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Abstract—We present EZBFT, a novel leaderless, distributed
consensus protocol capable of tolerating byzantine faults.
EZBFT’s main goal is to minimize the client-side latency in
WAN deployments. It achieves this by (i) having no designated
primary replica, and instead, enabling every replica to order
the requests that it receives from clients; (ii) using only three
communication steps to order requests in the common case;
and (iii) involving clients actively in the consensus process. In
addition, EZBFT minimizes the potentially negative effect of
a byzantine replica on the overall system performance. We
developed EZBFT’s formal specification in TLA+, show that
it provides the classic properties of BFT protocols including
consistency, stability, and liveness, and developed an imple-
mentation. Our experimental evaluation reveals that EZBFT
improves client-side latency by as much as 40% over state-of-
the-art byzantine fault-tolerant protocols including PBFT, FaB,
and Zyzzyva.
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I. INTRODUCTION

State Machine Replication (SMR) is a common tech-
nique employed in today’s distributed applications to tolerate
server failures and maintain high availability [1], [2]. The
replication servers, or replicas, employ consensus protocols
(e.g., Raft [3], Paxos [4], Zab [5]) to replicate the application
state and ensure that the same sequence of client commands
is executed on the shared state in the same order (i.e., a total
order), ensuring consistency of the replicated state.

Consensus solutions can be broadly classified as Crash
Fault-Tolerant (CFT) and Byzantine Fault-Tolerant (BFT),
with the former being a subset of the latter. While CFT
protocols have found their niche in datacenter applica-
tions [6], [7], [8] of a single enterprise-class organization,
BFT protocols are increasingly used in applications involv-
ing multiple independent organizations. For example, for
distributed ledger or blockchain-based applications in the
permissioned setting, consensus need to be reached among
a set of known participants (e.g., independent organizations),
despite no complete trust among them. In such cases,
BFT protocols can ensure replica state consistency while
withstanding malicious actors and other non-crash related
faults. An example of a permissioned blockchain system that
uses a BFT protocol is the Hyperledger Fabric [9], [10].

PBFT [11] is, arguably, the first practical implementation
of BFT consensus. Since its advent, a number of BFT

protocols have been invented. Some reduce client-side la-
tency [12], [13], [14], [15]; some optimize for higher server-
side throughput [16], [1]; some have greater tolerance to
faults [17]; and some reduce design and implementation
complexity [18].

The use of permissioned blockchain applications is
growing in many domains (e.g., supply chain [19], real-
estate [20], finance [21]) and many such systems are increas-
ingly deployed in geographically distributed settings to cater
to different application needs. Geographical-scale (or “geo-
scale”) deployments of BFT systems have an additional chal-
lenge: achieving low client-side latencies and high server-
side throughput under the high communication latencies of
a WAN. Since replicas need to communicate with each
other and the clients to reach consensus, the number of
communication steps incurred directly impacts the latency,
as each step involves sending messages to potentially distant
nodes. Thus, protocols such as Zyzzyva [14], Q/U [13], and
HQ [15] use various techniques to reduce communication
steps. These techniques, however, do not reduce client-
side latencies in a geo-scale setting, where, the latency
per communication step is as important as the number of
communication steps. In other words, a protocol can achieve
significant cost savings if the latency incurred during a
communication step can be reduced.

The downside of such lack of locality is most manifest for
primary-based BFT protocols such as PBFT and Zyzzyva:
a replica is bestowed the primary status and is responsible
for proposing the total-order for all client requests. While
the clients that are geographically nearest to the primary
may observe optimal client-side latency, the same is not true
for distant clients. A distant client will incur higher latency
for the first communication step (of sending the request to
the primary). Additionally, the primary-based design limits
throughput as the primary carries significantly higher load.

To validate these hypotheses, we deployed Zyzzyva [14]
in a 4-replica geo-scale setting with nodes located in the
US (Virginia), Japan, India, and Australia, using Amazon’s
EC2 infrastructure [22]. We deployed clients alongside each
replica to inject requests, and measured the client-side
latencies by changing the primary’s location. Table I shows
the results. We observe that the lowest latencies are when
the primary is co-located within the same region.

Past work suggests that it is important to perform regular



Table I: Zyzzyva’s [14] latencies (in ms) in a geo-scale
deployment with primary at different locations. Columns
indicate the primary’s location. Rows indicate average client-
side latency for commands issued from that region. For
example, the entry at the 4th row and the 3rd column shows
the client-side latency for commands issued from India to
the primary in Japan. Lowest latency per primary location
is highlighted.

Virginia (US) Japan India Australia
Virginia (US) 198 238 306 303
Japan 236 167 239 246
India 304 242 229 305
Australia 303 232 304 229

view changes (i.e., elect a new primary) to reduce the
negative impacts of byzantine replicas [23]. For geo-scale
applications, this technique will induce suboptimal latency
SLAs, because the appropriate latency SLA, under this
technique, is the maximum of client-side latencies obtained
by placing the primary at each and every site.

A leaderless protocol can solve the aforementioned prob-
lems. A client can send its requests to the nearest replica and
can continue to do so as long as the replica is correct. The
replica can undertake the task of finding an order among
all the concurrent requests in the system, executing the
request on the shared state, and return the result. Leaderless
protocols [24], [25], [26] have been previously proposed for
the CFT model. However, to the best of our knowledge, such
investigations have not been made for the BFT model.

The transition from CFT to BFT is not straightforward
and will yield a sub-optimal solution. As shown in [27],
additional communication steps as well as more number
of messages within each step are fundamental for such
transformations. This will result in sub-optimal server-side
throughput since more messages should be certified by
replicas, (exponentially) increasing the degree of computa-
tion. Moreover, additional communication steps will increase
client-side latency.

Motivated by these concerns, we present EZBFT, a lead-
erless BFT protocol. EZBFT enables every replica in the
system to process the requests received from the clients.
Doing so (i) significantly reduces the client-side latency, (ii)
distributes the load across replicas, and (iii) tolerates faults
more effectively. Importantly, EZBFT delivers requests in
three communication steps in normal operating conditions.

