
Integrated Real-Time Scheduling and Communication with
Probabilistic Timing Assurances in Unreliable Distributed Systems

Fei Huang? Kai Han? Binoy Ravindran? E. D. Jensen‡
?ECE Dept., Virginia Tech
Blacksburg, VA 24061, USA
{huangf,khan05,binoy}@vt.edu

‡The MITRE Corporation
Bedford, MA 01730, USA

jensen@mitre.org

Abstract

We consider distributed real-time systems that op-
erate under run-time uncertainties including those on
execution times and communication delays, and sub-
ject to arbitrary node failures and message losses. We
present an integrated real-time scheduling and commu-
nication algorithm called Real-Time Scheduling with
Reliable Data Delivery (RTSRD) that provides proba-
bilistic end-to-end assurances on distributed task time-
liness behaviors in such systems. RTSRD considers
distributed tasks with end-to-end timing requirements
that are expressed using time/utility functions and
the optimality criterion of maximizing the total ac-
crued utility. The algorithm decomposes end-to-end
time constraints into local time constraints, and uses
local slack time for node-local real-time scheduling and
node-to-node real-time communication. We analyti-
cally establish RTSRD’s properties including proba-
bilistic satisfaction of task time constraints. We also
compare RTSRD with a prior algorithm called RTG-
L for the same problem. Our comparisons show that
RTSRD outperforms RTG-L in terms of timeliness
assurances (stronger) and algorithm overhead (lower).

1. Introduction

We consider scheduling distributed real-time tasks
in large-scale systems based on unreliable networks,
e.g., those without a fixed network infrastructure or
subject to interference, including mobile and wireless
ad-hoc networks. Distributed real-time systems are
subject to the run-time uncertainties including arbi-
trary message losses and node failures, which would
make acknowledgement-mechanism-based communi-

cation inefficient. Despite of these communication
uncertainties, distributed real-time systems desire
strong end-to-end assurances on distributed task
timeliness behaviors. Probabilistic timing assurances
are often appropriate.

Over the last years, ad-hoc networks are widely
used in many real-time applications, such as battle-
fields and earthquake response systems. While these
applications remain diverse, one common point they
all share is the requirement on the end-to-end time
constraint. However, in addition to the message losses
and node failures, the potential contention in MAC
protocols (e.g., IEEE 802.11 and 802.15.4), the node
mobility nature of the ad-hoc networks, and the
interference between the transmitting nodes, all make
it difficult to achieve reliable distributed real-time
scheduling.

In this paper, we present an integrated real-
time scheduling and communication algorithm, called
Real-Time Scheduling with Reliable Data Transmis-
sion (RTSRD), which provides probabilistic end-to-
end assurances on distributed task time constraints
in unreliable distributed systems based on ad-hoc
network infrastructures. It first decomposes a dis-
tributed task’s end-to-end time constraint into local
time constraints on each execution node. Then it ex-
ecutes its local scheduling algorithm for local subtask
scheduling. After that a process for timely finding
the task’s next execution node is issued in order to
continue task execution.

At its core of communication scheme, RTSRD
makes use of our newly designed “Reliable Data
Delivery” (RDD) mechanism, for discovering a task’s
execution node in ad-hoc networks. While a task
is executing on one node, RTSRD reserves enough
bandwidth between the current and next execution
nodes. After the task completes on the current node,
RTSRD executes real-time data delivery within a re-

quired time period. In addition, to deal with possible
message losses, or to deliver extremely large data
chunks, RTSRD simultaneously transmits data in
multiple paths. With RTSRD, the algorithm achieves
reliable distributed real-time scheduling in ad-hoc
network based unreliable systems.

Our work builds upon our prior work in [1] that
presents the RTG-L algorithm. The major difference
between RTG-L and RTSRD is that the latter adopts
RDD to achieve point-to-point real-time communica-
tion, while RTG-L uses gossip protocol, which can
achieve good communication reliability but incur high
message overhead. End-to-end real-time scheduling
has been studied in the past (e.g., [2]–[5]), but these
are mostly limited to infrastructure-fixed networks.
End-to-end timing assurances in unreliable networks
are considered in [1], [6], [7], but they do not deal
with point-to-point real-time communication between
current and next execution nodes, which is precisely
what our work does.

