum total utility for a special case:

Theorem 4: Consider a set of independent threads subject to step TUFs. Suppose there is sufficient

processor time for meeting the termination-times of all threads and their handlers. Now, a schedule

produced by EDF [6] is also produced by HUA, yielding equal totaly utility.

Proof: For a thread Ti without dependencies, Ti.Dep only contains Ti. During underloads, σ

from line 14 of Algorithm 1 is termination time-ordered. The TUF termination time that we consider

is analogous to the deadline in [6]. From [6], an EDF schedule is optimal (with respect to meeting

all deadlines) during underloads. Thus, σ yields the same total utility as EDF.

HUA also exhibits non-timeliness properties including freedom from deadlocks, correctness (i.e.,

the resource requested by a thread selected for execution by HUA is free), and mutual exclusion.

These properties are self-evident from the algorithm description. For brevity, we omit their proofs.

V. IMPLEMENTATION EXPERIENCE

We implemented HUA in a real-time Java platform. This platform consisted of the meta-scheduler

middleware scheduling framework in [9] implemented atop Apogee’s Aphelion Real-Time Java Virtual

Machine that is compliant with the Real-Time Specification for Java (RTSJ). Aphelion JVM is an

RTSJ-compliant real-time extension of the J9 IBM JVM (version 2.1). This RTSJ platform runs atop

the Debian Linux OS (kernel version 2.6.16-2-686) on a 800MHz, Pentium-III processor.

Besides HUA, we implemented DASA and a simplified variant of HUA called HUA-Non-Preemptive

(or HUA-NP), for a comparative study. DASA does not consider handlers for scheduling until failures

occur. When a thread fails, DASA then considers its handler for scheduling just like a regular thread,

resulting in zero NBI. Similar to DASA, HUA-NP also does not consider handlers for scheduling until

failures occur. However, when a thread fails, unlike DASA, HUA-NP immediately runs the thread

handler non-preemptively till completion, resulting in a worst-case and best-case NBI of one handler

execution time. In this way, HUA-NP seeks to accrue as much utility as possible by excluding handlers

from schedule construction (and thus is more greedy than HUA), while maintaining an upper bound

on handler completion. Thus, DASA and HUA-NP are good candidates for a comparative study as

they represent two interesting end points of the NBI-versus-handler-completion-time tradeoff space.

Our test application created several periodic threads that consume a certain amount of processor

time, request a shared resource, and periodically check for abort exceptions. Each thread created had

a unique execution time, period, and maximum utility. These parameters were assigned based on

three PUD-based thread classes that were used: high, medium, and low. The classes differed in thread

execution times, thread periods, and threads PUDs by one order of magnitude. The classes, however,

differed in handler execution times, handler periods, and handler PUDs only by a small factor. Within

each class, thread execution times and thread PUDs were higher than that of their handler execution

times and handler PUDs, respectively, by one order of magnitude. For all the experiments, an even

number of threads from each of the three classes were used. Thus, the three classes give the algorithms

a rich mixture of thread properties to exhibit their NBI and handler completion behaviors.

Our metrics to evaluate HUA included the NBI, Handler Completion Time (HCT), Accrued Utility

Ratio (AUR), and Deadline Miss Ratio (DMR). HCT is the duration between a handler’s completion

time and it’s release time. AUR is the ratio of the total accrued utility to the maximum possible total

utility (possible if every released thread completes before its termination time). DMR is the ratio of

the number of threads that missed their termination times to the number of released threads.

We manipulated five variables during our experiments: (1) the percentage of failed threads, (2) sys-

tem load caused by normal tasks, (3) system load caused by handlers, (4) the ratio of handler execution

time to normal task execution time, and (5) the number of shared resources within the system. The

variables affect the system’s “stress factor” and influence the four metrics.

We measured the four metrics under a constant value for these variables, except for the failure

percentage, which was varied between 0% and 95%. To vary the failure percentage, the set of threads

that must fail for a given percentage must be repeatable. However, to have a repeatable set of discrete

failures (i.e., not a random distribution), the actual percentage of failures may be slightly off from

the predicted value—e.g., if an experiment had 50 threads and 25% of them needed to be failed, it is

impossible to fail 12.5 threads; thus the failure percentage would be 24% or 26%.

Normal task load was 150%, handler load was 90%, and the ratio of handler execution to normal

execution was 50%. We first focused on zero shared resources and then considered shared resources.