To enable leaderless operation, EZBFT exploits a par-
ticular characteristic of client commands: interference. In
the absence of concurrent interfering commands, EZBFT’s
clients receive a reply in an optimal three communication
steps. When commands interfere, both clients and replicas
coherently communicate to establish a consistent total-order,
consuming an additional zero or two communication steps.
EZBFT employs additional techniques such as client-side

validation of replica messages and speculative execution to
reduce communication steps in the common case, unlike
CFT solutions [24], [25].

We developed EZBFT’s formal specification in TLA+
(available in an accompanying technical report [28]) and
show that it provides the classic properties of BFT protocols
including consistency, stability, and liveness.

To understand how EZBFT fares against state-of-the-art
BFT protocols, we implemented EZBFT and conducted an
experimental evaluation using the AWS EC2 infrastructure,
deploying the implementations in different sets of geograph-
ical regions. Our evaluation reveals that EZBFT improves
client-side latency by as much as 40% over PBFT, FaB, and
Zyzzyva.

The paper’s central contribution is the EZBFT protocol.
To the best of our knowledge, EZBFT is the first BFT
protocol to provide decentralized, deterministic consensus
in the eventually synchronous model. By minimizing the
latency at each communication step, EZBFT provides a
highly effective BFT solution for geo-scale deployments.

The rest of the paper is organized as follows: Sec-
tion II presents EZBFT’s assumptions. Section III overviews
EZBFT, and Section IV presents a complete algorithmic de-
sign and correctness arguments. An experimental evaluation
of EZBFT is presented in Section V. We summarize past and
related work in Section VI and conclude in Section VII.

II. SYSTEM MODEL

We consider a set of nodes (replicas and clients), in
an asynchronous system, that communicate via message
passing. The replica nodes have identifiers in the set
{R0, ..., RN−1}. We assume the byzantine fault model in
which nodes can behave arbitrarily. We also assume a strong
adversary model in which faulty nodes can coordinate to take
down the entire system. Every node, however, is capable of
producing cryptographic signatures [29] that faulty nodes
cannot break. A message m signed using Ri’s private key is
denoted as 〈m〉Ri

. The network is fully connected and quasi-
reliable: if nodes R1 and R2 are correct, then p2 receives a
message from R1 exactly as many times R1 sends it.

To preserve safety and liveness, EZBFT requires at least
N = 3f + 1 replica nodes in order to tolerate f Byzantine
faults. EZBFT uses two kinds of quorums: a fast quorum
with 3f + 1 replicas, and a slow quorum with 2f + 1
replicas. Safety is guaranteed as long as only up to f replicas
fail. Liveness is guaranteed during periods of synchronous
communication. Furthermore, there is no assumption on the
number of faulty clients.

III. PROTOCOL OVERVIEW

We now overview EZBFT and highlight the novelties that
enable it to tolerate byzantine failures and provide optimal
wide-area latency.



EZBFT can deliver decisions in three communication
steps from the client’s point-of-view, if there is no con-
tention, no byzantine failures, and synchronous commu-
nication between replicas. The three communication steps
include: (i) a client sending a request to any one of the
replicas (closest preferably); (ii) a replica forwarding the
request to other replicas with a proposed order; and (iii)
other replicas (speculatively) executing the request as per the
proposed order and replying back to the client. These three
steps constitute EZBFT’s core novelty. To realize these steps,
EZBFT incorporates a set of techniques that we summarize
below and explain in detail in the next section.

First, the EZBFT replicas perform speculative execution
of the commands after receiving the proposal messages from
their respective command-leaders (see below). With only
one replica-to-replica communication, there is no way to
guarantee the final commit order for client commands. Thus,
the replica receiving the proposal assumes that other replicas
received the same proposal (i.e., the command-leader is
not byzantine) and that they have agreed to the proposal.
With this assumption, replicas speculatively execute the
commands on their local state and return a reply back to
the client.

Second, in EZBFT, the client is actively involved in the
consensus process. It is responsible for collecting messages
from the replicas and ensuring that they have committed to
a single order before delivering the reply. The client also
enforces a final order, if the replicas are found to deviate.

Third, and most importantly, there are no designated pri-
mary replicas. Every replica can receive client requests and
propose an order for them. To clearly distinguish the replica
proposing an order for a command from other replicas,
we use the term command-leader. A command-leader is a
replica that proposes an order for the commands received
from its clients. For clarity, all replica can be command-
leaders. To ensure that client commands are consistently
executed across all correct replicas, EZBFT exploits the
following concepts.

EZBFT uses the concept of command interference to
empower replicas to make independent commit decisions.
If replicas concurrently propose commands that do not
interfere, they can be committed and executed independently,
in parallel, in any order, and without the knowledge of
other non-interfering commands. However, when concurrent
commands do interfere, replicas must settle on a common
sequential execution.

Command Interference: A command encapsulates an op-
eration that must be executed on the shared state. We say that
two commands L0 and L1 are interfering if the execution
of these commands in different orders on a given state will
result in two final states. That is, if there exists a sequence of
commands Σ such that the serial execution of Σ, L0, L1 is
not equivalent to Σ, L1, L0, then L0 and L1 are interfering.

Instance Space: An instance space can be visualized as
a sequence of numbered slots to which client-commands
can be associated with. The sequence defines the execution
order of requests, and the role of a consensus protocol is
to reach agreement among a set of replicas on a common
order. However, to accommodate our requirement that every
replica can be a command-leader for their received requests,
each replica has its own instance space. Thus, EZBFT’s role
is not only to reach consensus on the mapping of client-
commands to the slots within an instance space, but also
among the slots in different instance spaces.

Instance Number: An instance number, denoted I , is a
tuple of the instance space (or replica) identifier and a slot
identifier.