The rest of the paper is organized as follows:
In Section 2, we discuss models and algorithm ob-
jectives. Section 3 illustrates our RTSRD algorithm
including real-time scheduling and communication
strategies. In Section 4, we build the analytical model
for RTSRD and extend the model of RTG-L for
theoretical comparison. In Section 5, we report our
simulation studies. We conclude the paper in Sec-
tion 6.

2. Models and algorithm objectives

2.1. Task model

Distributed tasks execute in local and remote
objects by location-independent invocations. A task
completes it execution by invoking a set of object
operations that are specified when the task is initially
created. The portion of a task executing an object op-
eration is called a subtask. Thus, a task can be viewed
as being composed of a concatenation of subtasks. A
task’s initial subtask is called its root and its most
recent subtask is called its head. A task’s head is the
only subtask that is active. A subtask begins with
a remote invocation, and ends with another possible
invocation.

Upon creation, the number of a task’s objects
that need remote invocations are known, while the
invocation sequence are assumed to be unknown.
Execution time estimates of the subtasks of a task
are known when the task arrives at the respective
nodes. Normally, the application is comprised of a set
of tasks, denoted as T = {T1, T2, T3, . . .}.

We assume that each object operation required by
the task is UNIQUELY hosted by one system node,
and this assumption can be easily extended to a node
group providing the same service.

2.2. Timeliness model and utility accrual
scheduling

Each task’s time constraint is specified using a
time/utility function (or TUF) [8]. Figure 1 shows
downward “step” TUFs.

-
Time

6Utility

0

Figure 1. Step TUFs

A TUF decouples
importance and
urgency of a task—i.e.,
urgency is measured
as a deadline on the
X-axis, and importance
is denoted by utility
on the Y-axis. This
decoupling is a key property of TUFs, as a task’s
urgency is typically orthogonal to its relative
importance—e.g., the most urgent task can be the
least important, and vice versa; the most urgent can
be the most important, and vice versa.

A task Ti’s TUF is denoted as Ui (t). Classical
deadline is unit-valued—i.e., Ui(t) = {0, 1}, since
importance is not considered. Downward step TUFs
generalize classical deadlines where Ui(t) = {0, {n}}.
We focus on downward step TUFs, and denote the
maximum, constant utility of a TUF Ui (), simply as
Ui. Each TUF has an initial time Ii, which is the
earliest time for which the TUF is defined, and a ter-
mination time Xi, which, for a downward step TUF,
is its discontinuity point. Ui (t) > 0,∀t ∈ [Ii, Xi] and
Ui (t) = 0, ∀t /∈ [Ii, Xi] , ∀i.

If a task has not completed by its termination time,
a failure-exception is raised, and exception handlers
are released for aborting all partially executed sub-
tasks (for releasing system resources). The handlers’
time constraints are also specified using TUFs.

2.3. System model

The system consists of a set of nodes, denoted
as N = {n1, n2, n3, . . .}. It adopts ad-hoc network
structure, where each node acts as a router in commu-
nication processes. A basic unicast routing protocol
called “Destination Sequenced Distance Vector” is as-
sumed to be available for packet transmission between
nodes. MAC-layer packet scheduling is assumed to be
done IEEE 802.11. We assume that node clocks are
synchronized using an algorithm such as [9].

Nodes may dynamically join or leave the network.
Nodes may fail by crashing, links may fail transiently
or permanently, and messages may be lost, all arbi-
trarily.

2.4. Objectives

Our goal is to design an algorithm that can sched-
ule tasks with probabilistic termination-time satisfac-
tions in the presence of message losses and node/link
failures —i.e., establish probabilistically satisfied end-
to-end timing assurance for a task. Further, we desire
to maximize total task accrued utility, and minimize
the number of aborted tasks.

3. The RTSRD algorithm

In this section, we will first describe the RTSRD
algorithm starting from the scheduling algorithm, and
then discuss the core communication scheme.

3.1. Building local TUF

RTSRD decomposes the task’s end-to-end TUF
based on the execution time estimates of the subtasks
and the task’s termination time. Let a task Ti arrive
at a node nj at time t. Let Ti’s total execution time
of all the remaining subtasks (including the local
subtask on nj) be Eri, the total remaining slack time
be Sri, the number of remaining subtasks (including
the local subtask on nj) be Nri, and the execution
time of the local subtask be Eri,j . RTSRD computes
a local slack time LSi,j for Ti as LSi,j = Sri

Nri−1 , if
Nri > 1; LSi,j = Sri, if 0 6 Nri 6 1. The algorithm
equally divides the total remaining slack time to give
the remaining subtasks a fair chance to complete their
execution.