Figure 2 shows the measured NBI of DASA, HUA-NP, and HUA under increasing number of

failures. We observe that HUA provides a smaller NBI than DASA and HUA-NP. HUA has a smaller

NBI than DASA because DASA is unlikely to execute low-PUD threads like handlers. Thus, it is

likely to keep them pending and incur a non-zero NBI due to scheduler overhead when a high PUD

thread arrives. HUA has a smaller NBI than HUA-NP because HUA-NP will always have a non-zero

NBI when a high PUD thread arrives during its non-preemptive handler execution. However, the only

time HUA will have a non-zero NBI is when a high PUD thread arrives with such little slack that

the pending handlers cannot fit within that slack.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
B

I (
m

s)

Thread Failure Percentage

Non-Best effort time Interval (NBI)

HUA-ND
DASA

HUA-NP

Fig. 2. Non-Best effort time Interval (NBI)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
C

 (
m

s)

Thread Failure Percentage

Handler Completion Time

HUA-ND
DASA

HUA-NP

Fig. 3. Handler Completion Time

Figure 3 shows the average HCTs for HUA, DASA, and HUA-NP. In general, DASA’s HCTs are

highest and rather inconsistent, HUA-NP’s are smallest and very consistent, and HUA’s are somewhat

consistent, but always within a certain bound. As DASA was not designed to bound HCTs, it makes

sense that its HCTs would be larger than the other two algorithms. Likewise, it makes sense that

HUA-NP would have the least average HCT as the handler is run to completion when it is released.

To allow more threads to be scheduled, HUA does not immediately run the handler when it is released.

This delay in running the handler causes HUA’s average HCT to be higher than HUA-NP’s. However,

as HUA is designed to provide a finite bound on HCT, it will generally be smaller than DASA’s.

Figures 2 and 3 also indicate that the trends acquired from our experiments display a less than

smooth response to changes in failure percentage. (Figures 4 and 5 also display this behavior.) This

is likely due to the way the failure percentage is varied. Since the set of threads that fail for a given

failure percentage is not a strict subset of the set of threads that fail for a larger failure percentage,

it is possible that lower-PUD threads may fail at higher failure percentages. Thus, algorithms like

DASA and HUA-NP may find a more beneficial schedule at higher failure percentages.

Figure 4 shows how the AUR of each algorithm is affected under increasing failures. In general,

HUA will have a lower AUR as it reserves a portion of its schedule for handlers which generally

have lower PUDs or may not even execute. However, as can be seen from the figure, HUA has an

AUR that is comparable to, if not better than that of DASA and HUA-NP for this thread set. This is

because DASA only analyzes handlers that have been released. This limits DASA’s ability to discern

whether it would be more beneficial to abort the thread and run its handler instead. As HUA has no

such limitation, it can better decide whether to run the thread or abort the thread and run its handler.

Figure 5 displays the measured DMR under increasing failures. As the number of failures increases,

the number of termination times (or deadlines) missed also increases. This is due to the added load

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
U

R
 (

%
)

Thread Failure Percentage

AUR

HUA-ND
DASA

HUA-NP

Fig. 4. Accrued Utility Ratio

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
ea

dl
in

e
M

is
s

R
at

io
 (

%
)

Thread Failure Percentage

Deadline Miss Ratio

HUA-ND
DASA

HUA-NP

Fig. 5. Deadline Miss Ratio

that handlers put on the system. In the case of DASA, this load is completely unforeseen and as the

handlers have less PUD than most normal threads, DASA may never schedule them causing their

termination times to be missed. Thus, DASA is affected most by increased failures. While the handler

load is also unanticipated for HUA-NP, the effects are mitigated somewhat due to HUA-NP’s non-

preemptive handler execution property. Because HUA takes the handler load into consideration when

forming a schedule, the extra load on the system affects HUA the least.

 0

 500

 1000

 1500

 2000

 0 2 4 6 8 10 12 14 16 18 20

H
C

 (
m

s)

Number of Shared Resources

Handler Completion Time (with Dependencies)

HUA

Fig. 6. Handler Completion Time with Dependencies

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12 14 16 18 20

N
B

I (
m

s)

Number of Shared Resources

Non-Best effort time Interval (with Dependencies)

HUA

Fig. 7. Non-Best effort time Interval (NBI) with Dependencies

Figure 6 and Figure 7 show the average HCT and average NBI of HUA under increasing number

of shared resources. From the figures, we observe that HUA’s HCT and NBI are unaffected by

dependencies that arise between threads due to shared resources.