Instance Owners: An owner number, O, is a monotoni-
cally increasing number that is used to identify the owner of
an instance space. Thus, there are as many owner numbers as
there are instance spaces (or replicas). This number becomes
useful when a replica is faulty, and its commands must
be recovered by other replicas. When replicas fail, another
correct replica steps up to take ownership of the faulty
replica’s instance space. The owner of a replica R0’s instance
space can be identified from its owner number using the
formula OR0 mod N , where N is the number of replicas.
Initially, the owner number of each instance space is set to
the owner replica’s identifier (e.g., OR0 = 0, OR1 = 1, and
so on).

Dependencies: Due to the use of per-replica instance
spaces, the protocol must agree on the relationship between
the slots of different instances spaces. EZBFT does this via
dependency collection, which uses the command interfer-
ence relation. The dependency set D for command L is every
other command L′ that interferes with L.

Sequence Number (S): is a globally shared number that
is used to break cycles in dependencies. It starts from
one and is always set to be larger than all the sequence
numbers of the interfering commands. Due to concurrency,
it is possible that interfering commands originating from
different command-leaders are assigned the same sequence
number. In such cases, the replica identifiers are used to
break ties.

Protocol Properties: EZBFT has the following properties:
1) Nontriviality. Any request committed and executed by

a replica must have been proposed by a client.
2) Stability. For any replica, the set of committed requests

at any time is a subset of the committed requests at any
later time. If at time t1, a replica Ri has a request L
committed at some instance IL, then Ri will have L
committed in IL at any later time t2 > t1.

3) Consistency. Two replicas can never have different
requests committed for the same instance.

4) Liveness. Requests will eventually be committed by
every non-faulty replica, as long as at least 2f + 1
replicas are correct.



IV. PROTOCOL DESIGN

In this section, we present EZBFT in detail, along with
an informal proof of its properties. We have also developed
a TLA+ specification of EZBFT and model-checked the
protocol correctness; this can be found in the technical
report [28].

A client command may either take a fast path or a slow
path. The fast path consists of three communication steps,
and is taken under no contention, no byzantine failures, and
during synchronous communication periods. The slow path
is taken otherwise to guarantee the final commit order for
commands, and incurs two additional steps.

A. The Fast Path Protocol

The fast path consists of three communication steps in the
critical path and one communication step in the non-critical
path of the protocol. Only the communication steps in the
critical path contribute to the client-side latency. The fast
path works as follows.

1. Client sends a request to a replica.

The client c requests a command L to be executed on the
replicated state by sending a message 〈REQUEST, L, t, c〉σc

to a EZBFT replica. The closest replica may be chosen to
achieve the optimal latency. The client includes a timestamp
t to ensure exactly-once execution.

2. Replica receives a request, assigns an instance num-
ber, collects dependencies and assigns a sequence num-
ber, and forwards the request to other replicas.

When a replica Ri receives the message m =
〈REQUEST, L, t, c〉σc

, it becomes the command-leader for
L. It assigns c to the lowest available instance number
IL in its instance space and collects a dependency set
D using the command interference relation that was pre-
viously described. A sequence number S assigned for c
is calculated as the maximum of sequence numbers of
all commands in the dependency set. This information is
relayed to all other replicas in a message 〈〈SPECORDER,
ORi, IL,D,S, h, d〉σRi

,m〉, where d = H(m), h is the
digest of Ri’s instance space, and ORi is its owner number.

Nitpick. Before taking the above actions, Ri ensures that
the timestamp t > tc, where tc is the highest time-stamped
request seen by Ri thus far. If not, the message is dropped.

3. Other replicas receive the SPECORDER message,
speculatively executes the command according to its
local snapshot of dependencies and sequence number,
and replies back to the client with the result and an
updated set of dependencies and sequence number, as
necessary.

When replica Rj receives a message 〈〈SPECORDER, ORi,
IL,D,S, h, d〉σRi

,m〉 from replica Ri, it ensures that m is a

Figure 1: An example of a fast path execution.

valid REQUEST message and that IL = maxIRi + 1, where
maxIRi is the largest occupied slot number in Ri’s instance
space. Upon successful validation, Rj updates the dependen-
cies and sequence number according to its log, speculatively
executes the command, and replies back to the client. A
reply to the client consists of a message 〈〈SPECREPLY,
ORi, IL,D′,S ′, d, c, t〉σRi

, Rj , rep, SO〉, where rep is the
result, and SO = 〈SPECORDER, ORi, IL, D,S, h, d〉σRi

.

4. The client receives the speculative replies and depen-
dency metadata.

The client receives messages 〈〈SPECREPLY, O, IL,
D′,S ′, d, c, t〉σRk

, Rk, rep, SO〉, where Rk is the sending
replica. The messages from different replicas are said to
match if they have identical O, IL, D′, S ′, c, t, and rep
fields. The number of matched responses decides the fast
path or slow path decision for command L.

Nitpick. Any two dependency sets are equal if both the
sets have the same elements (commands).

4.1 The client receives 3f + 1 matching responses.

The receipt of 3f+1 matching responses from the replicas
constitutes a fast path decision for command L. This happens
in the absence of faults, network partitions, and contention.
The client returns reply rep to the application and then asyn-
chronously sends a message 〈COMMITFAST, c, IL, CC〉,
where CC is the commit certificate consisting of 3f + 1
matching SPECREPLY responses, and returns.

5. The replicas receive either a COMMITFAST or a
COMMIT message.

5.1 The replicas receive a COMMITFAST message.

Upon receipt of a 〈COMMITFAST, c, IL, CC〉 message,
the replica Ri marks the state of L as committed in its
local log and enqueues the command for final execution.
The replica does not reply back to the client.

Example. Figure 1 shows an example case. The client
sends a signed REQUEST message to replica R0 to execute



a command L0 on the replicated service. Replica R0 assigns
the lowest available instance number in its instance space to
L0. Assuming that no instance number was used previously,
the instance number assigned to L0 is IL0 = 〈r0, 0〉. Then,
R0 collects dependencies and assigns a sequence number to
L0. As the first command, there exists no dependencies, so
the dependency set D = {}. Thus, the sequence number is
S = 1.