The local slack is used to compute a local termina-
tion time for the subtask. The local termination time
for a task Ti is given by LXi,j = t+Eri,j +LSi,j . The
local termination time is used by RTSRD to test for
schedule feasibility, while constructing local subtask
schedules.

3.2. Constructing local schedule

RTSRD constructs local schedules of subtasks,
with the goal of maximizing the total accrued util-
ity, and minimizing the number of local termination
times that are violated. The problem of maximizing
total accrued utility itself is NP-hard [10]. Thus,

Algorithm 1: Local RTSRD Scheduling Algo-
rithm [Local SCHEDULE()]

Create an empty schedule φ;1

Let t be the time of the scheduling event;2

Sort subtasks in ready queue according to PUDs;3

for each subtask in decreasing PUD order do4

Insert subtask in φ at its termination time position5

(maintaining φ’s increasing termination-time order);
if schedule is infeasible then6

Remove subtask from φ;7

Select earliest-deadline subtask from σ for execution;8

RTSRD considers heuristics in constructing local sub-
task schedules—Potential Utility Density (PUD). A
subtask’s PUD is the utility that can be accrued by
executing the subtask, per unit of execution time. For
a subtask Si, at a scheduling event that occurs at time
t, its PUD is given by PUDi(t) = Ui(t + LEri(t)) =
LEri(t), where LEri(t) is Si’s remaining (local) ex-
ecution time at t. Thus, a subtask’s PUD measures
its return on “investment”. RTSRD constructs local
subtask schedules at two scheduling events: 1) the
arrival of a message that signals the release of the
subtask for execution on the node; and 2) completion
of the subtask’s execution.

RTSRD constructs local schedules as follows. The
algorithm sorts all subtasks in the ready queue in the
descending order of their PUDs. The sorted subtasks
are then examined, highest PUD first, and inserted
into a tentative schedule. The tentative schedule is
sorted in the ascending order of the subtask termi-
nation times, to minimize termination time misses
(since deadline ordering is optimal for that objective),
and tested for feasibility. A schedule is said to be
feasible, if the predicted completion time of each
subtask in the schedule does not exceed its local
termination time. (This feasibility testing is similar to
that in [10].) If the schedule is infeasible, the subtask
is removed from the schedule. The process is repeated
until all subtasks in the ready queue are examined,
while preserving the invariant of schedule feasibility.
The subtask with the earliest termination time in
the resulting schedule is then selected for execution.
The algorithm is shown in Algorithm 1. It is worth
mentioning that when a node is underloaded, this
algorithm is capable of scheduling all the subtasks
in that node to meet their time constraints [1].

3.3. Discovering the next head node

Underlying routing protocol. RTSRD makes
use of routing protocols to discover and maintain

Table 1. N1’s simplified forwarding table
Destination Next Hop Hops Sequence Number

N1 N1 0 710
N2 N3 2 392
N3 N3 1 676
N4 N3 2 128
N5 N3 3 350

data delivery paths. Because deliveries are real-time,
it expects path-finding time to be as short as possible.

Some well-known routing protocols, such as Ad-
hoc On-demand Distance Vector (or AODV) and Dy-
namic Source Routing (or DSR), are reactive in that
they form a path on-demand when a transmitting
node requests one. Reactive protocols are not suitable
when considered by RTSRD, because path-finding
time might be very long, especially when several
intermediate nodes exist in the path — i.e., long path-
finding time might cause data delivery violate its time
constraint.

RTSRD therefore adopts a proactive routing pro-
tocol called “Destination-Sequenced Distance Vector”
(or DSDV). DSDV achieves proactiveness by letting
nodes periodically discover and maintain paths. With
DSDV, when a packet needs to be delivered, the path
is already known and can be immediately used. Table
1 shows one DSDV node’s (N1) simplified forwarding
table.

Each node maintains a forwarding table for all
reachable destinations. The table contains the next
hop, number of hops and sequence number for each
destination. A sequence number shows the freshness
of a path, and is used to help nodes distinguish stale
paths from the new ones and thus avoid formation of
path loops.

Nodes broadcast routing updates periodically or
at the time the network topology changes. Each path
is tagged with a Time-to-Live (TTL) to indicate
its freshness. Before a real-time data delivery starts,
RTSRD will reduce the TTL of the path between
the source and destination nodes, in order to enhance
path maintenance frequency. In this way, it remains
a reliable path when delivery begins.