VI. CONCLUSIONS AND FUTURE WORK

We present a real-time scheduling algorithm called HUA. The algorithm’s application model in-

cludes threads and their exception handlers with TUF time constraints, and a transactional-style

execution paradigm where handlers abort the failed threads after performing recovery actions. Threads

may serially share non-CPU resources. We show that HUA bounds (A) the completion times of

handlers that are released for threads which fail during execution, and (B) the time interval for which

a high importance thread arriving during overloads has to wait to be included in a feasible schedule.

Our implementation on a RTSJ Virtual Machine demonstrates HUA’s effectiveness.

Property (A) is potentially unbounded for best-effort algorithms, and property (B) is potentially

unbounded for admission control algorithms. By bounding (A) and (B), HUA conceptually places

itself between these two models, allowing for applications to exploit the tradeoff space.

Directions for future work include extending the results to [20]’s variable cost function model for

thread/handler execution times, multiprocessor scheduling, and scheduling [14]’s distributable threads.

REFERENCES

[1] A. Bestavros and S. Nagy. Admission control and overload management for real-time databases. In Real-Time Database Systems:

Issues and Applications, chapter 12. Kluwer Academic Publishers, 1997.

[2] R. Clark et al. An adaptive, distributed airborne tracking system. In IEEE WPDRTS, pages 353–362, April 1999.

[3] R. K. Clark. Scheduling Dependent Real-Time Activities. PhD thesis, Carnegie Mellon University, 1990.

[4] R. K. Clark et al. Software organization to facilitate dynamic processor scheduling. In IEEE WPDRTS, April 2004.

[5] E. Curley, J. S. Anderson, B. Ravindran, and E. D. Jensen. Recovering from distributable thread failures with assured timeliness

in real-time distributed systems. In IEEE SRDS, pages 267–276, 2006.

[6] W. Horn. Some simple scheduling algorithms. Naval Research Logistics Quaterly, 21:177–185, 1974.

[7] E. D. Jensen et al. A time-driven scheduling model for real-time systems. In IEEE RTSS, pages 112–122, December 1985.

[8] N. Kandasamy, J. P. Hayes, and B. T. Murray. Scheduling algorithms for fault tolerance in real-time embedded systems. In D. R.

Avresky, editor, Dependable Network Computing, chapter 18. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[9] P. Li, B. Ravindran, S. Suhaib, and S. Feizabadi. A formally verified application-level framework for real-time scheduling on

posix real-time operating systems. IEEE Transactions on Software Engineering, 30(9):613 – 629, September 2004.

[10] P. Li, H. Wu, B. Ravindran, and E. D. Jensen. A utility accrual scheduling algorithm for real-time activities with mutual exclusion

resource constraints. IEEE Transactions on Computers, 55(4):454 – 469, April 2006.

[11] C. D. Locke. Best-Effort Decision Making for Real-Time Scheduling. PhD thesis, Carnegie Mellon University, 1986.

[12] D. P. Maynard, S. E. Shipman, et al. An example real-time command, control, and battle management application for alpha.

Technical report, CMU CS Dept., Dec. 1988. Archons Project TR 88121.

[13] S. Nagy and A. Bestavros. Admission control for soft-transactions in accord. In IEEE RTAS, page 160, 1997.

[14] OMG. Real-time corba 2.0: Dynamic scheduling specification. Technical report, Object Management Group, September 2001.

[15] B. Ravindran, E. D. Jensen, and P. Li. On recent advances in time/utility function real-time scheduling and resource management.

In IEEE ISORC, pages 55 – 60, May 2005.

[16] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approach to real-time synchronization. IEEE

Transactions on Computers, 39(9):1175–1185, 1990.

[17] N. R. Soparkar et al. Time-Constrained Transaction Management. Kluwer Academic Publishers, 1996.

[18] H. Streich. Taskpair-scheduling: An approach for dynamic real-time systems. Mini and Microcomputers, 17(2):77–83, 1995.

[19] H. Wu et al. Utility accrual scheduling under arbitrary time/utility functions and multiunit resource constraints. In IEEE RTCSA,

pages 80–98, August 2004.

[20] H. Wu et al. Utility accrual real-time scheduling under variable cost functions. In IEEE RTCSA, pages 213–219, 2005.