A signed SPECORDER message is sent to other replicas in
the system with the command and compiled metadata. Other
replicas – R1 through R3 – receive this message, add the
command to their log, and start amassing dependencies from
their log that are not present in D. No other replica received
any other command, thus they produce an empty dependency
set as well, and the sequence number remains the same.
Since there are no dependencies, all replicas immediately
execute the command, speculatively, on their copy of the
application state. The result of execution, unchanged depen-
dency set, sequence number, and the digest of log are sent in
a SPECREPLY message to the client. The client checks for
identical replies and returns the result to the application. The
replies are identical in this case because no other command
conflicts with L0 in any of the replicas and the replicas are
benign.

B. Execution Protocol

EZBFT uses speculative execution as a means to reply to
the client quickly. However, the protocol must ensure that
every correct replica has identical copies of the state. This
means that, when necessary (as described in Section IV-C),
the speculative state must be rolled back and the command
must be re-executed correctly; this is called final execution.

Moreover, differently from existing BFT solutions,
EZBFT collects command dependencies that form a directed
graph with potential cycles. The graph must be processed
to remove cycles and obtain the execution order for a
command.

Each replica takes the following steps:
1) Waits for the command to be enqueued for execution.

For final execution, wait for the dependencies to be
committed and enqueued for final execution as well.

2) A dependency graph is constructed by including R
and all its dependencies in D as nodes and adding
edges between nodes indicating the dependencies. The
procedure is repeated recursively for each dependency.

3) Strongly connected components are identified and
sorted topologically.

4) Starting from the inverse topological order, every
strongly connected component is identified, and all
the requests within the component are sorted in the
sequence number order. The requests are then executed
in the sequence number order, breaking ties using
replica identifiers. During speculative execution, the
execution is marked speculative on the shared state.

During final execution, the speculative results are in-
validated, command re-executed, and marked final.

Note that speculative execution can happen in either the
speculative state or in the final version of the state, which
ever is the latest. However, for final execution, commands
are executed only on the previous final version.

C. The Slow Path Protocol

The slow path is triggered whenever a client receives
either unequal and/or insufficient SPECREPLY messages that
is necessary to guarantee a fast path. The client will receive
unequal replies if the replicas have different perspectives
of the command dependencies, possibly due to contention
or due to the presence of byzantine replicas. The case
of insufficient replies happen due to network partitions or
byzantine replicas.

The steps to commit a command in the slow path are as
follows.

4.2 The client receives at least 2f + 1 possibly unequal
responses.

The client c sets a timer as soon as a REQUEST is issued.
When the timer expires, if c has received at least 2f + 1
〈〈SPECREPLY, ORi, IL,D,S, d, c, t〉σRi

, Rj , rep, SO〉 mes-
sages, it produces the final dependency set and sequence
number for L. The dependency sets from a known set of
2f + 1 replicas are combined to form D′. A new sequence
number S ′ is generated if the individual dependency sets
were not equal. c sends a 〈COMMIT, c, IL,D′,S ′, CC〉σc

message to all the replicas, where CC is the commit
certificate containing 2f + 1 SPECREPLY messages that are
used to produce the final dependency set.

Nitpick. Each command-leader specifies a known set of
2f + 1 replicas that will form the slow path quorum, which
is used by the client to combine dependencies when more
than 2f + 1 reply messages are received. This information
is relayed to the clients by the respective command-leaders
and is cached at the clients.

5.2 The replicas receive a COMMIT message.

Upon receipt of a 〈COMMIT, c, IL,D′,S ′, CC〉σc
mes-

sage, replica r updates command L’s metadata with the
received dependency set D′ and sequence number S ′. The
state produced after the speculative execution of L is inval-
idated, and L is enqueued for final execution. The result
of final execution, rep is sent back to the client in a
〈COMMITREPLY, L, rep〉 message.

6.2 The client receives 2f+1 COMMITREPLY messages
and returns to the application.

The client returns rep to the application upon receipt of
2f + 1 〈COMMITREPLY, L, rep〉 messages. At this point,
execution of command L is guaranteed to be safe in the



Figure 2: EZBFT: An example of a slow path execution.

system, while tolerating upto f byzantine failures. Moreover,
even after recovering from failures, all correct replicas will
always execute L at this same point in their history to
produce the same result.

Example: Figure 2 shows an example of a slow path. Two
clients c0 and c1 send signed REQUEST messages to replicas
R0 and R3, respectively, to execute commands L1 and L2,
respectively, on the replicated service. Assume that L1 and
L2 conflict. Replica R0 assigns the lowest available instance
number of 〈R0, 0〉 to L1. Thus, R0 collects a dependency set
DL1

= {} and assigns a sequence number SL1
= 1 to L1.

Meanwhile, R3 assigns the instance number 〈R3, 0〉 to L1;
the dependency set is DL2

= {}, and sequence number is
SL2

= 1. Replicas R0 and R3 send SPECORDER messages
with their respective commands and their metadata to other
replicas. Let’s assume that R0 and R1 receive L1 before L2,
while R2 and R3 receive L2 before L1. The dependency set
and sequence number will remain unchanged for L1 at R0

and R1, because the dependency set in the SPECORDER
message received is the latest. However, the dependency set
and sequence number for L2 will update to D′L2

= {L1}
and S ′L2

= 2, respectively. Similarly, the dependency set
and sequence number will remain unchanged for L2 at R0

and R1, but for L1, D′L1
= {L2} and S ′L1

= 2, respectively.
Replicas send SPECREPLY messages for both L1 and L2

with the new metadata to the respective clients c0 and c1.
Let’s assume that the slow quorum replicas are R0,

R1, and R2 for R0, and R1, R2, and R3 for R3. Since
client c0 observes unequal responses, it combines the de-
pendencies for L1 from the slow quorum and selects the
highest sequence number to produce the final dependency set
DL1

= {L2} and sequence number SL1
= 2. This metadata

is sent to the replicas in a COMMIT message. Similarly,

Figure 3: An example of a slow path with a faulty replica.

c1 produces the final dependency set DL2
= {L1} and

sequence number SL2
= 2 for L2, and sends a COMMIT

message to the replicas. The replicas update the dependency
set and sequence number of the commands upon receipt of
the respective COMMIT messages, and the commands are
queued for execution. The replicas wait for the receipt of
the COMMIT messages of all commands in the dependency
set before processing them.