RTSRD bandwidth reservation. Based on pre-
diction on the possible size of real-time data, RT-
SRD executes bandwidth reservation (or BR) before
the real data delivery (or DD) begins. In this way,
when a real-time task completes and data is ready
for delivery, it can immediately transmit data with
desired sending rate. RRTD’s basic strategy is shown
in Figure 2.

RTSRD uses an existing wireless routing protocol
(DSDV in this paper) to provide immediate data

Figure 2. RTSRD strategy

delivery path. It also needs to reserve enough band-
width before data is delivered, and achieves band-
width reservation by controlling its and its neighbors’
packet sending and receiving rates. In addition, it
delivers data through multiple paths, in order to
robustly transmit data, or separately transmit large
data chunks.

IEEE 802.11 provides a CSMA/CA-based mech-
anism to allow nodes access wireless medium. To
avoid the “hidden terminal” problem, before data
transmission, the source node sends “Request to
Send” (or RTS), and the destination node replies
“Clear to Send” (or CTS). Every other node receiving
RTS/CTS should remain in silence during the trans-
mission period. With RTS/CTS, a node is not allowed
to transmit whenever:
1) It is receiving data;
2) One of its neighbors is receiving data (due to the

reception of a CTS);
3) One of its neighbors is transmitting data to a

node that is neither another neighbor nor the
node itself (due to the reception of a RTS).

The available bandwidth ABi for a node i to
transmit data is calculated as follows:

ABi = EBi −

bi +

∑

j∈ℵi

bj +
∑

j∈ℵi,k 6=ℵ+
i

bjk


 (1)

where bi/bj is the receiving bandwidth used by node
i/j, bjk is the traffic from node j to k, and ℵi/ℵ+

i

is the set of neighbors of node i excluding/including
itself. In real systems, poor link quality and the
interference between nodes makes only a portion of
the total bandwidth is usable. Therefore, here we
use the total effective bandwidth EBi for available
bandwidth computation.

Denote the required bandwidth for real-time data
delivery as r. In delivery processes, nodes not only
need to reserve r bandwidth, but also need to con-
sider the extra bandwidth which they use to remain
in silence due to the reception of RTS/CTS. Table

Table 2. Data delivery in a 4-hop path
A B C D E

Hop1 S R CTS - -
Hop2 RTS S R CTS -
Hop3 - RTS S R CTS
Hop4 - - RTS S R

Algorithm 2: Computing Required Bandwidth
if i = source/destination then1

if destination/source in neighbors then2

r ≤ ABi;3

else4

r ≤ ABi/2;5

else if i ∈ ℵsource/destination then6

r ≤ ABi/3;7

else8

r ≤ ABi/4;9

2 shows bandwidth consumption of nodes in data
delivery path, where S and R are data sender and
receiver, respectively. Note that S may be the source
node (A) or intermediate nodes (B, C, D), and R may
be the destination node (E) or intermediate nodes as
well. We show how to compute reserved bandwidth
for node i in Algorithm 2.

Multi-path Data Delivery. Message losses and
node failures are frequent in some ad-hoc networks.
To achieve reliable real-time data delivery, RTSRD
adopts multi-path delivery mechanism (the number of
paths is application-specific), as shown in Figure 3(a).

If the required bandwidth exceeds a node i’s total
effective bandwidth EBi, multi-path delivery can
help to distribute the delivery work load to different
paths, as shown in Figure 3(b).

4. Theoretical analysis of RTSRD

In this section, we are going to theoretically ana-
lyze RTSRD from the perspective of timeliness and
overhead.

4.1. Probabilistic timeliness assurance

Suppose that all the nodes in the distributed sys-
tem are underloaded. The probabilistic end-to-end
assurances on distributed task timeliness behaviors
can be modeled by the following reliability analysis.

Given a packet loss ratio plri,j and a bandwidth
reservation failure ratio bfri,j , which refer to the
failure probability of packet delivery and failure prob-
ability of bandwidth reservation, respectively, during

(a) Multi-path for reliable delivery

(b) Multi-path for large data delivery

Figure 3. Multi-path real-time data delivery

the ith-hop transmission in the jth path, we can carry
out the success probability rj of packet transmission
in the jth-path as

rj =
∏

i,j

(1− plri,j − bfri,j), (2)

where nh represents the number of hops in the path
from current head node to next head node.

Considering multi-path transmission in RTSRD,
we can express the overall packet reachability Rpck

as
Rpck = 1−

∏

j

(1− rj). (3)

To reduce the complexity of analysis, in the follow-
ing discussion we will assume that the number of hops
in each path is equal to nh with nh = max{i}. To help
understand, we can think of the existence of some
virtual nodes with zero packet loss ratio, if one path
has less nodes than nh. Furthermore, to estimate the
timeliness assurance under the bound of worst-case
scenario, it is assumed that all the packet loss ratios
are in the same value plr with plr = max{plri,j}, and
all the bandwidth reservation failure ratios are in the
same value bfr with bfr = max{bfri,j}. Accordingly,
we can derive that

Rpck = 1− (1− r)nr , (4)

where nr represents the number of paths, and r =
(1− plr − bfr)nh .

Assume that a data message consists of npck pack-
ets. Because there is no Automatic Repeat-reQuest
(ARQ) mechanism inside RTSRD, the failure recep-
tion of any packet at the destination node, i.e., next
head node, will lead to the failure of corresponding
subtask. If the current and next head nodes are
underloaded, a subtask k’s probability Pk to satisfy
its time constraint is given by

Pk = R
npck

pck = [1− (1− r)nr]npck . (5)

Since a distributed task is completed on the suc-
cessful execution of all the subtasks, the probability
PT for task T to successfully complete its execution
through m distributed subtasks can be written as

PT =
∏

16k6m−1

Pk. (6)

In light of the above equation, it is ready to achieve
the success probability PTS for a whole task set TS
as

PTS =
∏

T∈ TS

PT . (7)

If we assume all the subtasks in the task set have the
same packet loss ratio, the same number of hops per
path, and the same number of paths, we can further
simplify PT and PTS as

PT = Pm−1
k , PTS = Pntask

T ,

where ntask is the number of tasks in the task set.
It is worth noticing that our simplification is based
on the worst case scenario, which can help us analyze
the bounded timeliness behavior in such distributed
real-time system.

4.2. Message overhead properties

Based on the same worst case assumption in the
previous analysis, we can derive the message overhead
in terms of various ad-hoc networks parameters, such
as packet loss ratio, number of hops and number of
routes.

Theorem 1. When bandwidth is reserved, the num-
ber of message overhead to execute one task, which
includes the data packets generated and delivered in
order to transmit the data message, is in linear re-
lation to the number of routes nr and the number of
packets.

Proof: For one subtask k, the message overhead
Nk is given by

Nk =
1− (1− plr)nh

plr
× nr × npck. (8)

In light of (8), we can further derive the message
overhead NT to execute one task is

NT =
1− Pm−1

k

1− Pk
×Nk. (9)

From (8) and (9), we can prove that NT is in linear
relation to nr and npck.

Theorem 2. The message overhead to execute one
task set is linear with the number of tasks ntask in the
task set.

Proof: From (9), we can calculate the message
overhead NTS to execute one task set by the following
equation

NTS = NT × ntask. (10)

Thus, we can conclude the proof.
Based on the analytical study about timeliness and

message overhead, we can quantitatively illustrate the
theoretical performance of RTSRD in Figure 4(a) and
Figure 4(b). Suppose that the bandwidth reservations
are all successful. For those two plots, we set the
number of hops as 3, the number of packets for
one message as 1, the number of subtasks as 10. As
shown in those two plots, when the number of paths
increases and packet loss ratio is low, it is easy to
understand the task success probability will increase
while the message overhead significantly steps up.
However, when packet loss ratio is high, even more
paths is added into the scheme, the packet still cannot
survive through the first hops in paths, resulting
from which the task success probability and message
overhead doesn’t change too much. Similarly, when
the number of paths is small, the success probability
and message overhead does not change obviously with
the variety of packet loss ratio.

4.3. RTSRD vs. RTG-L

To understand the performance of RTSRD inten-
sively, we now compare it with RTG-L algorithm
which shows a satisfactory result in [5]. First, we
will build the analytical model for the timeliness
property and message overhead of RTG-L with prac-
tical parameters in applications, such as packet loss
ratio, number of relaying hops, and number of gossip
rounds.