After the construction of the graph and the inverse topo-
logical sorting, there will exist commands L1 and L2 with
a cyclic dependency between them. Since the sequence
numbers for both the commands are the same and thus
cannot break the dependency, the replica IDs are used in
this case. Thus, L1 gets precedence over L2. L1 is executed
first, followed by L2. The result of the executions are sent
back to the clients. The clients collect 2f+1 reply messages
and return the result to the application.

Example with a faulty replica: Figure 3 shows an example
of the slow path that is very similar to that of Figure 2, but
with a faulty replica R2 that misbehaves. Notice that the
REQUEST and SPECORDER steps (first four rows) remain
the same. Upon receipt of the SPECORDER message from
R0 and R3 for L1 and L2, respectively, the replicas collect
the dependency set and update the sequence number, and
send back SPECREPLY messages to the client. For L1,
R0 and R1 send D′L1

= {} and S ′L1
= 1; however, R2

misbehaves and sends D′L1
= {} and S ′L1

= 1, even though
it received L2 before L1. For L2, R2 and R3 send D′L2

= {}
and S ′L2

= 1; R1 sends D′L2
= {L1} and S ′L2

= 2. c0
receives a quorum of 2f + 1 SPECREPLY messages, and
sends a COMMIT message with an empty dependency set and
a sequence number 1. On the other hand, the correct R1 that
participated in command L1’s quorum sends back the correct



dependency set and sequence number. Therefore, the final
commit message for L2 will have L1 in its dependency set.
Thus, even though replicas immediately execute L1 since
L1’s final dependency set is empty, they cannot do so for
L2. Correct replicas must wait until L1 is committed before
constructing the graph, at which point L1 will be executed
first due to the smallest sequence number, followed by L2.

D. Triggering Owner Changes

EZBFT employs a mechanism at the clients to monitor
the replicas and take actions to restore the service when
progress is not being made. Although the slow path helps
overcome the effects of a participant byzantine replica, it
does ensure progress of a command when its command-
leader, the replica that proposed that command, is byzantine.
From the client-side, two events can be observed to identify
misbehaving command-leaders.

4.3 The client times-out waiting for reply from the
replicas.

After the client sends a request with command L, it
starts another timer, in addition to the one for slow-path,
waiting for responses. If the client receives zero or fewer
than 2f + 1 responses within the timeout, it sends the
〈REQUEST, L, t, c, Ri〉σc

message to all the replicas, where
Ri is the original recipient of the message.

When replica Rj receives the message, it takes one of
the following two actions. If the request matches or has a
lower timestamp t than the currently cached timestamp for
c, then the cached response is returned to c. Otherwise, the
replica sends a 〈RESENDREQ,m,Rj〉 message where m =
〈REQUEST, L, t, c, Ri〉σc

to Ri and starts a timer. If the timer
expires before the receipt of a SPECORDER message, Rj
initiates an ownership change.

4.4 The client receives responses indicating inconsistent
ordering by the command-leader and sends a proof of
misbehavior to the replicas to initiate an ownership
change for the command-leader’s instance space.

Even though a client may receive prompt replies from
the replicas, it must check for inconsistencies leading to
a proof of misbehavior against the command-leader. The
〈〈SPECREPLY, ORi, IL,D′,S ′, d, c, t〉σRi

, Rk, rep, SO〉
messages from different replicas are said to match if they
have identical ORi, I , D, S, c, t, and rep fields, but the
contention may affect the equality of the dependency set
and sequence number fields. Thus, the command-leader
is said to misbehave if it sends SPECORDER messages
with different instance numbers to different replicas (i.e.,
if the I field varies between the replicas). The client c can
identify by inspecting SPECORDER SO message embedded
in the SPECREPLY message received from the replicas. In
this case, the client collects a pair of such messages to

construct a 〈POM, ORi, POM〉 message, where POM is
a pair of SPECREPLY messages, proving misbehavior by
the command-leader Ri of L.

E. The Owner Change Protocol

An ownership change is triggered for an instance space if
its original owner is faulty. However, to initiate an ownership
change, there must exist either a proof of misbehavior
against the owner, or enough replicas must have timed out
waiting for a reply from the owner.

A replica Rj commits to an ownership change by send-
ing a 〈STARTOWNERCHANGE, Ri, ORi〉 message to other
replicas, where Ri is the suspected replica and ORi is its
owner number.

When another replica Rk receives at least f + 1 STAR-
TOWNERCHANGE messages for Ri, it commits to an owner-
ship change. From this point forward, Rk will not participate
in Ri’s instance space. The new owner number is calculated
as O′Ri = ORi+1, and the new command-leader is identified
using O′Ri mod N (henceforth Rl). Replicas that have
committed to an owner-change send 〈OWNERCHANGE〉
messages to the new leader. Once the new command-leader
Rl receives f+1 OWNERCHANGE messages, it becomes the
new owner of Ri’s instance space and finalizes its history.

Each replica sends an OWNERCHANGE message contain-
ing its view of Ri’s instance space, i.e., the instances (specu-
lative) executed or committed since the last checkpoint, and
the commit-certificate with the highest owner number that
it had previously responded to with a commit message, if
any. The new owner collects a set P of OWNERCHANGE
messages and selects only the one that satisfies one of the
following conditions. For clarity, we label the sequence of
instances in each OWNERCHANGE message as Pi, Pj , and
so on.