Timeliness property of RTG-L. Let Ir be the
number of newly informed nodes after gossip round

0

50

1000
2

4
6

8
10

0

0.2

0.4

0.6

0.8

1

Number of PathsPacket Loss Ratio (%)

T
as

k
S

uc
ce

ss
 P

ro
ba

bi
lit

y

(a) Task success probability

0
20

40
60

80
100 0

2

4

6

8

10

0

50

100

150

200

250

Number of Paths
Packet Loss Ratio (%)

M
es

sa
ge

 O
ve

rh
ea

d
(p

ac
ke

ts
)

(b) Message overhead

Figure 4. RTSRD

r, and Ur be the number of uninformed nodes at the
end of gossip round r. On the initial condition before
gossip starts, I0 = 1, and U0 = N − 1 where N is the
number of nodes in the ad-hoc network. Iteratively,
we can have

Ur = Ur−1 × [1− Fr · (1− plr)nrh

N − 1
]Ir−1 ; (11)

Ir−1 = Ur−2 − Ur−1, (12)

where plr is the packet loss ratio in each relaying hop
(assuming it is equal for each hop), nrh is the number
of relaying hops in each fan-out path. Resulting from
that, the success probability of subtask k can be
carried out as

Pk = (1− Ufr

N − 1
)2npck , (13)

where fr represents the final round, and npck is the
number of packets segmented from one message. It
is worth mentioning that the exponent 2npck in (13)

contains 2 as a factor because there are two gossip
procedures involved, which are for locating the next
head node, and for returning the result, respectively.
Then, the success probability of one task is

PT = Pm−1
k , (14)

where m is the number of distributed subtasks be-
longing to the task. If we have ntask tasks in the
task set, the success probability of the task set can
be obtained by

PTS = Pntask

T . (15)

Message overhead of RTG-L. To complete
subtask k, the incurred message overhead is

Nk = [1 + (1− Ufr

N−1)npck]

×
fr∑

r=1

[Fr × Ir−1 × npck ×
nrh−1∑

i=0

(1− plr)i]. (16)

Furthermore, we can work out the success probability
to execute one task as

NT =

{
Nk ×

∑m−2
i=0 P i

k m > 1;
0 m 6 1.

(17)

So for one task set, the success probability can be
mathematically expressed as

NTS = NT × ntask. (18)

In light of the above theoretical models, we can
accurately compare the performance of our proposed
RTSRD with previous RTG-L. For the convenience
of illustration, we will discuss such theoretical results
together with the simulation studies in Section 5.

4.4. Possible improvements for RTG-L

Based on the analytical model of RTG-L, we can
explore the possible improvements for RTG-L. As in
previous discussion, RTG-L normally incurs heavy
message overhead, though its reliability is good. We
are wishing to lower down the message overhead of
RTG-L while keep its reliability performance. For
that purpose, one additional metric is defined as
PT /NT , which is the task success probability over
the message overhead. Such metric can describe how
much gain on reliability can be achieved from each
packet cost in average.

In our study, we find two parameters strongly
affect the message overhead of RTG-L. They are the
number of rounds r and the fan out Fr, i.e., the
number of message copies a node sends out when
a gossip round starts. It is interesting to exploit

the optimal adjustments of those parameters so as
to maximize the performance of RTG-L in terms of
PT /NT .

Let packet loss ratio plr = 0.1, the number of
relaying hops nrh = 3, the number of distributed sub-
tasks m = 3, the number of packet segmented from
one message npck = 3 and network size N = 1000.
According to the above scenario, Figure 5(a) illus-
trates that the task success probability will generally
increase with the augment of gossip rounds and fan
out number. When the number of gossip rounds and
the fan out are both low, e.g., r = 4 and Fr = 4, the
task success probability is close to 0. When r = 10
and Fr = 10, the task success probability reaches
0.997, which is the zenith in the plot.

Now let us apply a new metric PT /NT . As shown
in Figure 5(b), PT /NT has a wavelike profile, which
means the top values of PT /NT are surrounding (r =
10, Fr = 10) at some radius, while not happen at
the center part itself where maximum reliability is.
Due the time constraint of real-time system, we prefer
less gossip rounds if the performance of RTG-L can
be satisfactory. In this example, we find the preferred
value of PT /NT is at r = 5 and Fr = 8 where task
success probability PT = 0.938 which is just 0.059 off
the best PT . Remarkably, it saves over 48,218 packets
in the theoretical model.

From the discussion in this section, the future
theoretical optimization on RTG-L would be quite
promising and can help the trade-off between message
overhead and reliability.

5. Simulation results of RTSRD

In this section, we present our simulation stud-
ies on RTSRD in terms of timeliness and message
overhead under different task and network conditions,
such as packet loss ratio, number of paths and num-
ber of hops. Some comparisons between theoretical
results and simulated results are given to demonstrate
the correctness of our analytical models for RTSRD
and RTG-L. Furthermore, we also compare the per-
formance of RTSRD with that of RTG-L.

Now we compare RTSRD and RTG-L in terms of
reliability and message overhead. Because the band-
width reservation failure ratio in the model of RTSRD
plays an analog role with packet loss ratio, we can
easily derive its influence on the system’s behaviors
from that of packet loss ratio. In terms of that,
we suppose that the bandwidth reservations are all
successful in the following discussions. The number of
simulations is 200 in total. We consider such settings

0
2

4
6

8
10

0

2

4

6

8

10

0

0.5

1

Fan Out Number

Number of Rounds

S
uc

ce
ss

 P
ro

ba
bi

lit
y

(a) Task success probability

0
2

4
6

8
100

2

4

6

8

10

0

1

2

3

x 10
−5

Fan Out Number
Number of Rounds

S
uc

ce
ss

 P
ro

ba
bi

lit
y/

M
es

sa
ge

 O
ve

rh
ea

d

(b) Success probability/Message overhead

Figure 5. Possible improvements of RTG-L

as the number of packets being 1 under the packet
loss ratio of 0.1. Specifically, for RTSRD, we set up
the number of hops as 3, the number of paths as 4.
For RTG-L, we consider a network size of 1000 nodes
with the fan out number as 4, the number of relaying
hops as 3, and 6 gossip rounds. Figure 6(a) illustrates
when more subtasks are required to be executed, the
success probability will decrease for both RTSRD and
RTG-L, which is because even if one subtask fails
the whole task will claim a failure. However,RTSRD
can sustain a significant success probability with just
small reduction while RTG-L is very sensitive to the
change in the number of subtasks. For example, when
the number of subtasks becomes 3, RTSRD’s success
probability is still 0.989 while RTG-L’s is unaccept-
ably cut down to 0.054 in simulation. Beyond that,
RTG-L’s success probability is approaching zero while
RTSRD keeps above 0.95. We should notice when
there is only one subtask in the task which means
current head node can do the work without invoking

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Subtasks

T
as

k
S

uc
ce

ss
 P

ro
ba

bi
lit

y

RTSRD: Theoretical Results
RTG−L: Theoretical Results
RTSRD: Simulated Results
RTG−L: Simulated Results

(a) Task success probability

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

Number of Subtasks

M
es

sa
ge

 O
ve

rh
ea

d
(p

ac
ke

ts
)

RTSRD: Simulated Results
RTG−L: Simulated Results

(b) Message overhead

Figure 6. RTSRD vs. RTG-L when the num-
ber of subtasks changes

the next head node, the task success probability is
anyway 1 in both algorithms. As in the illustration,
our simulation accurately respects and proves the
analytical results.

Under the same network condition, we now look at
the message overhead in Figure 6(b). It is evident that
the message overhead of RTG-L is drastically influ-
enced by the number of subtasks. In contrast, RTSRD
shows a small variation in terms of that. For example,
when the number of subtasks increases from 4 to 10,
over 2021 packets were required additionally in RTG-
L, while for RTSRD, only 85 packets were added.
Moreover, we should see when the number of subtasks
is 1, the message overhead is zero because there is no
communication required for next head node if local
node can complete it. For a clear illustration, we do
not demonstrate the corresponding theoretical results
in this plot, which are close to the simulated results.

Another interesting comparison between RTSRD

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet Loss Ratio (%)

T
as

k
S

uc
ce

ss
 P

ro
ba

bi
lit

y

RTSRD: Theoretical Results
RTG−L: Theoretical Results
RTSRD: Simulated Results
RTG−L: Simulated Results

(a) Task success probability

0 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

10
5

Packet Loss Ratio (%)

M
es

sa
ge

 O
ve

rh
ea

d
(p

ac
ke

ts
)

RTSRD: Simulated Results
RTG−L: Simulated Results

(b) Message overhead

Figure 7. RTSRD vs. RTG-L when packet
loss ratio changes

and RTG-L is in terms of the change of packet loss
ratio. We repeat the simulation 200 times. For both
algorithms, let the number of packets be 1 and the
number of subtasks be 3. In detail, for RTSRD, we
set up the number of hops as 3, the number of paths
as 6. For RTG-L, we consider a network size of 1000
nodes with 6 fan outs, 3 relaying hops, and 6 gossip
rounds.