There exists a sequence Pi that is the longest and satisfies
one of the following conditions.
Condition 1 Pi has COMMIT messages with the highest

owner number to prove its entries.
Condition 2 Pi has at least f + 1 SPECREPLY messages

with the highest owner number to prove its entries.
If there exists a sequence Pj that extends a Pi satisfying

any of the above conditions, then Pj is a valid extension of
Pi if one of the following conditions hold:

1) Pi satisfies Condition 1, and for every command L in
Pj not in Pi, L has at least f+1 SPECREPLY messages
with the same highest order number as Pi.

2) Pi satisfies Condition 2, and for every command L in
Pj not in Pi, L has a signed COMMIT message with
the same highest order number as Pi.

The new owner sends a NEWOWNER message to all the
replicas. The message includes the new owner number O′R0,
the set P of OWNERCHANGE messages that the owner
collected as a proof, and the set of safe instances G produced
using Condition 1 and Condition 2. A replica accepts a



NEWOWNER message if it is valid, and applies the instances
from G in Ri’s instance space. If necessary, it rolls-back the
speculatively executed requests and re-executes them again.

At this point, Ri’s instance space is frozen. No new
commands are ordered in the instance space, because each
replica has its own instance space that it can use to propose
its command. The owner change is used to ensure the safety
of commands proposed by the faulty replicas.

F. Correctness

We formally specified EZBFT in TLA+ and model-
checked using the TLC model checker. The actions of
Byzantine replicas were modelled after inspirations from the
BFT Paxos specification in [27]. The TLA+ specification is
provided in the technical report [28]. In this section, we
provide an intuition of how EZBFT achieves its properties.

Nontriviality. Since clients must sign the requests they
send, a malicious primary replica cannot modify them with-
out being suspected. Thus, replicas only execute requests
proposed by clients.

Consistency. To prove consistency, we need to show that
if a replica Rj commits L at instance I , then for any replica
Rk that commits L′ at I , L and L′ must be the same
command.

To prove this, consider the following. If Rj commits L
at I = 〈Ri,−〉, then an order change should have been
executed for replica Ri’s instance space. If Rj is correct,
then it would have determined that L was executed at I
using the commit certificate in the form of SPECORDER or
COMMIT messages embedded within the CHANGEOWNER
messages. Thus, L and L′ must be the same. If Rj is
malicious, then the correct replicas will detect it using
the invalid progress-certificate received. This will cause an
ownership change.

In addition, we need to also show that conflicting requests
L and L′ are committed and executed in the same order
across all correct replicas. Assume that L commits with
D and S, while L′ commits with D′ and S ′. If L and
L′ conflict, then at least one correct replica must have
responded to each other in the dependency set among a
quorum of 2f+1 replies received by the client. Thus, L will
be in L′’s dependency set and/or viceversa. The execution
algorithm is deterministic, and it uses the sequence number
to break ties. Thus, conflicting requests will be executed in
the same order across all correct replicas.

Stability. Since only f replicas can be byzantine, there
must exist at least 2f + 1 replicas with the correct history.
During an ownership change, 2f + 1 replicas should send
their history to the new owner which then validates it.
Thus, if a request is committed at some instance, it will be
extracted from history after any subsequent owner changes
and committed at same instance at all correct replicas.

Liveness. Liveness is guaranteed as long as fewer than f
replicas crash. Each primary replica attempts to take the fast

path with a quorum of 3f + 1 replicas. When faults occur
and a quorum of 3f + 1 replicas is not possible, the client
pursues the slow path with 2f + 1 replicas and terminates
in two additional communication steps.

Consistency Guarantees. EZBFT, by default, provides
per-object linearizability [30] for transitive operations, or
specifically those that target a single object. For multi-object
operations, the equivalent property is strict-serializability,
which EZBFT provides since, each command is enqueued
for final execution only after the commands in its depen-
dency set are committed [24].

V. EVALUATION

We implemented EZBFT, and its state-of-the-art competi-
tors PBFT, FaB, and Zyzzyva in Go, version 1.10. In order
to evaluate all systems in a common framework, we used
gRPC [31] for communication and protobuf [32] for mes-
sage serialization. We used the HMAC [33] and ECDSA [29]
algorithms in Go’s crypto package to authenticate the mes-
sages exchanged by the clients and the replicas. The systems
were deployed in different Amazon Web Service (AWS)
regions using the EC2 infrastructure [22]. The VM instance
used was m4.2xlarge with 8 vCPUs and 32GB of memory,
running Ubuntu 16.04. We implemented a replicated key-
value store to evaluate the protocols. Note that, for Zyzzyva
and EZBFT, the client process implements the logic for the
client portion of the respective protocols.

The key-value store is in-memory, mapping string keys to
byte array values. In our experiment, the keys and values
were 8 bytes and 16 bytes, respectively. The store was
initialized with 10,000 keys and random values.

Among the protocols evaluated, only EZBFT is affected
by contention. Contention, in the context of a replicated key-
value store, is defined as the percentage of requests that
concurrently access the same key. Prior work [24] has shown
that, in practice, contention is usually between 0% and 2%.
Thus, a 2% contention means that roughly 2% of the requests
issued by clients target the same key, and the remaining
requests target clients’ own (non-overlapping) set of keys.
However, we evaluate EZBFT at higher contention levels for
completeness.

A. Client-side Latency

To understand EZBFT’s effectiveness in achieving opti-
mal latency at each geographical region, we devised two
experiments to measure the latency experienced by clients
located at each region for each of the protocols.

Experiment 1: We deployed the protocols with four
replica nodes in the AWS regions: US-East-1 (Virginia),
India, Australia, and Japan. At each node, we also co-
located a client that sends requests to the replicas. For single
primary-based protocols (PBFT, FaB, Zyzzyva), the primary
was set to US-East replica; thus, clients in other replicas
send their requests to the primary. For EZBFT, the client
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Figure 4: Median latencies for Experiment 1. All primaries
are in US-East-1 region. The latency is shown per region
as recorded by the clients in that region. Error bars indicate
99%ile.

sends its requests to the nearest replica (which is in the same
region). The clients send requests in closed-loop, meaning
that a client will wait for a reply to its previous request
before sending another one.

Figure 4 shows the median latency (in milliseconds)
observed by the clients located in their respective regions
(shown on x-axis) for each of the four protocols. For EZBFT,
the latency was measured at different contention levels: 0%,
2%, 50%, and 100%; the suffix in the legend indicates the
contention. Among primary-based protocols, PBFT suffers
the highest latency, because it takes five communication
steps to deliver a request. FaB performs better than PBFT
with four communication steps, but Zyzzyva performs the
best among primary-based protocols using only three com-
munication steps. Overall, EZBFT performs as good as or
better than Zyzzyva, for up to 50% contention. In the US-
East-1 region, both Zyzzyva and EZBFT have about the
same latency because they have the same number of com-
munication steps and their primaries are located in the same
region. However, for the remaining regions, Zyzzva clients
must forward their requests to US-East-1, while EZBFT
clients simply send their requests to their local replica, which
orders them. At 100% contention, five communication steps
required for total-order increases EZBFT’s latency close to
that of PBFT’s.

Experiment 2: To better understand Zyzzyva’s best and
worst-case performances and how they fare against EZBFT,
we identified another set of AWS regions: US-East-2 (Ohio),
Ireland, Frankfurt, and India. This experiment was run
similar to that of Figure 4. The primary was placed in
Ireland. The results are shown in Figure 5. Figure 5a shows
the median latencies as observed by the clients in each
deployed region for each of the four protocols. The choice
of Ireland as the primary region represents the best case for
Zyzzyva. Hence, EZBFT performs very similar to Zyzzyva.

In Experiment 1, the regions mostly had non-overlapping
paths between them, and thus the first communication step of
sending the request to the leader can be seen clearly (notice

Mumbai in Figure 4. On the other hand, in Experiment 2,
connections between the regions have overlapping paths.
For example, sending a request from Ohio to Mumbai
for EZBFT will take about the same time as sending a
request from Ohio to Mumbai via the primary at Ireland
for Zyzzyva.

Figure 5b shows the effect of moving the primary to
different regions. We disregard PBFT and FaB in this case,
as their performance do not improve. For Zyzzyva, moving
the primary to US-East-2 or India substantially increases
its overall latency. In such cases, EZBFT’s latency is up to
45% lower than Zyzzyva’s. This data-point is particularly
important as it reveals how the primary’s placement affects
the latency.

To curb the negative effects of byzantine primary replicas,
in [34], the authors propose to frequently move the pri-
mary (this strategy is adopted by other protocols including
Zyzzyva). From Figure 5b, we can extrapolate that such fre-
quent movements can negatively impact latencies over time.
Given these challenges, we argue that EZBFT’s leaderless
nature is a better fit for geo-scale deployments.

Effect of Byzantine Replicas. While a byzantine primary,
in primary-based approaches, can cease progress, EZBFT
enables correct replicas to continue to make progress using
the slow path, effectively isolating the impact of byzantine
replicas. Therefore, the client-side latency observed for a
four-replica system will be equivalent to that observed at
100% contention with a small change: the requests at the
affected node will timeout until before the view change.
After the view change, the new owner will complete any
pending requests. The new requests, however, will be sent
to the closest node(s), so the latency recedes quickly. In our
evaluation, with a timeout period of 3 seconds, the view
change procedure completed in less than 4 seconds. For
more details, refer to technical report [28].

B. Client Scalability

Another important aspect of EZBFT is its ability to
maintain low client-side latency even as the number of con-
nected clients increases. For this experiment, we deployed
the protocols in Virginia, Japan, Mumbai, and Australia,
and measured client-side latency per region by varying the
number of connected clients. Figure 7 shows the results.
Notice that as Zyzzyva approaches 100 connected clients
per region, it suffers from an exponential increase in latency.
However, EZBFT, even at 50% contention, is able to scale
better with the number of clients. Particularly, in Mumbai,
EZBFT maintains a stable latency even at 100 clients per
region, while Zyzzyva’s latency shoots up.

C. Server-side Throughput

We also measured the peak throughput of the protocols.
For this experiment, we deployed the protocols in five AWS
regions: US-East-1 (Virginia), India, Australia, and Japan.
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Figure 6: Throughput of EZBFT and
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Figure 7: Latency per location while varying the number of
connected clients (1 – 100) per region.

We co-located ten clients with the primary replica in US-
East-1. Unlike the experiments so far, here the clients send
requests in an open-loop, meaning that they continuously
and asynchronously send requests before receiving replies.

Figure 6 shows the results. For EZBFT, we carried out two
experiments: i) clients are placed only at US-East-1 (labelled
EZBFT in the figure); and ii) clients are placed at every
region (labelled “EZBFT (All Regions)” in the figure). Due
to the leaderless characteristic, each of the replicas can feed
requests into the system, increasing the overall throughput.
The contention was set to 0%, and no batching was done.

Observe that when clients are placed only at US-East-
1, EZBFT performs at par or slightly better than others.
On the other hand, when clients are placed in all the other
regions, which does not yield any benefit for other protocols,
EZBFT’s throughput increases by as much as four times, as
all EZBFT replicas are able to process and deliver requests
concurrently.

VI. RELATED WORK

BFT consensus was first introduced in [35]. However,
PBFT [11], [34] was the first protocol to provide a prac-
tical implementation of BFT consensus in the context of
state machine replication. PBFT solved consensus in three
communication steps (excluding two steps for client commu-
nication) using 3f+1 nodes and requiring responses from at

least 2f + 1 nodes. f is the maximum number of byzantine
faulty nodes that the system can tolerate and make progress.

FaB [13] reduced the number of communication steps
required to reach agreement in the common case to two
steps, called two-step consensus (excluding two steps for
client communication). However, node and quorum require-
ments are substantially larger with 5f + 1 and 4f + 1
nodes, respectively, to tolerate f faults and still achieve
two-step consensus. FaB falls back to a slower path when
4f + 1 responses cannot be acquired, and requires an extra
communication step and at least 3f + 1 nodes to reach
agreement.