As displayed in Figure 7(a), the simulation results
closely follows and verifies the theoretical analyses
for both RTSRD and RTG-L. In general, we can
observe that when channel condition becomes worse,
the task success probability will be undermined in
both algorithms. Comparatively, RTSRD exhibits sig-
nificantly better reliability with respect to the change
in packet loss ratio. For instance, when plr = 30%,
the success probability of RTSRD is around 87.8% in
our simulation. In contrast, RTG-L is approximately
down to zero at the time. On the other hand, we may

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hops

T
as

k
S

uc
ce

ss
 P

ro
ba

bi
lit

y

RTSRD: Theoretical Results
RTSRD: Simulated Results

(a) Task success probability

1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

Number of Hops

M
es

sa
ge

 O
ve

rh
ea

d
(p

ac
ke

ts
)

RTSRD: Theoretical Results
RTSRD: Simulated Results

(b) Message overhead

Figure 8. RTSRD properties in terms of the
number of hops

find, in Figure 7(b), the message overhead is decreas-
ing when packet loss ratio increases. It is because
that the higher transmission failure probability will
discontinue more transmissions that should have been
in consecutive nodes. As a result, less overhead will
be issued. As we can see from this plot, RTG-L is
orders of magnitude higher than RTSRD when pack
loss ratio is lower than 40%. When packet loss ratio
is high, they both converge to 6 because message will
only be issued for the first 6 hops.

As shown in Figure 8, we consider how the change
in the number of hops will influence the results of
RTSRD. The number of paths in each path is fixed to
6; the number of subtasks is set to 3 and the number
of packets is 1. The experimental results show that
the task success probability will drop a little when
the number of hops increases. In our simulation, the
success probability is still in an acceptable status
(above 0.8) when the number of hops is up to 10. Cor-

respondingly, the message overhead will go up with
the number of hops. The reason for those observations
is any failure in the hops will call a failure such that
more hops will lift up the failure probability. For the
message overhead, more packet will be issued for the
added hops. In addition, the theoretical results are
verified one more by the simulation result.

6. Conclusions and future work

In this paper, we propose RTSRD, an integrated
real-time scheduling and communication algorithm
in unreliable distributed systems. To theoretically
understand its timeliness behavior and message over-
head, we build the analytical model for it. Through
the theoretical and simulated comparisons with RTG-
L, a gossip based real-time scheduling mechanism,
RTSRD exhibits a remarkable reliability with lower
message overhead under different distributed real-
time system conditions. As an additional work, we
also extend the model of RTG-L, and in light of that,
we exploit some possible improvements for RTG-L.

Based on the results of this paper, investigations on
scheduling under overloaded conditions will be stud-
ied to further improve the performance of RTSRD.

References

[1] K. Han et al., “Exploiting slack for scheduling depen-
dent, distributable real-time threads in mobile ad hoc
networks,” in RTNS, Mar. 2007.

[2] I. Lee et al., “A family of resource-Bound real-time
process algebras,” in EAPC, Sep. 2006.

[3] OMG, “Real-time corba 2.0: Dynamic scheduling
specification,” Tech. Rep., OMG, September 2001.

[4] P. Li et al., “A utility accrual scheduling algorithm for
real-time activities with mutual exclusion resource
constraints,” IEEE Transactions on Computers, vol.
55, no. 4, pp. 454-469, Apr. 2006.

[5] T. Abdelzaher et al., “A feasible region for meeting
aperiodic end-to-end deadlines in resource pipelines,”
in ICDCS, 2004, pp. 436–445.

[6] B. S. Manoj et al., “Real-time traffic support for ad
hoc wireless networks,” in IEEE ICON, 2002, pp. 335
– 340.

[7] N. Wang and C. Gill, “Improving real-time sys-
tem configuration via a QoS-aware corba component
model,” in HICSS, 2004, p. 10.

[8] S. Feizabadi et al., “Automatic memory manage-
ment in utility accrual scheduling environments ,” in
ISORC, 2006, pp. 11–19.

[9] K. Romer, “Time synchronization in ad hoc net-
works,” in MobiHoc, 2001, pp. 173–182.

[10] R. K. Clark, “Scheduling dependent real-time activ-
ities,” Ph.D. dissertation, CMU, 1990, cMU-CS-90-
155.