FaB was the first BFT protocol to not require any digital
signatures in the common case. Parameterized-FaB [13]
requires 3f+2t+1 nodes, where f is the number of tolerated
faults and preserve safety and t is the number of tolerated
faults and solve two-step consensus. This minimized the
node requirements in the common case to 3f +1 (by setting
t = 0), but the quorum requirement is still more than that
of PBFT.

The Q/U [12] protocol was the first to achieve consensus
in two communications steps when there are no faults and
update requests do not concurrently access the same object.
Q/U defines a simplified version of conflicts. Requests are
classified as either reads or writes. Reads do not conflict
with reads, while write conflicts with reads and writes. This
is more restrictive than the commutative property used by
EZBFT. In EZBFT, for instance, mutative operations (such
as incrementing a variable) are commutative.

HQ [15] is similar to PBFT with a special optimization
to execute read-only requests in two communication steps
and update requests in four communication steps under no
conflicts. HQ’s definition of conflict is the same as Q/U’s.

Zyzzyva [14], [36] uses 3f + 1 nodes to solve consensus
in three steps (including client communication), requiring
a quorum of 3f + 1 responses. The protocol tolerates f
faults, so it takes an additional two steps when nodes are
faulty. Zyzzyva uses the minimum number of nodes, com-



munication steps, and one-to-one messages to achieve fast
consensus. It is cheaper than the aforementioned protocols,
but also more complex. Zyzzyva’s performance boost is
due to speculative execution, active participation of the
clients in the agreement process, and tolerating temporary
inconsistencies among replicas.

EZBFT has the same node and quorum requirements as
well as the number of communication steps as Zyzzyva.
However, by minimizing the latency of the first communica-
tion step and alleviating the specialized role of the primary,
EZBFT reduces the request processing latency.

Aliph [18] builds a BFT protocol by composing three
different sub-protocols, each handling a specific system
factor such as contention, slow links, and byzantine faults.
Under zero contention, the sub-protocol Quorum can deliver
agreement in two steps with 3f + 1 nodes by allowing
clients to send the requests directly to the nodes. However, as
contention or link latency increases, or as faults occur, Aliph
switches to the sub-protocol Chain whose additional steps
is equal to the number of nodes in the system, or to the sub-
protocol Backup which takes at least three steps. Although
the idea of composing simpler protocols is appealing in
terms of reduced design and implementation complexities,
the performance penalty is simply too high, especially in
geo-scale settings.

In contrast, EZBFT exploits the trade-off between the
slow and fast path steps. EZBFT uses three steps compared
to Aliph’s two steps in the common case, and in return,
provides slow path in only two extra communication steps
unlike Aliph. Moreover, EZBFT’s leaderless approach re-
duces the latency of the first communication step to near
zero, yielding client-side latency comparable to Aliph’s.

EBAWA [37] uses the spinning primary approach [23] to
minimize the client-side latency in geo-scale deployments.
However, a byzantine replica can delay its commands with-
out detection reducing the overall server-side throughput.
EZBFT’s dependency collection mechanism enables correct
replicas to only depend on commands that arrive in time, and
execute without waiting otherwise. Furthermore, EBAWA
uses a trusted component in each replica making it a hybrid
protocol [38] than a byzantine fault-tolerant one.

Table II summarizes the comparison of existing work
with EZBFT. Note that EZBFT and Zyzzyva have the
same best-case communication steps. However, for EZBFT,
the latency for the first-step communication is minuscule
(tending towards zero) compared to that of Zyzzyva’s.

Leaderless and multi-leader protocols [25], [26], [24],
[2] have been proposed for the CFT model. Among these,
EPaxos [24] and Caesar [25] collect dependencies and find a
total order among all the dependent requests. Both protocols
work in two phases: a fast phase that is reached under no
contention and an additional slow phase that is required un-

1n additional steps are required only if Chain sub-protocol is used

Table II: Comparison of existing BFT protocols and EZBFT.

Protocol PBFT Zyzzyva Aliph ezBFT
Resilience f < n/3 f < n/3 f < n/3 f < n/3
Best-case
comm. steps 5 3 2 3

Best-case
comm. steps
in absence of
...

Byz.
Slow links

Byz.
Slow links
Contention

Byz.
Slow links
Contention

Byz.
Slow links
Contention

Slow-path
steps - 2 n + 31 2

Leader Single Single Single Leaderless

der contention. In EPaxos, the collected dependencies form a
graph, which is linearized before executed. EZBFT borrows
the EPaxos’ dependency collection technique and enhances
it with speculative execution and client-side validation in
order to decrease the number of communication steps as
well as the number of messages exchanged in each path.

Caesar can deliver fast phase consensus even under non-
trivial contention by having a replica wait until some con-
ditions are satisfied before replying to the primary. Such
wait conditions are harmful in BFT protocols, because a
malicious replica can use this as an opportunity to cease
progress.

In M2Paxos [26], a replica can order a request if it owns
the object that the request accesses. Otherwise, it forwards
the request to the right owner or acquires ownership. Ac-
quiring ownership means becoming the primary for some
subset of objects, and in CFT-based protocols, any replica
can propose to be a owner of any subset of objects at any
point in time. However, in BFT-based protocols, electing a
primary is a more involved process requiring consent from
other replicas. In addition, view numbers are pre-assigned
to replicas; therefore, randomly choosing primaries is not a
trivial process.

VII. CONCLUSIONS

State-of-the-art BFT protocols are not able to provide op-
timal request processing latencies in geo-scale deployments
– an increasingly ubiquitous scenario for many distributed
applications, particularly blockchain-based applications.

We presented EZBFT, a leaderless BFT protocol that
provides three-step consensus in the common case, while
essentially nullifying the latency of the first communica-
tion step. EZBFT provides the classic properties of BFT
protocols including nontriviality, consistency, stability, and
liveness. Our experimental evaluation reveals that EZBFT
reduces latency by up to 40% compared to Zyzzyva.
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